mpv/video/out/opengl/ra_gl.c

1134 lines
36 KiB
C

#include <libavutil/intreadwrite.h>
#include "formats.h"
#include "utils.h"
#include "ra_gl.h"
static struct ra_fns ra_fns_gl;
// For ra.priv
struct ra_gl {
GL *gl;
bool debug_enable;
bool timer_active; // hack for GL_TIME_ELAPSED limitations
};
// For ra_tex.priv
struct ra_tex_gl {
struct ra_buf_pool pbo; // for ra.use_pbo
bool own_objects;
GLenum target;
GLuint texture; // 0 if no texture data associated
GLuint fbo; // 0 if no rendering requested, or it default framebuffer
// These 3 fields can be 0 if unknown.
GLint internal_format;
GLenum format;
GLenum type;
};
// For ra_buf.priv
struct ra_buf_gl {
GLenum target;
GLuint buffer;
GLsync fence;
};
// For ra_renderpass.priv
struct ra_renderpass_gl {
GLuint program;
// 1 entry for each ra_renderpass_params.inputs[] entry
GLint *uniform_loc;
int num_uniform_loc; // == ra_renderpass_params.num_inputs
struct gl_vao vao;
};
// (Init time only.)
static void probe_real_size(GL *gl, struct ra_format *fmt)
{
const struct gl_format *gl_fmt = fmt->priv;
if (!gl->GetTexLevelParameteriv)
return; // GLES
bool is_la = gl_fmt->format == GL_LUMINANCE ||
gl_fmt->format == GL_LUMINANCE_ALPHA;
if (is_la && gl->es)
return; // GLES doesn't provide GL_TEXTURE_LUMINANCE_SIZE.
GLuint tex;
gl->GenTextures(1, &tex);
gl->BindTexture(GL_TEXTURE_2D, tex);
gl->TexImage2D(GL_TEXTURE_2D, 0, gl_fmt->internal_format, 64, 64, 0,
gl_fmt->format, gl_fmt->type, NULL);
for (int i = 0; i < fmt->num_components; i++) {
const GLenum pnames[] = {
GL_TEXTURE_RED_SIZE,
GL_TEXTURE_GREEN_SIZE,
GL_TEXTURE_BLUE_SIZE,
GL_TEXTURE_ALPHA_SIZE,
GL_TEXTURE_LUMINANCE_SIZE,
GL_TEXTURE_ALPHA_SIZE,
};
int comp = is_la ? i + 4 : i;
assert(comp < MP_ARRAY_SIZE(pnames));
GLint param = -1;
gl->GetTexLevelParameteriv(GL_TEXTURE_2D, 0, pnames[comp], &param);
fmt->component_depth[i] = param > 0 ? param : 0;
}
gl->DeleteTextures(1, &tex);
}
static int ra_init_gl(struct ra *ra, GL *gl)
{
if (gl->version < 210 && gl->es < 200) {
MP_ERR(ra, "At least OpenGL 2.1 or OpenGL ES 2.0 required.\n");
return -1;
}
struct ra_gl *p = ra->priv = talloc_zero(NULL, struct ra_gl);
p->gl = gl;
ra_gl_set_debug(ra, true);
ra->fns = &ra_fns_gl;
ra->glsl_version = gl->glsl_version;
ra->glsl_es = gl->es > 0;
static const int caps_map[][2] = {
{RA_CAP_DIRECT_UPLOAD, 0},
{RA_CAP_SHARED_BINDING, 0},
{RA_CAP_GLOBAL_UNIFORM, 0},
{RA_CAP_TEX_1D, MPGL_CAP_1D_TEX},
{RA_CAP_TEX_3D, MPGL_CAP_3D_TEX},
{RA_CAP_COMPUTE, MPGL_CAP_COMPUTE_SHADER},
{RA_CAP_NESTED_ARRAY, MPGL_CAP_NESTED_ARRAY},
{RA_CAP_BUF_RO, MPGL_CAP_UBO},
{RA_CAP_BUF_RW, MPGL_CAP_SSBO},
};
for (int i = 0; i < MP_ARRAY_SIZE(caps_map); i++) {
if ((gl->mpgl_caps & caps_map[i][1]) == caps_map[i][1])
ra->caps |= caps_map[i][0];
}
if (gl->BlitFramebuffer)
ra->caps |= RA_CAP_BLIT;
int gl_fmt_features = gl_format_feature_flags(gl);
for (int n = 0; gl_formats[n].internal_format; n++) {
const struct gl_format *gl_fmt = &gl_formats[n];
if (!(gl_fmt->flags & gl_fmt_features))
continue;
struct ra_format *fmt = talloc_zero(ra, struct ra_format);
*fmt = (struct ra_format){
.name = gl_fmt->name,
.priv = (void *)gl_fmt,
.ctype = gl_format_type(gl_fmt),
.num_components = gl_format_components(gl_fmt->format),
.ordered = gl_fmt->format != GL_RGB_422_APPLE,
.pixel_size = gl_bytes_per_pixel(gl_fmt->format, gl_fmt->type),
.luminance_alpha = gl_fmt->format == GL_LUMINANCE_ALPHA,
.linear_filter = gl_fmt->flags & F_TF,
.renderable = (gl_fmt->flags & F_CR) &&
(gl->mpgl_caps & MPGL_CAP_FB),
};
int csize = gl_component_size(gl_fmt->type) * 8;
int depth = csize;
if (gl_fmt->flags & F_F16) {
depth = 16;
csize = 32; // always upload as GL_FLOAT (simpler for us)
}
for (int i = 0; i < fmt->num_components; i++) {
fmt->component_size[i] = csize;
fmt->component_depth[i] = depth;
}
if (fmt->ctype == RA_CTYPE_UNORM && depth != 8)
probe_real_size(gl, fmt);
// Special formats for which OpenGL happens to have direct support.
