Redefining texture1D / texture3D seems to be illegal, they are already
built-in macros or something. So just use tex1D and tex3D instead.
Additionally, GL_KHR_vulkan_glsl requires using explicit vertex
locations and bindings, so make some changes to facilitate this. (It
also requires explicitly setting location=0 for the color attachment
output)
Vulkan compat. rgb16 doesn't exist on hardware anyway, might as well
just generate the 3DLUT against rgba16 as well. We've decided this is
the simplest way to do vulkan compatibility: just make sure we never
actually need 3-component textures.
This is mostly done so we can support using textures with more
components than the scaler LUTs have entries. But while we're at it,
also change the way the weights are packed so that they're always
sequential with no gaps. This allows us to simplify
pass_sample_separated_get_weights as well.
If a VO-area option changes, gl_video_resize() is called
unconditionally. This function does something even if the size does not
change (at least it discards buffered frames for interpolation), which
can lead to stutter when you keep firing option change events during
playback.
Check for an actual resize, and if nothing changes, exit early.
I really wouldn't care much about this, but some parts of the core code
are under HAVE_GPL, so there's some need to get rid of it. Simply turn
the video equalizer from its current fine-grained handling with vf/vo
fallbacks into global options. This makes updating them much simpler.
This removes any possibility of applying video equalizers in filters,
which affects vf_scale, and the previously removed vf_eq. Not a big
loss, since the preferred VOs have this builtin.
Remove video equalizer handling from vo_direct3d, vo_sdl, vo_vaapi, and
vo_xv. I'm not going to waste my time on these legacy VOs.
vo.eq_opts_cache exists _only_ to send a VOCTRL_SET_EQUALIZER, which
exists _only_ to trigger a redraw. This seems silly, but for now I feel
like this is less of a pain. The rest of the equalizer using code is
self-updating.
See commit 96b906a51d for how some video equalizer code was GPL only.
Some command line option names and ranges can probably be traced back to
a GPL only committer, but we don't consider these copyrightable.
So far, we had a thread-safe way to read options, but no option update
notification mechanism. Everything was funneled though the main thread's
central mp_option_change_callback() function. For example, if the
panscan options were changed, the function called vo_control() with
VOCTRL_SET_PANSCAN to manually notify the VO thread of updates. This
worked, but's pretty inconvenient. Most of these problems come from the
fact that MPlayer was written as a single-threaded program.
This commit works towards a more flexible mechanism. It adds an update
callback to m_config_cache (the thing that is already used for
thread-safe access of global options).
This alone would still be rather inconvenient, at least in context of
VOs. Add another mechanism on top of it that uses mp_dispatch_queue, and
takes care of some annoying synchronization issues. We extend
mp_dispatch_queue itself to make this easier and slightly more
efficient.
As a first application, use this to reimplement certain VO scaling and
renderer options. The update_opts() function translates these to the
"old" VOCTRLs, though.
An annoyingly subtle issue is that m_config_cache's destructor now
releases pending notifications, and must be released before the
associated dispatch queue. Otherwise, it could happen that option
updates during e.g. VO destruction queue or run stale entries, which is
not expected.
Rather untested. The singly-linked list code in dispatch.c is probably
buggy, and I bet some aspects about synchronization are not entirely
sane.
Also refactors the usage of tex_upload to make ra_tex_upload_pbo a
RA-internal thing again.
ra_buf_pool has the main advantage of being dynamically sized depending
on buf_poll, so for OpenGL we'll end up only using one buffer (when not
persistently mapping) - while for vulkan we'll use as many as necessary,
which depends on the swapchain depth anyway.
- tex_uploads args are moved to a struct
- the ability to directly upload texture data without going through a
buffer is made explicit
- the concept of buffer updates and buffer polling is made more explicit
and generalized to buf_update as well (not just mapped buffers)
- the ability to call tex_upload/buf_update on a tex/buf is made
explicit during tex/buf creation
- uploading from buffers now uses an explicit offset instead of
implicitly comparing *src against buf->data, because not all buffers
may actually be persistently mapped
- the initial_data = immutable requirement is dropped. (May be re-added
later for D3D11 if that ever becomes a thing)
This change helps the vulkan abstraction immensely and also helps move
common code (like the PBO pooling) out of ra_gl and into the
opengl/utils.c
This also technically has the side-benefit / side-constraint of using
PBOs for OSD texture uploads as well, which actually seems to help
performance on machines where --opengl-pbo is faster than the naive code
path. Because of this, I decided to hook up the OSD code to the
opengl-pbo option as well.
One drawback of this refactor is that the GL_STREAM_COPY hack for
texture uploads "got lost", but I think I'm happy with that going away
anyway since DR almost fully deprecates it, and it's not the "right
thing" anyway - but instead an nvidia-only hack to make this stuff work
somewhat better on NUMA systems with discrete GPUs.
