btrfs-progs/extent-tree.c

799 lines
21 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include "kerncompat.h"
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "transaction.h"
static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*orig_root, u64 num_blocks, u64 search_start, u64
search_end, struct btrfs_key *ins);
static int finish_current_insert(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root);
static int run_pending(struct btrfs_trans_handle *trans, struct btrfs_root
*extent_root);
/*
* pending extents are blocks that we're trying to allocate in the extent
* map while trying to grow the map because of other allocations. To avoid
* recursing, they are tagged in the radix tree and cleaned up after
* other allocations are done. The pending tag is also used in the same
* manner for deletes.
*/
#define CTREE_EXTENT_PENDING_DEL 0
static int inc_block_ref(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 blocknr)
{
struct btrfs_path path;
int ret;
struct btrfs_key key;
struct btrfs_leaf *l;
struct btrfs_extent_item *item;
struct btrfs_key ins;
u32 refs;
find_free_extent(trans, root->fs_info->extent_root, 0, 0, (u64)-1,
&ins);
btrfs_init_path(&path);
key.objectid = blocknr;
key.flags = 0;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
key.offset = 1;
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, &path,
0, 1);
if (ret != 0)
BUG();
BUG_ON(ret != 0);
l = &path.nodes[0]->leaf;
item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item);
refs = btrfs_extent_refs(item);
btrfs_set_extent_refs(item, refs + 1);
BUG_ON(list_empty(&path.nodes[0]->dirty));
btrfs_release_path(root->fs_info->extent_root, &path);
finish_current_insert(trans, root->fs_info->extent_root);
run_pending(trans, root->fs_info->extent_root);
return 0;
}
static int lookup_block_ref(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 blocknr, u32 *refs)
{
struct btrfs_path path;
int ret;
struct btrfs_key key;
struct btrfs_leaf *l;
struct btrfs_extent_item *item;
btrfs_init_path(&path);
key.objectid = blocknr;
key.offset = 1;
key.flags = 0;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, &path,
0, 0);
if (ret != 0)
BUG();
l = &path.nodes[0]->leaf;
item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item);
*refs = btrfs_extent_refs(item);
btrfs_release_path(root->fs_info->extent_root, &path);
return 0;
}
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_buffer *buf)
{
u64 blocknr;
int i;
if (!root->ref_cows)
return 0;
if (btrfs_is_leaf(&buf->node))
return 0;
for (i = 0; i < btrfs_header_nritems(&buf->node.header); i++) {
blocknr = btrfs_node_blockptr(&buf->node, i);
inc_block_ref(trans, root, blocknr);
}
return 0;
}
static int write_one_cache_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_block_group_cache *cache)
{
int ret;
int pending_ret;
struct btrfs_root *extent_root = root->fs_info->extent_root;
struct btrfs_block_group_item *bi;
struct btrfs_key ins;
ret = find_free_extent(trans, root, 0, 0, (u64)-1, &ins);
if (ret)
return ret;
ret = btrfs_search_slot(trans, root->fs_info->extent_root,
&cache->key, path, 0, 1);
BUG_ON(ret);
bi = btrfs_item_ptr(&path->nodes[0]->leaf, path->slots[0],
struct btrfs_block_group_item);
memcpy(bi, &cache->item, sizeof(*bi));
dirty_tree_block(trans, extent_root, path->nodes[0]);
btrfs_release_path(extent_root, path);
finish_current_insert(trans, root);
pending_ret = run_pending(trans, root);
if (ret)
return ret;
if (pending_ret)
return pending_ret;
return 0;
}
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_block_group_cache *cache[8];
int ret;
int err = 0;
int werr = 0;
struct radix_tree_root *radix = &root->fs_info->block_group_radix;