if (strcmp(fmt->name, "rgb565") == 0) {
fmt->special_imgfmt = IMGFMT_RGB565;
struct ra_imgfmt_desc *desc = talloc_zero(fmt, struct ra_imgfmt_desc);
fmt->special_imgfmt_desc = desc;
desc->num_planes = 1;
desc->planes[0] = fmt;
for (int i = 0; i < 3; i++)
desc->components[0][i] = i + 1;
desc->chroma_w = desc->chroma_h = 1;
}
if (strcmp(fmt->name, "appleyp") == 0) {
fmt->special_imgfmt = IMGFMT_UYVY;
struct ra_imgfmt_desc *desc = talloc_zero(fmt, struct ra_imgfmt_desc);
fmt->special_imgfmt_desc = desc;
desc->num_planes = 1;
desc->planes[0] = fmt;
desc->components[0][0] = 3;
desc->components[0][1] = 1;
desc->components[0][2] = 2;
desc->chroma_w = desc->chroma_h = 1;
}
MP_TARRAY_APPEND(ra, ra->formats, ra->num_formats, fmt);
}
GLint ival;
gl->GetIntegerv(GL_MAX_TEXTURE_SIZE, &ival);
ra->max_texture_wh = ival;
if (ra->caps & RA_CAP_COMPUTE) {
gl->GetIntegerv(GL_MAX_COMPUTE_SHARED_MEMORY_SIZE, &ival);
ra->max_shmem = ival;
}
gl->Disable(GL_DITHER);
if (!ra_find_unorm_format(ra, 2, 1))
MP_VERBOSE(ra, "16 bit UNORM textures not available.\n");
return 0;
}
struct ra *ra_create_gl(GL *gl, struct mp_log *log)
{
struct ra *ra = talloc_zero(NULL, struct ra);
ra->log = log;
if (ra_init_gl(ra, gl) < 0) {
talloc_free(ra);
return NULL;
}
return ra;
}
static void gl_destroy(struct ra *ra)
{
talloc_free(ra->priv);
}
void ra_gl_set_debug(struct ra *ra, bool enable)
{
struct ra_gl *p = ra->priv;
GL *gl = ra_gl_get(ra);
p->debug_enable = enable;
if (gl->debug_context)
gl_set_debug_logger(gl, enable ? ra->log : NULL);
}
static void gl_tex_destroy(struct ra *ra, struct ra_tex *tex)
{
GL *gl = ra_gl_get(ra);
struct ra_tex_gl *tex_gl = tex->priv;
ra_buf_pool_uninit(ra, &tex_gl->pbo);
if (tex_gl->own_objects) {
if (tex_gl->fbo)
gl->DeleteFramebuffers(1, &tex_gl->fbo);
gl->DeleteTextures(1, &tex_gl->texture);
}
talloc_free(tex_gl);
talloc_free(tex);
}
static struct ra_tex *gl_tex_create_blank(struct ra *ra,
const struct ra_tex_params *params)
{
struct ra_tex *tex = talloc_zero(NULL, struct ra_tex);
tex->params = *params;
tex->params.initial_data = NULL;
struct ra_tex_gl *tex_gl = tex->priv = talloc_zero(NULL, struct ra_tex_gl);
const struct gl_format *fmt = params->format->priv;
tex_gl->internal_format = fmt->internal_format;
tex_gl->format = fmt->format;
tex_gl->type = fmt->type;
switch (params->dimensions) {
case 1: tex_gl->target = GL_TEXTURE_1D; break;
case 2: tex_gl->target = GL_TEXTURE_2D; break;
case 3: tex_gl->target = GL_TEXTURE_3D; break;
default: abort();
}
if (params->non_normalized) {
assert(params->dimensions == 2);
tex_gl->target = GL_TEXTURE_RECTANGLE;
}
if (params->external_oes) {
assert(params->dimensions == 2 && !params->non_normalized);
tex_gl->target = GL_TEXTURE_EXTERNAL_OES;
}
return tex;
}
static struct ra_tex *gl_tex_create(struct ra *ra,
const struct ra_tex_params *params)
{
GL *gl = ra_gl_get(ra);
struct ra_tex *tex = gl_tex_create_blank(ra, params);
if (!tex)
return NULL;
struct ra_tex_gl *tex_gl = tex->priv;
tex_gl->own_objects = true;
gl->GenTextures(1, &tex_gl->texture);
gl->BindTexture(tex_gl->target, tex_gl->texture);
GLint filter = params->src_linear ? GL_LINEAR : GL_NEAREST;
GLint wrap = params->src_repeat ? GL_REPEAT : GL_CLAMP_TO_EDGE;
gl->TexParameteri(tex_gl->target, GL_TEXTURE_MIN_FILTER, filter);
gl->TexParameteri(tex_gl->target, GL_TEXTURE_MAG_FILTER, filter);
gl->TexParameteri(tex_gl->target, GL_TEXTURE_WRAP_S, wrap);
