iive agreed only to LGPL 3.0+ only. All of his relevant changes are for
XvMC, for which mpv completely dropped support back in mplayer2 times.
But you could claim that the get_format code represents some residual
copyright (everything else added by iive was removed, only get_format
still is around in some form). While I doubt that this is relly
copyright-relevant, consider it is for now.
michael is the original author of vd_lavc.c, so this file can become
LGPL only after the core becomes LGPL.
cehoyos did not agree with the LGPL relicensing, but all of his code is
gone.
Some others could not be reached, but their code is gone as well. In
particular, vdpau support, which was originally done by Nvidia, had
larger impact on vd_lavc.c, but vdpau support was first refactored a few
times (for the purpose of modularization) and moved to different files,
and then decoding was completely moved to libavcodec.
Lastly, assigning the "opaque" field was moved by Gwenole Beauchesne in
commit 8e5edec13e. Agreement is pending (due to copyright apparently
owned by the author's employer). So just undo the change, so we don't
have to think about whether the change is copyrightable.
Unfortunately quite a mess, in particular due to the need to have some
compatibility with the old API. (The old API will be supported only in
short term.)
The new API has literally no advantages (other than that we can drop
mp_vt_download_image and other things later), but it's sort-of uniform
with the other hwaccels.
"--videotoolbox-format=no" is not supported with the new API, because it
doesn't "fit in". Probably could be added later again.
The iOS code change is untested (no way to test).
It's not really guaranteed that other components always set this (e.g.
on subtle errors), so check it explicitly. Although I'm not aware of a
failing case.
If vo_opengl is used, and vo_opengl already created the vdpau interop
(for whatever reasons), and then preemption happens, and then you try to
enable hw decoding, it failed. The reason was that preemption recovery
is not run at any point before libavcodec accesses the vdpau device.
The actual impact was that with libmpv + opengl-cb use, hardware
decoding was permanently broken after display mode switching (something
that caused the display to get preempted at least with older drivers).
With mpv CLI, you can for example enable hw decoding during playback,
then disable it, VT switch to console, switch back to X, and try to
enable hw decoding again.
This is mostly because libav* does not deal with preemption, and NVIDIA
driver preemption behavior being horrible garbage. In addition to being
misdesigned API, the preemption callback is not called before you try to
access vdpau API, and then only with _some_ accesses.
In summary, the preemption callback was never called, neither before nor
after libavcodec tried to init the decoder. So we have to get
mp_vdpau_handle_preemption() called before libavcodec accesses it. This
in turn will do a dummy API access which usually triggers the preemption
callback immediately (with NVIDIA's drivers).
In addition, we have to update the AVHWDeviceContext's device. In theory
it could change (in practice it usually seems to use handle "0").
Creating a new device would cause chaos, as we don't have a concept of
switching the device context on the fly. So we simply update it
directly. I'm fairly sure this violates the libav* API, but it's the
best we can do.
Sigh...
The functionality is not actually needed for vdpau, but if the vdpau
hwaccel is present, the FFmpeg version is new enough that it includes
the field.
These decoders can select the decoding device with hw_device_ctx, but
don't use hw_frames_ctx (at least not in a meaningful way).
Currently unused, but intended to be used for cuvid, as soon as it hits
ffmpeg git master.
Also make the vdpau and vaapi hwaccel definition structs static, as we
have removed the old code which would have had clashing external
declarations.
This drops support for the old libavcodec APIs. Now FFmpeg 3.3 or FFmpeg
git is required. Libav has no release with the new APIs yet, so for
Libav git as of a few weeks or months ago or so is required if you want
to use Libav.
Not much actually changes in hwdec_vaegl.c - some code is removed, but
the reindentation inflates the diff.
If vaapi was found, but neither the old or new libavcodec vaapi hwaccel
API, then HAVE_VAAPI_HWACCEL will be defined, but not _OLD or _NEW. The
HAVE_VAAPI_HWACCEL define pretty much exists only for acrobatics with
our own waf dependency checker helper code.
The new API works like the new vaapi API, using generic hwaccel support.