Another change is that due to the way fencing works with ra_buf (we get
one fence per ra_buf per upload) we have to use multiple ra_bufs instead
of offsets into a shared buffer. But for OpenGL this is probably better
anyway. It's possible that in future, we could support having
independent “buffer slices” (each with their own fence/sync object), but
this would be an optimization more than anything. I also think that we
could address the underlying problem (memory closeness) differently by
making the ra_vk memory allocator smart enough to chunk together
allocations under the hood.
Runtime untested, because I get this:
[vo/rpi] Could not get DISPMANX objects.
This happened even when building older git versions, and on a RPI image
that hasn't changed in the recent years. I don't know how to make this
POS work again, so I guess if there's a bug in the new code, it will
remain broken.
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
Move multiple GL-specific things from the renderer to other places like
vo_opengl.c, vo_opengl_cb.c, and ra_gl.c.
The vp_w/vp_h parameters to gl_video_resize() make no sense anymore, and
are implicitly part of struct fbodst.
Checking the main framebuffer depth is moved to vo_opengl.c. For
vo_opengl_cb.c it always assumes 8. The API user now has to override
this manually. The previous heuristic didn't make much sense anyway.
The only remaining dependency on GL is the hwdec stuff, which is harder
to change.
The vp_w/vp_h variables and parameters were not really used anymore
(they were redundant with ra_tex w/h) - but vp_h was still used to
identify whether rendering should be done mirrored.
Simplify this by adding a fbodst struct (some bad naming), which
contains the render target texture, and some parameters how it should be
rendered to (for now only flipping). It would not be appropriate to make
this a member of ra_tex, so it's a separate struct.
Introduces a weird regression for the first frame rendered after
interpolation is toggled at runtime, but seems to work otherwise. This
is possibly due to the change that blit() now mirrors, instead of just
copying. (This is also why ra_fns.blit is changed.)
Fixes#4719.
When using dumb mode, we can actually redraw a frame without uploading
it. Marking this as fresh as well results in unpredictable pass
behavior, which is confusing and makes debugging harder. So mark it as a
redraw instead, in that case.
In the past, this always measured the per-shader execution times of the
individual OSD parts, which was thrown off because the shader was reused
anyway. (And apparently recording the OSD shader execution times was
removed completely, probably because of them being so unrealiably
anyway)
Since ra_timer no longer has the restriction of not allowing timers to
run concurrently, we can just wrap the entire OSD block inside a single
osd_timer now, and record that. (Technically, this can still be off when
using --blend-subtitles=video/yes and showing a full-screen OSD at the
same time. Maybe this can be done better?)
In order to prevent code duplication and keep the ra abstraction as
small as possible, `ra` only implements the actual timer queries,
it does not do pooling/averaging of the results. This is instead moved
to a ra-neutral struct timer_pool in utils.c.
This code is pretty much for the sake of vo_opengl_cb API users. It
resets certain state that either the user or our code doesn't reset
correctly. This is somewhat outdated. With GL implicit state being
so awfully large, it seems more reasonable require that any code
restores the default state when returning to the caller. Some
exceptions are defined in opengl_cb.h.
Now all GL-specifics of shader compilation are abstracted through ra.
Of course we still have everything hardcoded to GLSL - that isn't going
to change.
Some things will probably change later - in particular, the way we pass
uniforms and textures to the shader. Currently, there is a confusing
mismatch between "primitive" uniforms like floats, and others like
textures.
Also, SSBOs are not abstracted yet.
Instead of having a mutable ra_tex field (and the only one), move the
flag to struct ra, since we have only 2 tex_upload user calls anyway,
and both want the same PBO behavior. (At first I considered making it
a RA_TEX_UPLOAD_ flag, but why bother. PBOs are a terribly GL-specific
thing, so we can't expect a reasonable abstraction of it anyway.)
This requires a silly extension to ra_fns.tex_upload: since the OSD
texture can be much larger than the actual OSD image data to upload, a
mechanism for uploading only to a small part of the texture is needed.
Otherwise, we'd have to realloc/copy the data, just to pad it, and then
pay for uploading the padding too.
The RA_TEX_UPLOAD_DISCARD flag is not interpreted by GL (not sure how
you'd tell GL about this), but it clarifies the API and might be
helpful if we support other backend APIs in the future.
Another "small" step towards removing GL dependencies from the renderer.
This commit generally passes ra_tex objects instead of GL FBO integer
IDs to various rendering functions. video.c still manually binds the
FBOs when calling shaders.
This also happens to fix a memory leak with output_fbo.
Further work removing GL dependencies from the actual video renderer,
and moving them into ra backends.