if (params->dimensions > 1)
gl->TexParameteri(tex_gl->target, GL_TEXTURE_WRAP_T, wrap);
if (params->dimensions > 2)
gl->TexParameteri(tex_gl->target, GL_TEXTURE_WRAP_R, wrap);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1);
switch (params->dimensions) {
case 1:
gl->TexImage1D(tex_gl->target, 0, tex_gl->internal_format, params->w,
0, tex_gl->format, tex_gl->type, params->initial_data);
break;
case 2:
gl->TexImage2D(tex_gl->target, 0, tex_gl->internal_format, params->w,
params->h, 0, tex_gl->format, tex_gl->type,
params->initial_data);
break;
case 3:
gl->TexImage3D(tex_gl->target, 0, tex_gl->internal_format, params->w,
params->h, params->d, 0, tex_gl->format, tex_gl->type,
params->initial_data);
break;
}
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
gl->BindTexture(tex_gl->target, 0);
gl_check_error(gl, ra->log, "after creating texture");
// Even blitting needs an FBO in OpenGL for strange reasons
if (tex->params.render_dst || tex->params.blit_src || tex->params.blit_dst) {
if (!tex->params.format->renderable) {
MP_ERR(ra, "Trying to create renderable texture with unsupported "
"format.\n");
ra_tex_free(ra, &tex);
return NULL;
}
assert(gl->mpgl_caps & MPGL_CAP_FB);
gl->GenFramebuffers(1, &tex_gl->fbo);
gl->BindFramebuffer(GL_FRAMEBUFFER, tex_gl->fbo);
gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, tex_gl->texture, 0);
GLenum err = gl->CheckFramebufferStatus(GL_FRAMEBUFFER);
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
if (err != GL_FRAMEBUFFER_COMPLETE) {
MP_ERR(ra, "Error: framebuffer completeness check failed (error=%d).\n",
(int)err);
ra_tex_free(ra, &tex);
return NULL;
}
gl_check_error(gl, ra->log, "after creating framebuffer");
}
return tex;
}
// Create a ra_tex that merely wraps an existing texture. The returned object
// is freed with ra_tex_free(), but this will not delete the texture passed to
// this function.
// Some features are unsupported, e.g. setting params->initial_data or render_dst.
struct ra_tex *ra_create_wrapped_tex(struct ra *ra,
const struct ra_tex_params *params,
GLuint gl_texture)
{
struct ra_tex *tex = gl_tex_create_blank(ra, params);
if (!tex)
return NULL;
struct ra_tex_gl *tex_gl = tex->priv;
tex_gl->texture = gl_texture;
return tex;
}
static const struct ra_format fbo_dummy_format = {
.name = "unknown_fbo",
.priv = (void *)&(const struct gl_format){
.name = "unknown",
.format = GL_RGBA,
.flags = F_CR,
},
.renderable = true,
};
// Create a ra_tex that merely wraps an existing framebuffer. gl_fbo can be 0
// to wrap the default framebuffer.
// The returned object is freed with ra_tex_free(), but this will not delete
// the framebuffer object passed to this function.
struct ra_tex *ra_create_wrapped_fb(struct ra *ra, GLuint gl_fbo, int w, int h)
{
struct ra_tex *tex = talloc_zero(ra, struct ra_tex);
*tex = (struct ra_tex){
.params = {
.dimensions = 2,
.w = w, .h = h, .d = 1,
.format = &fbo_dummy_format,
.render_dst = true,
.blit_src = true,
.blit_dst = true,
},
};
struct ra_tex_gl *tex_gl = tex->priv = talloc_zero(NULL, struct ra_tex_gl);
*tex_gl = (struct ra_tex_gl){
.fbo = gl_fbo,
.internal_format = 0,
.format = GL_RGBA,
.type = 0,
};
return tex;
}
GL *ra_gl_get(struct ra *ra)
{
struct ra_gl *p = ra->priv;
return p->gl;
}
// Return the associate glTexImage arguments for the given format. Sets all
// fields to 0 on failure.