int i;
struct btrfs_path path;
btrfs_init_path(&path);
while(1) {
ret = radix_tree_gang_lookup_tag(radix, (void **)cache,
0, ARRAY_SIZE(cache),
BTRFS_BLOCK_GROUP_DIRTY);
if (!ret)
break;
for (i = 0; i < ret; i++) {
radix_tree_tag_clear(radix, cache[i]->key.objectid +
cache[i]->key.offset -1,
BTRFS_BLOCK_GROUP_DIRTY);
err = write_one_cache_group(trans, root,
&path, cache[i]);
if (err)
werr = err;
}
}
return werr;
}
static int update_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 blocknr, u64 num, int alloc)
{
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *info = root->fs_info;
u64 total = num;
u64 old_val;
u64 block_in_group;
int ret;
while(total) {
ret = radix_tree_gang_lookup(&info->block_group_radix,
(void **)&cache, blocknr, 1);
if (!ret)
return -1;
radix_tree_tag_set(&info->block_group_radix,
cache->key.objectid + cache->key.offset - 1,
BTRFS_BLOCK_GROUP_DIRTY);
block_in_group = blocknr - cache->key.objectid;
old_val = btrfs_block_group_used(&cache->item);
if (total > cache->key.offset - block_in_group)
num = cache->key.offset - block_in_group;
else
num = total;
total -= num;
blocknr += num;
if (alloc)
old_val += num;
else
old_val -= num;
btrfs_set_block_group_used(&cache->item, old_val);
}
return 0;
}
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
btrfs_root *root)
{
unsigned long gang[8];
u64 first = 0;
int ret;
int i;
while(1) {
ret = radix_tree_gang_lookup(&root->fs_info->pinned_radix,
(void **)gang, 0,
ARRAY_SIZE(gang));
if (!ret)
break;
if (!first)
first = gang[0];
for (i = 0; i < ret; i++) {
radix_tree_delete(&root->fs_info->pinned_radix,
gang[i]);
}
}
root->fs_info->last_insert.objectid = first;
root->fs_info->last_insert.offset = 0;
return 0;
}
static int finish_current_insert(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root)
{
struct btrfs_key ins;
struct btrfs_extent_item extent_item;
int i;
int ret;
u64 super_blocks_used;
struct btrfs_fs_info *info = extent_root->fs_info;
btrfs_set_extent_refs(&extent_item, 1);
btrfs_set_extent_owner(&extent_item, extent_root->root_key.objectid);
ins.offset = 1;
ins.flags = 0;
btrfs_set_key_type(&ins, BTRFS_EXTENT_ITEM_KEY);
for (i = 0; i < extent_root->fs_info->current_insert.flags; i++) {
ins.objectid = extent_root->fs_info->current_insert.objectid +
i;
super_blocks_used = btrfs_super_blocks_used(info->disk_super);
btrfs_set_super_blocks_used(info->disk_super,
super_blocks_used + 1);
ret = btrfs_insert_item(trans, extent_root, &ins, &extent_item,
sizeof(extent_item));
if (ret) {
btrfs_print_tree(extent_root, extent_root->node);
}
BUG_ON(ret);
}
extent_root->fs_info->current_insert.offset = 0;
return 0;
}
/*
* remove an extent from the root, returns 0 on success
*/
static int __free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 blocknr, u64 num_blocks, int pin)
{
struct btrfs_path path;
struct btrfs_key key;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
int ret;
struct btrfs_extent_item *ei;
struct btrfs_key ins;
u32 refs;
BUG_ON(pin && num_blocks != 1);
key.objectid = blocknr;
key.flags = 0;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
key.offset = num_blocks;
find_free_extent(trans, root, 0, 0, (u64)-1, &ins);
btrfs_init_path(&path);
ret = btrfs_search_slot(trans, extent_root, &key, &path, -1, 1);
if (ret) {
printf("failed to find %Lu\n", key.objectid);
btrfs_print_tree(extent_root, extent_root->node);
printf("failed to find %Lu\n", key.objectid);
BUG();
}
ei = btrfs_item_ptr(&path.nodes[0]->leaf, path.slots[0],
struct btrfs_extent_item);
BUG_ON(ei->refs == 0);
refs = btrfs_extent_refs(ei) - 1;
btrfs_set_extent_refs(ei, refs);
if (refs == 0) {
u64 super_blocks_used;