One minor detail is the error message that will be printed if using
non-4:2:0 surfaces (which as far as I can tell is completely broken in
the nVidia drivers and thus not supported by mpv). The HEVC warning
(which is completely broken in the nVidia drivers but should work with
Mesa) had to be added to the generic hwaccel code.
This also trashes display preemption recovery. Fuck that. It never
really worked. If someone complains, I might attempt to add it back
somehow.
This is the 4th iteration of the libavcodec vdpau API (after the
separate decoder API, the manual hwaccel API, and the automatic vdpau
hwaccel API). Fortunately, further iterations will be generic, and not
require much vdpau-specific changes (if any at all).
hw_vaapi.c didn't do much interesting anymore. Other than the function
to create a device for decoding with vaapi-copy, everything can be done
by generic code. Other libavcodec hwaccels are planned to provide the
same API as vaapi. It will be possible to drop the other hw_ files in
the future. They will use this generic code instead.
Apparently this is the maximum that can be preserved. There is also
something about the decoder being able only to use 3 frames at a time,
and I'm assuming these are part of the 8 frames.
This can be useful in other contexts.
Note that we end up setting AVCodecContext.width/height instead of
coded_width/coded_height now. AVCodecParameters can't set coded_width,
but this is probably more correct anyway.
The FFmpeg versions we support all have the APIs we were checking for.
Only Libav missed them. Simplify this by explicitly checking for FFmpeg
in the code, instead of trying to detect the presence of the API.
Successful decoding of a frame resets ctx->hwdec_fail_count to 0 - which
us ok, but prevents fallback if it fails if --vd-lavc-software-fallback
is set to something higher than 1.
Just fail it immediately, since failing here always indicates some real
error (or OOM), not e.g. a video parsing error or such, which we try to
tolerate via the error counter.
In a way it can be reused. For now, sw_format and initial_pool_size
determination are still vaapi-specific. I'm hoping this can be eventally
moved to libavcodec in some way. Checking the supported_formats array is
not really vaapi-specific, and could be moved to the generic code path
too, but for now it would make things more complex.
hw_cuda.c can't use this, but hw_vdpau.c will in the following commit.
If hardware decoding is enabled (via --hwdec anything), the player was
printing an informational message that software decdoing is used.
Basically, this confuses users, because they think there is a problem or
such. Just disable the message, it's semi-useless anyway.
This was suggested on IRC, after yet another user was asking why this
message was shown (with a follow up discussion which CPUs can decode
what kind of video codecs).
Other hwdecs will also be able to use this (as soon as they are switched
to use AVHWFramesContext).
As an additional feature, failing to copy back the frame counts as
hardware decoding failure and can trigger fallback. This can be done
easily now, because it needs no way to communicate this from the hwaccel
glue code to the common code.
The old code is still required for the old decode API, until we either
drop or rewrite it. vo_vaapi.c's OSD code (fuck...) also uses these
surface functions to a higher degree.
Mostly affects conversion of the colorimetric parameters.
Not changing AV_FRAME_DATA_MASTERING_DISPLAY_METADATA handling - that's
too messy, as decoders typically output it for keyframes only, and would
require weird caching that can't even be done on the level of the frame
rewrapping functions.
This fixes direct rendering with hwdec_vaegl.c.
The code duplication between update_image_params() and
mp_image_copy_fields_from_av_frame() is quite annoying,
bit will have to be resolved in another commit.
The old API is deprecated, and libavcodec prints a warning at runtime.
The new API is a bit nicer and does many things for you, such as
managing the underlying hwaccel decoder. libavutil also provides code
for managing surfaces (we use their surface pool).
The new code does not contain any code from the original MPlayer VAAPI
patch (that was used as base for some of the vaapi code in mpv). Thus
the new code is LGPL.
The new API actually does not add any visible symbols, so the only way
to detect it is a version check. Of course, the versions overlap
between FFmpeg and Libav, which requires additional care. The new
API did not get merged into FFmpeg yet, so there's no check for
FFmpeg.
This is simpler and more robust, especially for the hwdec fallback case.