void ra_gl_get_format(const struct ra_format *fmt, GLint *out_internal_format,
GLenum *out_format, GLenum *out_type)
{
const struct gl_format *gl_format = fmt->priv;
*out_internal_format = gl_format->internal_format;
*out_format = gl_format->format;
*out_type = gl_format->type;
}
void ra_gl_get_raw_tex(struct ra *ra, struct ra_tex *tex,
GLuint *out_texture, GLenum *out_target)
{
struct ra_tex_gl *tex_gl = tex->priv;
*out_texture = tex_gl->texture;
*out_target = tex_gl->target;
}
// Return whether the ra instance was created with ra_create_gl(). This is the
// _only_ function that can be called on a ra instance of any type.
bool ra_is_gl(struct ra *ra)
{
return ra->fns == &ra_fns_gl;
}
static bool gl_tex_upload(struct ra *ra,
const struct ra_tex_upload_params *params)
{
GL *gl = ra_gl_get(ra);
struct ra_tex *tex = params->tex;
struct ra_buf *buf = params->buf;
struct ra_tex_gl *tex_gl = tex->priv;
struct ra_buf_gl *buf_gl = buf ? buf->priv : NULL;
assert(tex->params.host_mutable);
assert(!params->buf || !params->src);
if (ra->use_pbo && !params->buf)
return ra_tex_upload_pbo(ra, &tex_gl->pbo, params);
const void *src = params->src;
if (buf) {
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, buf_gl->buffer);
src = (void *)params->buf_offset;
}
gl->BindTexture(tex_gl->target, tex_gl->texture);
if (params->invalidate && gl->InvalidateTexImage)
gl->InvalidateTexImage(tex_gl->texture, 0);
switch (tex->params.dimensions) {
case 1:
gl->TexImage1D(tex_gl->target, 0, tex_gl->internal_format,
tex->params.w, 0, tex_gl->format, tex_gl->type, src);
break;
case 2: {
struct mp_rect rc = {0, 0, tex->params.w, tex->params.h};
if (params->rc)
rc = *params->rc;
gl_upload_tex(gl, tex_gl->target, tex_gl->format, tex_gl->type,
src, params->stride, rc.x0, rc.y0, rc.x1 - rc.x0,
rc.y1 - rc.y0);
break;
}
case 3:
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1);
gl->TexImage3D(GL_TEXTURE_3D, 0, tex_gl->internal_format, tex->params.w,
tex->params.h, tex->params.d, 0, tex_gl->format,
tex_gl->type, src);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
break;
}
gl->BindTexture(tex_gl->target, 0);
if (buf) {
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
if (buf->params.host_mapped) {
// Make sure the PBO is not reused until GL is done with it. If a
// previous operation is pending, "update" it by creating a new
// fence that will cover the previous operation as well.
gl->DeleteSync(buf_gl->fence);
buf_gl->fence = gl->FenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
}
}
return true;
}
static void gl_buf_destroy(struct ra *ra, struct ra_buf *buf)
{
if (!buf)
return;
GL *gl = ra_gl_get(ra);
struct ra_buf_gl *buf_gl = buf->priv;
gl->DeleteSync(buf_gl->fence);
if (buf->data) {
gl->BindBuffer(buf_gl->target, buf_gl->buffer);
gl->UnmapBuffer(buf_gl->target);
gl->BindBuffer(buf_gl->target, 0);
}
gl->DeleteBuffers(1, &buf_gl->buffer);
talloc_free(buf_gl);
talloc_free(buf);
}
static struct ra_buf *gl_buf_create(struct ra *ra,
const struct ra_buf_params *params)
{
GL *gl = ra_gl_get(ra);
if (params->host_mapped && gl->version < 440)
return NULL;
struct ra_buf *buf = talloc_zero(NULL, struct ra_buf);
buf->params = *params;
buf->params.initial_data = NULL;
struct ra_buf_gl *buf_gl = buf->priv = talloc_zero(NULL, struct ra_buf_gl);
gl->GenBuffers(1, &buf_gl->buffer);
switch (params->type) {
case RA_BUF_TYPE_TEX_UPLOAD: buf_gl->target = GL_PIXEL_UNPACK_BUFFER; break;
case RA_BUF_TYPE_SHADER_STORAGE: buf_gl->target = GL_SHADER_STORAGE_BUFFER; break;
case RA_BUF_TYPE_UNIFORM: buf_gl->target = GL_UNIFORM_BUFFER; break;
default: abort();
};
gl->BindBuffer(buf_gl->target, buf_gl->buffer);
if (params->host_mapped) {
unsigned flags = GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT |
GL_MAP_READ_BIT | GL_MAP_WRITE_BIT;
unsigned storflags = flags;
if (params->type == RA_BUF_TYPE_TEX_UPLOAD)
storflags |= GL_CLIENT_STORAGE_BIT;
gl->BufferStorage(buf_gl->target, params->size, params->initial_data,
storflags);
buf->data = gl->MapBufferRange(buf_gl->target, 0, params->size, flags);
if (!buf->data) {
gl_check_error(gl, ra->log, "mapping buffer");
gl_buf_destroy(ra, buf);
buf = NULL;
}
} else {
GLenum hint;
switch (params->type) {
case RA_BUF_TYPE_TEX_UPLOAD: hint = GL_STREAM_DRAW; break;
case RA_BUF_TYPE_SHADER_STORAGE: hint = GL_STREAM_COPY; break;
case RA_BUF_TYPE_UNIFORM: hint = GL_STATIC_DRAW; break;
default: abort();
}
gl->BufferData(buf_gl->target, params->size, params->initial_data, hint);
}
gl->BindBuffer(buf_gl->target, 0);
return buf;
}
static void gl_buf_update(struct ra *ra, struct ra_buf *buf, ptrdiff_t offset,
const void *data, size_t size)
{
GL *gl = ra_gl_get(ra);
struct ra_buf_gl *buf_gl = buf->priv;
assert(buf->params.host_mutable);
gl->BindBuffer(buf_gl->target, buf_gl->buffer);
gl->BufferSubData(buf_gl->target, offset, size, data);
gl->BindBuffer(buf_gl->target, 0);
}
static bool gl_buf_poll(struct ra *ra, struct ra_buf *buf)
{
// Non-persistently mapped buffers are always implicitly reusable in OpenGL,
// the implementation will create more buffers under the hood if needed.