Use of glInvalidateFramebuffer() falls away. I'd like to keep this, but
it's better to readd it once shader runs are in ra.
This currently only works when using lcms-based color management
(--icc-profile-*).
In principle, we could also support using lcms even when the user has
not specified an ICC profile, by generating the profile against a fixed
reference (--target-prim/--target-trc) instead. I still might do that
some day, simply because 3dlut provides a higher quality conversion than
our simple gamut mapping does for stuff like BT.2020, and also because
it's now needed to enable embedded ICC profiles. But that would be a
separate change, so preserve the status quo for now.
(Besides, my opinion is still that you should be using an ICC profile if
you care about colors being accurate _at all_)
Breaks on mesa for whatever reason... even though it doesn't generate a
GLSL shader compiler error
Shouldn't make a performance difference for us because we cache `pos`
anyway, and most compute shaders will probably cache all of their
samples to shmem. Might have to re-visit this when we have an actual use
case for repeated sampling inside CS though. (RAVU + anti-ringing is a
possible candidate for that)
This broke float textures, which were actually used by some shaders.
There were probably some other bugs as well.
Lots of code can be avoided by using ra_tex_params directly, so do that.
The main change is that COMPONENT/FORMAT are replaced by a single FORMAT
directive, which takes different parameters now. Due to the mess with
16/32 bit float textures, and because we want to support other APIs than
just GL in the future, it's not really clear how this should be handled,
and the nice component/type separation makes things actually harder. So
just jump the gun and use the ra_format.name names, which were
originally meant mostly for debugging. (This is probably something that
will be regretted later.)
Still only superficially tested, but seems to work.
Fixes#4708.
Since this code was already written for HDR, and is now per-channel
(because it works better for HDR as well), we can actually reuse this to
get very high quality gamut mapping without clipping. The only required
change is to move the tone mapping from before the gamut map to after
the gamut map. Additonally, we need to also account for changes in the
signal range as a result of applying the CMS when we compute ref_peak,
which is fortunately pretty easy because we only need to consider the
case of primaries mapping to themselves.
Since `HDR` no longer really makes sense as a label, rename it to
`--tone-mapping` in general. Also fits better with
`--tone-mapping-desat` etc.
Arguably we could also rename `--hdr-compute-peak`, but that option is
basically only useful for HDR content anyway because we don't need
information about the signal range for gamut mapping.
This (finally!) gives us reasonably high quality gamut mapping even in
the absence of an ICC profile / 3DLUT.
Also add some more helpers.
Fix the broken math.h include statement.
utils.c uses ra_gl.h internals, which it shouldn't, and which will be
removed again as soon as this code gets converted to ra fully.
The dither texture data is created as a float array, but uploaded to a
texture with GL_R16 as internal format. We relied on GL to do the
conversion from float to uint16_t. Not all GL variants even support
this: GLES does not provide this conversion (one of the reasons why this
code has a float16 code path). Also, ra is not going to do this. So just
convert on the fly.
Still keep the float16 texture format fallback, because not all GLES
implementations provide GL_R16.
There is some possibility that we'll need to provide some kind of upload
conversion anyway for float->float16. We still rely on GL doing this
implicitly, and all GL variants support it, but with RA there might be
the need for explicit conversion. Even then, it might be best to reduce
the number of conversion cases. I'll worry about this later.
Format handling via ra_* was added earlier, but the format negotiation
part was forgotten.
Actually move some aspects of it to ra_get_imgfmt_desc(). Also make sure
the unorm and float formats selected by the common format lookup
functions are linear filterable. (For OpenGL, this is implicitly
guaranteed, so it wasn't done before.) Whether these assumptions should
be checked/enforced in the ra code at all is a bit fuzzy, but with ra
being helper code only for the actual video renderer, it's probably
justified.
Parsing the texture data as raw strings makes the textures the most
portable and self-contained. In order to facilitate different types of
shaders, the parse_user_shader interaction has been changed to instead
have it loop through blocks and call the passed functions for each valid
block parsed. This is more modular and also cleaner, with better code
separation.
Closes#4586.
- Each struct tex_hook now stores multiple hooks, this allows us to
avoid the awkward way of the current code has to add the same pass
multiple times.
- As a consequence, SHADER_MAX_HOOKS was split up into SHADER_MAX_PASSES
(number of tex_hooks) and SHADER_MAX_HOOKS (number of hooked textures
per tex_hook), and both numbers decreased correspondingly.
- Instead of having a weird free() callback, we can just leverage
talloc's recursive free behavior. The only user is the user shaders code
anyway.
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
The radius check was not strict enough, especially not for all
platforms. To fix this, actually check the hardware capabilities instead
of relying on a hard-coded maximum radius.