#include #include #include "kerncompat.h" #include "radix-tree.h" #include "ctree.h" #include "disk-io.h" #include "print-tree.h" #include "transaction.h" static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *orig_root, u64 num_blocks, u64 search_start, u64 search_end, struct btrfs_key *ins); static int finish_current_insert(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root); static int run_pending(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root); /* * pending extents are blocks that we're trying to allocate in the extent * map while trying to grow the map because of other allocations. To avoid * recursing, they are tagged in the radix tree and cleaned up after * other allocations are done. The pending tag is also used in the same * manner for deletes. */ #define CTREE_EXTENT_PENDING_DEL 0 static int inc_block_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr) { struct btrfs_path path; int ret; struct btrfs_key key; struct btrfs_leaf *l; struct btrfs_extent_item *item; struct btrfs_key ins; u32 refs; find_free_extent(trans, root->fs_info->extent_root, 0, 0, (u64)-1, &ins); btrfs_init_path(&path); key.objectid = blocknr; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); key.offset = 1; ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, &path, 0, 1); if (ret != 0) BUG(); BUG_ON(ret != 0); l = &path.nodes[0]->leaf; item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item); refs = btrfs_extent_refs(item); btrfs_set_extent_refs(item, refs + 1); BUG_ON(list_empty(&path.nodes[0]->dirty)); btrfs_release_path(root->fs_info->extent_root, &path); finish_current_insert(trans, root->fs_info->extent_root); run_pending(trans, root->fs_info->extent_root); return 0; } static int lookup_block_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u32 *refs) { struct btrfs_path path; int ret; struct btrfs_key key; struct btrfs_leaf *l; struct btrfs_extent_item *item; btrfs_init_path(&path); key.objectid = blocknr; key.offset = 1; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, &path, 0, 0); if (ret != 0) BUG(); l = &path.nodes[0]->leaf; item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item); *refs = btrfs_extent_refs(item); btrfs_release_path(root->fs_info->extent_root, &path); return 0; } int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_buffer *buf) { u64 blocknr; int i; if (!root->ref_cows) return 0; if (btrfs_is_leaf(&buf->node)) return 0; for (i = 0; i < btrfs_header_nritems(&buf->node.header); i++) { blocknr = btrfs_node_blockptr(&buf->node, i); inc_block_ref(trans, root, blocknr); } return 0; } static int write_one_cache_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_block_group_cache *cache) { int ret; int pending_ret; struct btrfs_root *extent_root = root->fs_info->extent_root; struct btrfs_block_group_item *bi; struct btrfs_key ins; ret = find_free_extent(trans, root, 0, 0, (u64)-1, &ins); if (ret) return ret; ret = btrfs_search_slot(trans, root->fs_info->extent_root, &cache->key, path, 0, 1); BUG_ON(ret); bi = btrfs_item_ptr(&path->nodes[0]->leaf, path->slots[0], struct btrfs_block_group_item); memcpy(bi, &cache->item, sizeof(*bi)); dirty_tree_block(trans, extent_root, path->nodes[0]); btrfs_release_path(extent_root, path); finish_current_insert(trans, root); pending_ret = run_pending(trans, root); if (ret) return ret; if (pending_ret) return pending_ret; return 0; } int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_block_group_cache *cache[8]; int ret; int err = 0; int werr = 0; struct radix_tree_root *radix = &root->fs_info->block_group_radix; int i; struct btrfs_path path; btrfs_init_path(&path); while(1) { ret = radix_tree_gang_lookup_tag(radix, (void **)cache, 0, ARRAY_SIZE(cache), BTRFS_BLOCK_GROUP_DIRTY); if (!ret) break; for (i = 0; i < ret; i++) { radix_tree_tag_clear(radix, cache[i]->key.objectid + cache[i]->key.offset -1, BTRFS_BLOCK_GROUP_DIRTY); err = write_one_cache_group(trans, root, &path, cache[i]); if (err) werr = err; } } return werr; } static int update_block_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num, int alloc) { struct btrfs_block_group_cache *cache; struct btrfs_fs_info *info = root->fs_info; u64 total = num; u64 old_val; u64 block_in_group; int ret; while(total) { ret = radix_tree_gang_lookup(&info->block_group_radix, (void **)&cache, blocknr, 1); if (!ret) return -1; radix_tree_tag_set(&info->block_group_radix, cache->key.objectid + cache->key.offset - 1, BTRFS_BLOCK_GROUP_DIRTY); block_in_group = blocknr - cache->key.objectid; old_val = btrfs_block_group_used(&cache->item); if (total > cache->key.offset - block_in_group) num = cache->key.offset - block_in_group; else num = total; total -= num; blocknr += num; if (alloc) old_val += num; else old_val -= num; btrfs_set_block_group_used(&cache->item, old_val); } return 0; } int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct btrfs_root *root) { unsigned long gang[8]; u64 first = 0; int ret; int i; while(1) { ret = radix_tree_gang_lookup(&root->fs_info->pinned_radix, (void **)gang, 0, ARRAY_SIZE(gang)); if (!ret) break; if (!first) first = gang[0]; for (i = 0; i < ret; i++) { radix_tree_delete(&root->fs_info->pinned_radix, gang[i]); } } root->fs_info->last_insert.objectid = first; root->fs_info->last_insert.offset = 0; return 0; } static int finish_current_insert(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root) { struct btrfs_key ins; struct btrfs_extent_item extent_item; int i; int ret; u64 super_blocks_used; struct btrfs_fs_info *info = extent_root->fs_info; btrfs_set_extent_refs(&extent_item, 1); btrfs_set_extent_owner(&extent_item, extent_root->root_key.objectid); ins.offset = 1; ins.flags = 0; btrfs_set_key_type(&ins, BTRFS_EXTENT_ITEM_KEY); for (i = 0; i < extent_root->fs_info->current_insert.flags; i++) { ins.objectid = extent_root->fs_info->current_insert.objectid + i; super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used + 1); ret = btrfs_insert_item(trans, extent_root, &ins, &extent_item, sizeof(extent_item)); if (ret) { btrfs_print_tree(extent_root, extent_root->node); } BUG_ON(ret); } extent_root->fs_info->current_insert.offset = 0; return 0; } /* * remove an extent from the root, returns 0 on success */ static int __free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks, int pin) { struct btrfs_path path; struct btrfs_key key; struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *extent_root = info->extent_root; int ret; struct btrfs_extent_item *ei; struct btrfs_key ins; u32 refs; BUG_ON(pin && num_blocks != 1); key.objectid = blocknr; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); key.offset = num_blocks; find_free_extent(trans, root, 0, 0, (u64)-1, &ins); btrfs_init_path(&path); ret = btrfs_search_slot(trans, extent_root, &key, &path, -1, 1); if (ret) { printf("failed to find %Lu\n", key.objectid); btrfs_print_tree(extent_root, extent_root->node); printf("failed to find %Lu\n", key.objectid); BUG(); } ei = btrfs_item_ptr(&path.nodes[0]->leaf, path.slots[0], struct btrfs_extent_item); BUG_ON(ei->refs == 0); refs = btrfs_extent_refs(ei) - 1; btrfs_set_extent_refs(ei, refs); if (refs == 0) { u64 super_blocks_used; if (pin) { int err; radix_tree_preload(GFP_KERNEL); err = radix_tree_insert(&info->pinned_radix, blocknr, (void *)blocknr); BUG_ON(err); radix_tree_preload_end(); } super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used - num_blocks); ret = btrfs_del_item(trans, extent_root, &path); if (!pin && extent_root->fs_info->last_insert.objectid > blocknr) extent_root->fs_info->last_insert.objectid = blocknr; if (ret) BUG(); ret = update_block_group(trans, root, blocknr, num_blocks, 