if (!buf->data)
return true;
GL *gl = ra_gl_get(ra);
struct ra_buf_gl *buf_gl = buf->priv;
if (buf_gl->fence) {
GLenum res = gl->ClientWaitSync(buf_gl->fence, 0, 0); // non-blocking
if (res == GL_ALREADY_SIGNALED) {
gl->DeleteSync(buf_gl->fence);
buf_gl->fence = NULL;
}
}
return !buf_gl->fence;
}
static void gl_clear(struct ra *ra, struct ra_tex *dst, float color[4],
struct mp_rect *scissor)
{
GL *gl = ra_gl_get(ra);
assert(dst->params.render_dst);
struct ra_tex_gl *dst_gl = dst->priv;
gl->BindFramebuffer(GL_FRAMEBUFFER, dst_gl->fbo);
gl->Scissor(scissor->x0, scissor->y0,
scissor->x1 - scissor->x0,
scissor->y1 - scissor->y0);
gl->Enable(GL_SCISSOR_TEST);
gl->ClearColor(color[0], color[1], color[2], color[3]);
gl->Clear(GL_COLOR_BUFFER_BIT);
gl->Disable(GL_SCISSOR_TEST);
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
}
static void gl_blit(struct ra *ra, struct ra_tex *dst, struct ra_tex *src,
struct mp_rect *dst_rc, struct mp_rect *src_rc)
{
GL *gl = ra_gl_get(ra);
assert(src->params.blit_src);
assert(dst->params.blit_dst);
struct ra_tex_gl *src_gl = src->priv;
struct ra_tex_gl *dst_gl = dst->priv;
gl->BindFramebuffer(GL_READ_FRAMEBUFFER, src_gl->fbo);
gl->BindFramebuffer(GL_DRAW_FRAMEBUFFER, dst_gl->fbo);
gl->BlitFramebuffer(src_rc->x0, src_rc->y0, src_rc->x1, src_rc->y1,
dst_rc->x0, dst_rc->y0, dst_rc->x1, dst_rc->y1,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
gl->BindFramebuffer(GL_READ_FRAMEBUFFER, 0);
gl->BindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
}
static void gl_renderpass_destroy(struct ra *ra, struct ra_renderpass *pass)
{
GL *gl = ra_gl_get(ra);
struct ra_renderpass_gl *pass_gl = pass->priv;
gl->DeleteProgram(pass_gl->program);
gl_vao_uninit(&pass_gl->vao);
talloc_free(pass_gl);
talloc_free(pass);
}
static const char *shader_typestr(GLenum type)
{
switch (type) {
case GL_VERTEX_SHADER: return "vertex";
case GL_FRAGMENT_SHADER: return "fragment";
case GL_COMPUTE_SHADER: return "compute";
default: abort();
}
}
static void compile_attach_shader(struct ra *ra, GLuint program,
GLenum type, const char *source, bool *ok)
{
GL *gl = ra_gl_get(ra);
GLuint shader = gl->CreateShader(type);
gl->ShaderSource(shader, 1, &source, NULL);
gl->CompileShader(shader);
GLint status = 0;
gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status);
GLint log_length = 0;
gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
const char *typestr = shader_typestr(type);
if (mp_msg_test(ra->log, pri)) {
MP_MSG(ra, pri, "%s shader source:\n", typestr);
mp_log_source(ra->log, pri, source);
}
if (log_length > 1) {
GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
gl->GetShaderInfoLog(shader, log_length, NULL, logstr);
MP_MSG(ra, pri, "%s shader compile log (status=%d):\n%s\n",
typestr, status, logstr);
talloc_free(logstr);
}
if (gl->GetTranslatedShaderSourceANGLE && mp_msg_test(ra->log, MSGL_DEBUG)) {
GLint len = 0;
gl->GetShaderiv(shader, GL_TRANSLATED_SHADER_SOURCE_LENGTH_ANGLE, &len);
if (len > 0) {
GLchar *sstr = talloc_zero_size(NULL, len + 1);
gl->GetTranslatedShaderSourceANGLE(shader, len, NULL, sstr);
MP_DBG(ra, "Translated shader:\n");
mp_log_source(ra->log, MSGL_DEBUG, sstr);
}
}
gl->AttachShader(program, shader);
gl->DeleteShader(shader);
*ok &= status;
}
static void link_shader(struct ra *ra, GLuint program, bool *ok)
{
GL *gl = ra_gl_get(ra);
gl->LinkProgram(program);
GLint status = 0;
gl->GetProgramiv(program, GL_LINK_STATUS, &status);
GLint log_length = 0;
gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
if (mp_msg_test(ra->log, pri)) {
GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
gl->GetProgramInfoLog(program, log_length, NULL, logstr);