if (pin) {
int err;
radix_tree_preload(GFP_KERNEL);
err = radix_tree_insert(&info->pinned_radix,
blocknr, (void *)blocknr);
BUG_ON(err);
radix_tree_preload_end();
}
super_blocks_used = btrfs_super_blocks_used(info->disk_super);
btrfs_set_super_blocks_used(info->disk_super,
super_blocks_used - num_blocks);
ret = btrfs_del_item(trans, extent_root, &path);
if (!pin && extent_root->fs_info->last_insert.objectid >
blocknr)
extent_root->fs_info->last_insert.objectid = blocknr;
if (ret)
BUG();
ret = update_block_group(trans, root, blocknr, num_blocks, 0);
BUG_ON(ret);
}
btrfs_release_path(extent_root, &path);
finish_current_insert(trans, extent_root);
return ret;
}
/*
* find all the blocks marked as pending in the radix tree and remove
* them from the extent map
*/
static int del_pending_extents(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root)
{
int ret;
struct btrfs_buffer *gang[4];
int i;
while(1) {
ret = radix_tree_gang_lookup_tag(
&extent_root->fs_info->cache_radix,
(void **)gang, 0,
ARRAY_SIZE(gang),
CTREE_EXTENT_PENDING_DEL);
if (!ret)
break;
for (i = 0; i < ret; i++) {
ret = __free_extent(trans, extent_root,
gang[i]->blocknr, 1, 1);
radix_tree_tag_clear(&extent_root->fs_info->cache_radix,
gang[i]->blocknr,
CTREE_EXTENT_PENDING_DEL);
btrfs_block_release(extent_root, gang[i]);
}
}
return 0;
}
static int run_pending(struct btrfs_trans_handle *trans, struct btrfs_root
*extent_root)
{
while(radix_tree_tagged(&extent_root->fs_info->cache_radix,
CTREE_EXTENT_PENDING_DEL))
del_pending_extents(trans, extent_root);
return 0;
}
/*
* remove an extent from the root, returns 0 on success
*/
int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 blocknr, u64 num_blocks, int pin)
{
struct btrfs_root *extent_root = root->fs_info->extent_root;
struct btrfs_buffer *t;
int pending_ret;
int ret;
if (root == extent_root) {
t = find_tree_block(root, blocknr);
radix_tree_tag_set(&root->fs_info->cache_radix, blocknr,
CTREE_EXTENT_PENDING_DEL);
return 0;
}
ret = __free_extent(trans, root, blocknr, num_blocks, pin);
pending_ret = run_pending(trans, root->fs_info->extent_root);
return ret ? ret : pending_ret;
}
/*
* walks the btree of allocated extents and find a hole of a given size.
* The key ins is changed to record the hole:
* ins->objectid == block start
* ins->flags = BTRFS_EXTENT_ITEM_KEY
* ins->offset == number of blocks
* Any available blocks before search_start are skipped.
*/
static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*orig_root, u64 num_blocks, u64 search_start, u64
search_end, struct btrfs_key *ins)
{
struct btrfs_path path;
struct btrfs_key key;
int ret;
u64 hole_size = 0;
int slot = 0;
u64 last_block;
u64 test_block;
int start_found;
struct btrfs_leaf *l;
struct btrfs_root * root = orig_root->fs_info->extent_root;
int total_needed = num_blocks;
total_needed += (btrfs_header_level(&root->node->node.header) + 1) * 3;
if (root->fs_info->last_insert.objectid > search_start)
search_start = root->fs_info->last_insert.objectid;
ins->flags = 0;
btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
check_failed:
btrfs_init_path(&path);
ins->objectid = search_start;
ins->offset = 0;
start_found = 0;
ret = btrfs_search_slot(trans, root, ins, &path, 0, 0);
if (ret < 0)
goto error;
if (path.slots[0] > 0)
path.slots[0]--;
while (1) {
l = &path.nodes[0]->leaf;
slot = path.slots[0];
if (slot >= btrfs_header_nritems(&l->header)) {
ret = btrfs_next_leaf(root, &path);
if (ret == 0)
continue;
if (ret < 0)
goto error;
if (!start_found) {
ins->objectid = search_start;
ins->offset = (u64)-1 - search_start;
start_found = 1;
goto check_pending;
}
ins->objectid = last_block > search_start ?