0); BUG_ON(ret); } btrfs_release_path(extent_root, &path); finish_current_insert(trans, extent_root); return ret; } /* * find all the blocks marked as pending in the radix tree and remove * them from the extent map */ static int del_pending_extents(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root) { int ret; struct btrfs_buffer *gang[4]; int i; while(1) { ret = radix_tree_gang_lookup_tag( &extent_root->fs_info->cache_radix, (void **)gang, 0, ARRAY_SIZE(gang), CTREE_EXTENT_PENDING_DEL); if (!ret) break; for (i = 0; i < ret; i++) { ret = __free_extent(trans, extent_root, gang[i]->blocknr, 1, 1); radix_tree_tag_clear(&extent_root->fs_info->cache_radix, gang[i]->blocknr, CTREE_EXTENT_PENDING_DEL); btrfs_block_release(extent_root, gang[i]); } } return 0; } static int run_pending(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root) { while(radix_tree_tagged(&extent_root->fs_info->cache_radix, CTREE_EXTENT_PENDING_DEL)) del_pending_extents(trans, extent_root); return 0; } /* * remove an extent from the root, returns 0 on success */ int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks, int pin) { struct btrfs_root *extent_root = root->fs_info->extent_root; struct btrfs_buffer *t; int pending_ret; int ret; if (root == extent_root) { t = find_tree_block(root, blocknr); radix_tree_tag_set(&root->fs_info->cache_radix, blocknr, CTREE_EXTENT_PENDING_DEL); return 0; } ret = __free_extent(trans, root, blocknr, num_blocks, pin); pending_ret = run_pending(trans, root->fs_info->extent_root); return ret ? ret : pending_ret; } /* * walks the btree of allocated extents and find a hole of a given size. * The key ins is changed to record the hole: * ins->objectid == block start * ins->flags = BTRFS_EXTENT_ITEM_KEY * ins->offset == number of blocks * Any available blocks before search_start are skipped. */ static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *orig_root, u64 num_blocks, u64 search_start, u64 search_end, struct btrfs_key *ins) { struct btrfs_path path; struct btrfs_key key; int ret; u64 hole_size = 0; int slot = 0; u64 last_block; u64 test_block; int start_found; struct btrfs_leaf *l; struct btrfs_root * root = orig_root->fs_info->extent_root; int total_needed = num_blocks; total_needed += (btrfs_header_level(&root->node->node.header) + 1) * 3; if (root->fs_info->last_insert.objectid > search_start) search_start = root->fs_info->last_insert.objectid; ins->flags = 0; btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); check_failed: btrfs_init_path(&path); ins->objectid = search_start; ins->offset = 0; start_found = 0; ret = btrfs_search_slot(trans, root, ins, &path, 0, 0); if (ret < 0) goto error; if (path.slots[0] > 0) path.slots[0]--; while (1) { l = &path.nodes[0]->leaf; slot = path.slots[0]; if (slot >= btrfs_header_nritems(&l->header)) { ret = btrfs_next_leaf(root, &path); if (ret == 0) continue; if (ret < 0) goto error; if (!start_found) { ins->objectid = search_start; ins->offset = (u64)-1 - search_start; start_found = 1; goto check_pending; } ins->objectid = last_block > search_start ? last_block : search_start; ins->offset = (u64)-1 - ins->objectid; goto check_pending; } btrfs_disk_key_to_cpu(&key, &l->items[slot].key); if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY) goto next; if (key.objectid >= search_start) { if (start_found) { if (last_block < search_start) last_block = search_start; hole_size = key.objectid - last_block; if (hole_size > total_needed) { ins->objectid = last_block; ins->offset = hole_size; goto check_pending; } } } start_found = 1; last_block = key.objectid + key.offset; next: path.slots[0]++; } // FIXME -ENOSPC check_pending: /* we have to make sure we didn't find an extent that has already * been allocated by the map tree or the original allocation */ btrfs_release_path(root, &path); BUG_ON(ins->objectid < search_start); for (test_block = ins->objectid; test_block < ins->objectid + total_needed; test_block++) { if (radix_tree_lookup(&root->fs_info->pinned_radix, test_block)) { search_start = test_block + 1; goto check_failed; } } BUG_ON(root->fs_info->current_insert.offset); root->fs_info->current_insert.offset = total_needed - num_blocks; root->fs_info->current_insert.objectid = ins->objectid + num_blocks; root->fs_info->current_insert.flags = 0; root->fs_info->last_insert.objectid = ins->objectid; ins->offset = num_blocks; return 0; error: btrfs_release_path(root, &path); return ret; } /* * finds a free extent and does all the dirty work required for allocation * returns the key for the extent through ins, and a tree buffer for * the first block of the extent through buf. * * returns 0 if everything worked, non-zero otherwise. */ static int alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 owner, u64 num_blocks, u64 search_start, u64 search_end, struct btrfs_key *ins) { int ret; int pending_ret; u64 super_blocks_used; struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *extent_root = info->extent_root; struct btrfs_extent_item extent_item; btrfs_set_extent_refs(&extent_item, 1); btrfs_set_extent_owner(&extent_item, owner); if (root == extent_root) { BUG_ON(extent_root->fs_info->current_insert.offset == 0); BUG_ON(num_blocks != 1); BUG_ON(extent_root->fs_info->current_insert.flags == extent_root->fs_info->current_insert.offset); ins->offset = 1; ins->objectid = extent_root->fs_info->current_insert.objectid + extent_root->fs_info->current_insert.flags++; return 0; } ret = find_free_extent(trans, root, num_blocks, search_start, search_end, ins); if (ret) return ret; super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used + num_blocks); ret = btrfs_insert_item(trans, extent_root, ins, &extent_item, sizeof(extent_item)); finish_current_insert(trans, extent_root); pending_ret = run_pending(trans, extent_root); if (ret) return ret; if (pending_ret) return pending_ret; return 0; } /* * helper function to allocate a block for a given tree * returns the tree buffer or NULL. */ struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_key ins; int ret; struct btrfs_buffer *buf; ret = alloc_extent(trans, root, root->root_key.objectid, 1, 0, (unsigned long)-1, &ins); if (ret) { BUG(); return NULL; } ret = update_block_group(trans, root, ins.objectid, ins.offset, 1); buf = find_tree_block(root, ins.objectid); btrfs_set_header_generation(&buf->node.header, root->root_key.offset + 1); btrfs_set_header_blocknr(&buf->node.header, buf->blocknr); memcpy(buf->node.header.fsid, root->fs_info->disk_super->fsid, sizeof(buf->node.header.fsid)); dirty_tree_block(trans, root, buf); return buf; } /* * helper function for drop_snapshot, this walks down the tree dropping ref * counts as it goes. */ static int walk_down_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int *level) { struct btrfs_buffer *next; struct btrfs_buffer *cur; u64 blocknr; int ret; u32 refs; ret = lookup_block_ref(trans, root, path->nodes[*level]->blocknr, &refs); BUG_ON(ret); if (refs > 1) goto out; /* * walk down to the last node level and free all the leaves */ while(*level > 0) { cur = path->nodes[*level]; if (path->slots[*level] >= btrfs_header_nritems(&cur->node.header)) break; blocknr = btrfs_node_blockptr(&cur->node, path->slots[*level]); ret = lookup_block_ref(trans, root, blocknr, &refs); if (refs != 1 || *level == 1) { path->slots[*level]++; ret = btrfs_free_extent(trans, root, blocknr, 1, 1); BUG_ON(ret); continue; } BUG_ON(ret); next = read_tree_block(root, blocknr); if (path->nodes[*level-1]) btrfs_block_release(root, path->nodes[*level-1]); path->nodes[*level-1] = next; *level = btrfs_header_level(&next->node.header); path->slots[*level] = 