MP_MSG(ra, pri, "shader link log (status=%d): %s\n", status, logstr);
talloc_free(logstr);
}
*ok &= status;
}
// either 'compute' or both 'vertex' and 'frag' are needed
static GLuint compile_program(struct ra *ra, const struct ra_renderpass_params *p)
{
GL *gl = ra_gl_get(ra);
GLuint prog = gl->CreateProgram();
bool ok = true;
if (p->type == RA_RENDERPASS_TYPE_COMPUTE)
compile_attach_shader(ra, prog, GL_COMPUTE_SHADER, p->compute_shader, &ok);
if (p->type == RA_RENDERPASS_TYPE_RASTER) {
compile_attach_shader(ra, prog, GL_VERTEX_SHADER, p->vertex_shader, &ok);
compile_attach_shader(ra, prog, GL_FRAGMENT_SHADER, p->frag_shader, &ok);
for (int n = 0; n < p->num_vertex_attribs; n++)
gl->BindAttribLocation(prog, n, p->vertex_attribs[n].name);
}
link_shader(ra, prog, &ok);
if (!ok) {
gl->DeleteProgram(prog);
prog = 0;
}
return prog;
}
static GLuint load_program(struct ra *ra, const struct ra_renderpass_params *p,
bstr *out_cached_data)
{
GL *gl = ra_gl_get(ra);
GLuint prog = 0;
if (gl->ProgramBinary && p->cached_program.len > 4) {
GLenum format = AV_RL32(p->cached_program.start);
prog = gl->CreateProgram();
gl_check_error(gl, ra->log, "before loading program");
gl->ProgramBinary(prog, format, p->cached_program.start + 4,
p->cached_program.len - 4);
gl->GetError(); // discard potential useless error
GLint status = 0;
gl->GetProgramiv(prog, GL_LINK_STATUS, &status);
if (status) {
MP_VERBOSE(ra, "Loading binary program succeeded.\n");
} else {
gl->DeleteProgram(prog);
prog = 0;
}
}
if (!prog) {
prog = compile_program(ra, p);
if (gl->GetProgramBinary && prog) {
GLint size = 0;
gl->GetProgramiv(prog, GL_PROGRAM_BINARY_LENGTH, &size);
uint8_t *buffer = talloc_size(NULL, size + 4);
GLsizei actual_size = 0;
GLenum binary_format = 0;
if (size > 0) {
gl->GetProgramBinary(prog, size, &actual_size, &binary_format,
buffer + 4);
}
AV_WL32(buffer, binary_format);
if (actual_size) {
*out_cached_data = (bstr){buffer, actual_size + 4};
} else {
talloc_free(buffer);
}
}
}
return prog;
}
static struct ra_renderpass *gl_renderpass_create(struct ra *ra,
const struct ra_renderpass_params *params)
{
GL *gl = ra_gl_get(ra);
struct ra_renderpass *pass = talloc_zero(NULL, struct ra_renderpass);
pass->params = *ra_render_pass_params_copy(pass, params);
pass->params.cached_program = (bstr){0};
struct ra_renderpass_gl *pass_gl = pass->priv =
talloc_zero(NULL, struct ra_renderpass_gl);
bstr cached = {0};
pass_gl->program = load_program(ra, params, &cached);
if (!pass_gl->program) {
gl_renderpass_destroy(ra, pass);
return NULL;
}
talloc_steal(pass, cached.start);
pass->params.cached_program = cached;
gl->UseProgram(pass_gl->program);
for (int n = 0; n < params->num_inputs; n++) {
GLint loc =
gl->GetUniformLocation(pass_gl->program, params->inputs[n].name);
MP_TARRAY_APPEND(pass_gl, pass_gl->uniform_loc, pass_gl->num_uniform_loc,
loc);
// For compatibility with older OpenGL, we need to explicitly update
// the texture/image unit bindings after creating the shader program,
// since specifying it directly requires GLSL 4.20+
switch (params->inputs[n].type) {
case RA_VARTYPE_TEX:
case RA_VARTYPE_IMG_W:
gl->Uniform1i(loc, params->inputs[n].binding);
break;
}
}
gl->UseProgram(0);
gl_vao_init(&pass_gl->vao, gl, pass->params.vertex_stride,
pass->params.vertex_attribs, pass->params.num_vertex_attribs);
return pass;
}
static GLenum map_blend(enum ra_blend blend)
{
switch (blend) {
case RA_BLEND_ZERO: return GL_ZERO;
case RA_BLEND_ONE: return GL_ONE;
case RA_BLEND_SRC_ALPHA: return GL_SRC_ALPHA;
case RA_BLEND_ONE_MINUS_SRC_ALPHA: return GL_ONE_MINUS_SRC_ALPHA;
default: return 0;
}
}
// Assumes program is current (gl->UseProgram(program)).