last_block : search_start;
ins->offset = (u64)-1 - ins->objectid;
goto check_pending;
}
btrfs_disk_key_to_cpu(&key, &l->items[slot].key);
if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
goto next;
if (key.objectid >= search_start) {
if (start_found) {
if (last_block < search_start)
last_block = search_start;
hole_size = key.objectid - last_block;
if (hole_size > total_needed) {
ins->objectid = last_block;
ins->offset = hole_size;
goto check_pending;
}
}
}
start_found = 1;
last_block = key.objectid + key.offset;
next:
path.slots[0]++;
}
// FIXME -ENOSPC
check_pending:
/* we have to make sure we didn't find an extent that has already
* been allocated by the map tree or the original allocation
*/
btrfs_release_path(root, &path);
BUG_ON(ins->objectid < search_start);
for (test_block = ins->objectid;
test_block < ins->objectid + total_needed; test_block++) {
if (radix_tree_lookup(&root->fs_info->pinned_radix,
test_block)) {
search_start = test_block + 1;
goto check_failed;
}
}
BUG_ON(root->fs_info->current_insert.offset);
root->fs_info->current_insert.offset = total_needed - num_blocks;
root->fs_info->current_insert.objectid = ins->objectid + num_blocks;
root->fs_info->current_insert.flags = 0;
root->fs_info->last_insert.objectid = ins->objectid;
ins->offset = num_blocks;
return 0;
error:
btrfs_release_path(root, &path);
return ret;
}
/*
* finds a free extent and does all the dirty work required for allocation
* returns the key for the extent through ins, and a tree buffer for
* the first block of the extent through buf.
*
* returns 0 if everything worked, non-zero otherwise.
*/
static int alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 owner, u64 num_blocks,
u64 search_start, u64
search_end, struct btrfs_key *ins)
{
int ret;
int pending_ret;
u64 super_blocks_used;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
struct btrfs_extent_item extent_item;
btrfs_set_extent_refs(&extent_item, 1);
btrfs_set_extent_owner(&extent_item, owner);
if (root == extent_root) {
BUG_ON(extent_root->fs_info->current_insert.offset == 0);
BUG_ON(num_blocks != 1);
BUG_ON(extent_root->fs_info->current_insert.flags ==
extent_root->fs_info->current_insert.offset);
ins->offset = 1;
ins->objectid = extent_root->fs_info->current_insert.objectid +
extent_root->fs_info->current_insert.flags++;
return 0;
}
ret = find_free_extent(trans, root, num_blocks, search_start,
search_end, ins);
if (ret)
return ret;
super_blocks_used = btrfs_super_blocks_used(info->disk_super);
btrfs_set_super_blocks_used(info->disk_super, super_blocks_used +
num_blocks);
ret = btrfs_insert_item(trans, extent_root, ins, &extent_item,
sizeof(extent_item));
finish_current_insert(trans, extent_root);
pending_ret = run_pending(trans, extent_root);
if (ret)
return ret;
if (pending_ret)
return pending_ret;
return 0;
}
/*
* helper function to allocate a block for a given tree
* returns the tree buffer or NULL.
*/
struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_key ins;
int ret;
struct btrfs_buffer *buf;
ret = alloc_extent(trans, root, root->root_key.objectid,
1, 0, (unsigned long)-1, &ins);
if (ret) {
BUG();
return NULL;
}
ret = update_block_group(trans, root, ins.objectid, ins.offset, 1);
buf = find_tree_block(root, ins.objectid);
btrfs_set_header_generation(&buf->node.header,
root->root_key.offset + 1);
btrfs_set_header_blocknr(&buf->node.header, buf->blocknr);
memcpy(buf->node.header.fsid, root->fs_info->disk_super->fsid,
sizeof(buf->node.header.fsid));
dirty_tree_block(trans, root, buf);
return buf;
}
/*
* helper function for drop_snapshot, this walks down the tree dropping ref
* counts as it goes.
*/
static int walk_down_tree(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, int *level)
{
struct btrfs_buffer *next;
struct btrfs_buffer *cur;
u64 blocknr;
int ret;
u32 refs;
ret = lookup_block_ref(trans, root, path->nodes[*level]->blocknr,
&refs);
BUG_ON(ret);
if (refs > 1)
goto out;
/*
* walk down to the last node level and free all the leaves
*/
while(*level > 0) {
cur = path->nodes[*level];
if (path->slots[*level] >=
btrfs_header_nritems(&cur->node.header))
break;
blocknr = btrfs_node_blockptr(&cur->node, path->slots[*level]);
ret = lookup_block_ref(trans, root, blocknr, &refs);
if (refs != 1 || *level == 1) {
path->slots[*level]++;
ret = btrfs_free_extent(trans, root, blocknr, 1, 1);
BUG_ON(ret);
continue;
}
BUG_ON(ret);
next = read_tree_block(root, blocknr);
if (path->nodes[*level-1])
btrfs_block_release(root, path->nodes[*level-1]);
path->nodes[*level-1] = next;
*level = btrfs_header_level(&next->node.header);
path->slots[*level] = 0;
}
out:
ret = btrfs_free_extent(trans, root, path->nodes[*level]->blocknr, 1,
1);
btrfs_block_release(root, path->nodes[*level]);
path->nodes[*level] = NULL;
*level += 1;
BUG_ON(ret);
return 0;
}
/*
* helper for dropping snapshots. This walks back up the tree in the path
* to find the first node higher up where we haven't yet gone through
* all the slots
*/
static int walk_up_tree(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, int *level)
{
int i;
int slot;
int ret;
for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
slot = path->slots[i];
if (slot <
btrfs_header_nritems(&path->nodes[i]->node.header)- 1) {
path->slots[i]++;
*level = i;
return 0;
} else {
ret = btrfs_free_extent(trans, root,
path->nodes[*level]->blocknr,
1, 1);
btrfs_block_release(root, path->nodes[*level]);
path->nodes[*level] = NULL;
*level = i + 1;
BUG_ON(ret);
}
}
return 1;
}
/*
* drop the reference count on the tree rooted at 'snap'. This traverses
* the tree freeing any blocks that have a ref count of zero after being
* decremented.