0; } out: ret = btrfs_free_extent(trans, root, path->nodes[*level]->blocknr, 1, 1); btrfs_block_release(root, path->nodes[*level]); path->nodes[*level] = NULL; *level += 1; BUG_ON(ret); return 0; } /* * helper for dropping snapshots. This walks back up the tree in the path * to find the first node higher up where we haven't yet gone through * all the slots */ static int walk_up_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int *level) { int i; int slot; int ret; for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { slot = path->slots[i]; if (slot < btrfs_header_nritems(&path->nodes[i]->node.header)- 1) { path->slots[i]++; *level = i; return 0; } else { ret = btrfs_free_extent(trans, root, path->nodes[*level]->blocknr, 1, 1); btrfs_block_release(root, path->nodes[*level]); path->nodes[*level] = NULL; *level = i + 1; BUG_ON(ret); } } return 1; } /* * drop the reference count on the tree rooted at 'snap'. This traverses * the tree freeing any blocks that have a ref count of zero after being * decremented. */ int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_buffer *snap) { int ret = 0; int wret; int level; struct btrfs_path path; int i; int orig_level; btrfs_init_path(&path); level = btrfs_header_level(&snap->node.header); orig_level = level; path.nodes[level] = snap; path.slots[level] = 0; while(1) { wret = walk_down_tree(trans, root, &path, &level); if (wret > 0) break; if (wret < 0) ret = wret; wret = walk_up_tree(trans, root, &path, &level); if (wret > 0) break; if (wret < 0) ret = wret; } for (i = 0; i <= orig_level; i++) { if (path.nodes[i]) { btrfs_block_release(root, path.nodes[i]); } } return ret; } int btrfs_free_block_groups(struct btrfs_fs_info *info) { int ret; struct btrfs_block_group_cache *cache[8]; int i; while(1) { ret = radix_tree_gang_lookup(&info->block_group_radix, (void **)cache, 0, ARRAY_SIZE(cache)); if (!ret) break; for (i = 0; i < ret; i++) { radix_tree_delete(&info->block_group_radix, cache[i]->key.objectid + cache[i]->key.offset - 1); free(cache[i]); } } return 0; } int btrfs_read_block_groups(struct btrfs_root *root) { struct btrfs_path path; int ret; int err = 0; struct btrfs_block_group_item *bi; struct btrfs_block_group_cache *cache; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_leaf *leaf; u64 group_size_blocks = BTRFS_BLOCK_GROUP_SIZE / root->blocksize; root = root->fs_info->extent_root; key.objectid = 0; key.offset = group_size_blocks; key.flags = 0; btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); btrfs_init_path(&path); while(1) { ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, &path, 0, 0); if (ret != 0) { err = ret; break; } leaf = &path.nodes[0]->leaf; btrfs_disk_key_to_cpu(&found_key, &leaf->items[path.slots[0]].key); cache = malloc(sizeof(*cache)); if (!cache) { err = -1; break; } bi = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_block_group_item); memcpy(&cache->item, bi, sizeof(*bi)); memcpy(&cache->key, &found_key, sizeof(found_key)); key.objectid = found_key.objectid + found_key.offset; btrfs_release_path(root, &path); ret = radix_tree_insert(&root->fs_info->block_group_radix, found_key.objectid + found_key.offset - 1, (void *)cache); BUG_ON(ret); if (key.objectid >= btrfs_super_total_blocks(root->fs_info->disk_super)) break; } btrfs_release_path(root, &path); return 0; } int btrfs_insert_block_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_block_group_item *bi) { struct btrfs_key ins; int ret; int pending_ret; root = root->fs_info->extent_root; ret = find_free_extent(trans, root, 0, 0, (u64)-1, &ins); if (ret) return ret; ret = btrfs_insert_item(trans, root, key, bi, sizeof(*bi)); finish_current_insert(trans, root); pending_ret = run_pending(trans, root); if (ret) return ret; if (pending_ret) return pending_ret; return ret; }