static void update_uniform(struct ra *ra, struct ra_renderpass *pass,
struct ra_renderpass_input_val *val)
{
GL *gl = ra_gl_get(ra);
struct ra_renderpass_gl *pass_gl = pass->priv;
struct ra_renderpass_input *input = &pass->params.inputs[val->index];
assert(val->index >= 0 && val->index < pass_gl->num_uniform_loc);
GLint loc = pass_gl->uniform_loc[val->index];
switch (input->type) {
case RA_VARTYPE_INT: {
assert(input->dim_v * input->dim_m == 1);
if (loc < 0)
break;
gl->Uniform1i(loc, *(int *)val->data);
break;
}
case RA_VARTYPE_FLOAT: {
float *f = val->data;
if (loc < 0)
break;
if (input->dim_m == 1) {
switch (input->dim_v) {
case 1: gl->Uniform1f(loc, f[0]); break;
case 2: gl->Uniform2f(loc, f[0], f[1]); break;
case 3: gl->Uniform3f(loc, f[0], f[1], f[2]); break;
case 4: gl->Uniform4f(loc, f[0], f[1], f[2], f[3]); break;
default: abort();
}
} else if (input->dim_v == 2 && input->dim_m == 2) {
gl->UniformMatrix2fv(loc, 1, GL_FALSE, f);
} else if (input->dim_v == 3 && input->dim_m == 3) {
gl->UniformMatrix3fv(loc, 1, GL_FALSE, f);
} else {
abort();
}
break;
}
case RA_VARTYPE_IMG_W: {
struct ra_tex *tex = *(struct ra_tex **)val->data;
struct ra_tex_gl *tex_gl = tex->priv;
assert(tex->params.storage_dst);
gl->BindImageTexture(input->binding, tex_gl->texture, 0, GL_FALSE, 0,
GL_WRITE_ONLY, tex_gl->internal_format);
break;
}
case RA_VARTYPE_TEX: {
struct ra_tex *tex = *(struct ra_tex **)val->data;
struct ra_tex_gl *tex_gl = tex->priv;
assert(tex->params.render_src);
gl->ActiveTexture(GL_TEXTURE0 + input->binding);
gl->BindTexture(tex_gl->target, tex_gl->texture);
break;
}
case RA_VARTYPE_BUF_RO: // fall through
case RA_VARTYPE_BUF_RW: {
struct ra_buf *buf = *(struct ra_buf **)val->data;
struct ra_buf_gl *buf_gl = buf->priv;
gl->BindBufferBase(buf_gl->target, input->binding, buf_gl->buffer);
// SSBOs are not implicitly coherent in OpengL
if (input->type == RA_VARTYPE_BUF_RW)
gl->MemoryBarrier(buf_gl->target);
break;
}
default:
abort();
}
}
static void disable_binding(struct ra *ra, struct ra_renderpass *pass,
struct ra_renderpass_input_val *val)
{
GL *gl = ra_gl_get(ra);
struct ra_renderpass_input *input = &pass->params.inputs[val->index];
switch (input->type) {
case RA_VARTYPE_IMG_W: /* fall through */
case RA_VARTYPE_TEX: {
struct ra_tex *tex = *(struct ra_tex **)val->data;
struct ra_tex_gl *tex_gl = tex->priv;
assert(tex->params.render_src);
if (input->type == RA_VARTYPE_TEX) {
gl->ActiveTexture(GL_TEXTURE0 + input->binding);
gl->BindTexture(tex_gl->target, 0);
} else {
gl->BindImageTexture(input->binding, 0, 0, GL_FALSE, 0,
GL_WRITE_ONLY, tex_gl->internal_format);
}
break;
}
case RA_VARTYPE_BUF_RW:
gl->BindBufferBase(GL_SHADER_STORAGE_BUFFER, input->binding, 0);
break;
}
}
static void gl_renderpass_run(struct ra *ra,
const struct ra_renderpass_run_params *params)
{
GL *gl = ra_gl_get(ra);
struct ra_renderpass *pass = params->pass;
struct ra_renderpass_gl *pass_gl = pass->priv;
gl->UseProgram(pass_gl->program);
for (int n = 0; n < params->num_values; n++)
update_uniform(ra, pass, &params->values[n]);
gl->ActiveTexture(GL_TEXTURE0);
switch (pass->params.type) {
case RA_RENDERPASS_TYPE_RASTER: {
struct ra_tex_gl *target_gl = params->target->priv;
assert(params->target->params.render_dst);
gl->BindFramebuffer(GL_FRAMEBUFFER, target_gl->fbo);
gl->Viewport(params->viewport.x0, params->viewport.y0,
mp_rect_w(params->viewport),
mp_rect_h(params->viewport));
gl->Scissor(params->scissors.x0, params->scissors.y0,
mp_rect_w(params->scissors),