*/
int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_buffer *snap)
{
int ret = 0;
int wret;
int level;
struct btrfs_path path;
int i;
int orig_level;
btrfs_init_path(&path);
level = btrfs_header_level(&snap->node.header);
orig_level = level;
path.nodes[level] = snap;
path.slots[level] = 0;
while(1) {
wret = walk_down_tree(trans, root, &path, &level);
if (wret > 0)
break;
if (wret < 0)
ret = wret;
wret = walk_up_tree(trans, root, &path, &level);
if (wret > 0)
break;
if (wret < 0)
ret = wret;
}
for (i = 0; i <= orig_level; i++) {
if (path.nodes[i]) {
btrfs_block_release(root, path.nodes[i]);
}
}
return ret;
}
int btrfs_free_block_groups(struct btrfs_fs_info *info)
{
int ret;
struct btrfs_block_group_cache *cache[8];
int i;
while(1) {
ret = radix_tree_gang_lookup(&info->block_group_radix,
(void **)cache, 0,
ARRAY_SIZE(cache));
if (!ret)
break;
for (i = 0; i < ret; i++) {
radix_tree_delete(&info->block_group_radix,
cache[i]->key.objectid +
cache[i]->key.offset - 1);
free(cache[i]);
}
}
return 0;
}
int btrfs_read_block_groups(struct btrfs_root *root)
{
struct btrfs_path path;
int ret;
int err = 0;
struct btrfs_block_group_item *bi;
struct btrfs_block_group_cache *cache;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_leaf *leaf;
u64 group_size_blocks = BTRFS_BLOCK_GROUP_SIZE / root->blocksize;
root = root->fs_info->extent_root;
key.objectid = 0;
key.offset = group_size_blocks;
key.flags = 0;
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
btrfs_init_path(&path);
while(1) {
ret = btrfs_search_slot(NULL, root->fs_info->extent_root,
&key, &path, 0, 0);
if (ret != 0) {
err = ret;
break;
}
leaf = &path.nodes[0]->leaf;
btrfs_disk_key_to_cpu(&found_key,
&leaf->items[path.slots[0]].key);
cache = malloc(sizeof(*cache));
if (!cache) {
err = -1;
break;
}
bi = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_block_group_item);
memcpy(&cache->item, bi, sizeof(*bi));
memcpy(&cache->key, &found_key, sizeof(found_key));
key.objectid = found_key.objectid + found_key.offset;
btrfs_release_path(root, &path);
ret = radix_tree_insert(&root->fs_info->block_group_radix,
found_key.objectid +
found_key.offset - 1, (void *)cache);
BUG_ON(ret);
if (key.objectid >=
btrfs_super_total_blocks(root->fs_info->disk_super))
break;
}
btrfs_release_path(root, &path);
return 0;
}
int btrfs_insert_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_key *key,
struct btrfs_block_group_item *bi)
{
struct btrfs_key ins;
int ret;
int pending_ret;
root = root->fs_info->extent_root;
ret = find_free_extent(trans, root, 0, 0, (u64)-1, &ins);
if (ret)
return ret;
ret = btrfs_insert_item(trans, root, key, bi, sizeof(*bi));
finish_current_insert(trans, root);
pending_ret = run_pending(trans, root);
if (ret)
return ret;
if (pending_ret)
return pending_ret;
return ret;
}