mp_rect_h(params->scissors));
gl->Enable(GL_SCISSOR_TEST);
if (pass->params.enable_blend) {
gl->BlendFuncSeparate(map_blend(pass->params.blend_src_rgb),
map_blend(pass->params.blend_dst_rgb),
map_blend(pass->params.blend_src_alpha),
map_blend(pass->params.blend_dst_alpha));
gl->Enable(GL_BLEND);
}
gl_vao_draw_data(&pass_gl->vao, GL_TRIANGLES, params->vertex_data,
params->vertex_count);
gl->Disable(GL_SCISSOR_TEST);
gl->Disable(GL_BLEND);
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
break;
}
case RA_RENDERPASS_TYPE_COMPUTE: {
gl->DispatchCompute(params->compute_groups[0],
params->compute_groups[1],
params->compute_groups[2]);
gl->MemoryBarrier(GL_TEXTURE_FETCH_BARRIER_BIT);
break;
}
default: abort();
}
for (int n = 0; n < params->num_values; n++)
disable_binding(ra, pass, &params->values[n]);
gl->ActiveTexture(GL_TEXTURE0);
gl->UseProgram(0);
}
// Timers in GL use query objects, and are asynchronous. So pool a few of
// these together. GL_QUERY_OBJECT_NUM should be large enough to avoid this
// ever blocking. We can afford to throw query objects around, there's no
// practical limit on them and their overhead is small.
#define GL_QUERY_OBJECT_NUM 8
struct gl_timer {
GLuint query[GL_QUERY_OBJECT_NUM];
int idx;
uint64_t result;
bool active;
};
static ra_timer *gl_timer_create(struct ra *ra)
{
GL *gl = ra_gl_get(ra);
if (!gl->GenQueries)
return NULL;
struct gl_timer *timer = talloc_zero(NULL, struct gl_timer);
gl->GenQueries(GL_QUERY_OBJECT_NUM, timer->query);
return (ra_timer *)timer;
}
static void gl_timer_destroy(struct ra *ra, ra_timer *ratimer)
{
if (!ratimer)
return;
GL *gl = ra_gl_get(ra);
struct gl_timer *timer = ratimer;
gl->DeleteQueries(GL_QUERY_OBJECT_NUM, timer->query);
talloc_free(timer);
}
static void gl_timer_start(struct ra *ra, ra_timer *ratimer)
{
struct ra_gl *p = ra->priv;
GL *gl = p->gl;
struct gl_timer *timer = ratimer;
// GL_TIME_ELAPSED queries are not re-entrant, so just do nothing instead
// of crashing. Work-around for shitty GL limitations
if (p->timer_active)
return;
// If this query object already contains a result, we need to retrieve it
timer->result = 0;
if (gl->IsQuery(timer->query[timer->idx])) {
gl->GetQueryObjectui64v(timer->query[timer->idx], GL_QUERY_RESULT,
&timer->result);
}
gl->BeginQuery(GL_TIME_ELAPSED, timer->query[timer->idx++]);
timer->idx %= GL_QUERY_OBJECT_NUM;
p->timer_active = timer->active = true;
}
static uint64_t gl_timer_stop(struct ra *ra, ra_timer *ratimer)
{
struct ra_gl *p = ra->priv;
GL *gl = p->gl;
struct gl_timer *timer = ratimer;
if (!timer->active)
return 0;
gl->EndQuery(GL_TIME_ELAPSED);
p->timer_active = timer->active = false;
return timer->result;
}
static void gl_flush(struct ra *ra)
{
GL *gl = ra_gl_get(ra);
gl->Flush();
}
static void gl_debug_marker(struct ra *ra, const char *msg)
{
struct ra_gl *p = ra->priv;
if (p->debug_enable)
gl_check_error(p->gl, ra->log, msg);
}
static struct ra_fns ra_fns_gl = {
.destroy = gl_destroy,
.tex_create = gl_tex_create,
.tex_destroy = gl_tex_destroy,
.tex_upload = gl_tex_upload,
.buf_create = gl_buf_create,
.buf_destroy = gl_buf_destroy,
.buf_update = gl_buf_update,
.buf_poll = gl_buf_poll,
.clear = gl_clear,
.blit = gl_blit,
.renderpass_create = gl_renderpass_create,
.renderpass_destroy = gl_renderpass_destroy,
.renderpass_run = gl_renderpass_run,
.timer_create = gl_timer_create,
.timer_destroy = gl_timer_destroy,
.timer_start = gl_timer_start,
.timer_stop = gl_timer_stop,
.flush = gl_flush,
.debug_marker = gl_debug_marker,
};