The most annoying issue is that C doesn't support multiple return values
(or sum types), so the decode call gets all awkward.
The hwdec fallback case does not need to try to produce some output
after the fallback anymore. Instead, it can use the normal "replay"
code path.
We invert the "eof" bool that vd_lavc.c used internally. The
receive_frame decoder API returns the inverse of EOF, because
returning "true" from the decode function if EOF was reached
feels awkward.
Usually they happen at the same time, but conflating them is still a bit
unclean and could possibly cause problems in the future. It's also
really unnecessary.
The ffmpeg cuda wrappers need more than 1 packet for determining whether
hw decoding will work. So do something complicated and keep up to 32
packets when trying to do hw decoding, and replay the packets on the
software decoder if it doesn't work.
This code was written in a delirious state, testing for regressions and
determining whether this is worth the trouble will follow later. All mpv
git users are alpha testers as of this moment.
Fixes#3914.
Conceptually cleaner, although the API claims this is equivalent.
Originally, AVCodecContext fields were used, because not all supported
libavcodec/libavutil versions had the AVFrame fields.
This is not done for chroma_sample_location - it has no AVFrame field.
Helps with gif, probably does unwanted things with other formats.
This doesn't handle --end quite correctly, but this could be added
later.
Fixes#3924.
This is a bit unintuitiv, but it appears hwdec backends have to unset
hwdec_priv manually in their uninit function. Normally with this idiom
you'd expect the common code to do this (and maybe even freeing the priv
struct). Since other hwdec backends do this quite consistently, just fix
vdpau for now.
Also add an assert to detect similar bugs sooner.
Fixes#3788.
At this point, all other hwaccels provide -copy modes, and vdpau is the
exception with not having one. Although there is vf_vdpaurb, it's less
convenient in certain situations, and exposes some issues with the
filter chain code as well.
Both AVFrame.pts and AVFrame.pkt_pts have existed for a long time. Until
now, decoders always returned the pts via the pkt_pts field, while the
pts field was used for encoding and libavfilter only. Recently, pkt_pts
was deprecated, and pts was switched to always carry the pts.
This means we have to be careful not to accidentally use the wrong
field, depending on the libavcodec version. We have to explicitly check
the version numbers. Of course the version numbers are completely
idiotic, because idiotically the pkg-config and library names are the
same for FFmpeg and Libav, so we have to deal with this explicitly as
well.
This really shouldn't be in vd_lavc.c - move it to dec_video.c, where it
also applies aspect overrides. This makes all overrides in one place.
The previous commit contains some required changes for resetting the
image parameters change detection (i.e. it's not done only on video
aspect override changes).
'cuda-gl' isn't right - you can turn this on without any GL and
get some non-zero benefit (with the cuda-copy hwaccel). So
'cuda-hwaccel' seems more consistent with everything else.
The cuvid decoder already knows how to copy back to system memory
if NV12 frames are requested, and this will happen if the decoder
is used without the hwdec.
For convenience, let's add a wrapper hwdec so people don't have
to explicitly pick the cuvid decoder if they want this behaviour.
Nvidia's "NvDecode" API (up until recently called "cuvid" is a cross
platform, but nvidia proprietary API that exposes their hardware
video decoding capabilities. It is analogous to their DXVA or VDPAU
support on Windows or Linux but without using platform specific API
calls.
As a rule, you'd rather use DXVA or VDPAU as these are more mature
and well supported APIs, but on Linux, VDPAU is falling behind the
hardware capabilities, and there's no sign that nvidia are making
the investments to update it.
Most concretely, this means that there is no VP8/9 or HEVC Main10
support in VDPAU. On the other hand, NvDecode does export vp8/9 and
partial support for HEVC Main10 (more on that below).
ffmpeg already has support in the form of the "cuvid" family of
decoders. Due to the design of the API, it is best exposed as a full
decoder rather than an hwaccel. As such, there are decoders like
h264_cuvid, hevc_cuvid, etc.
These decoders support two output paths today - in both cases, NV12
frames are returned, either in CUDA device memory or regular system
memory.
In the case of the system memory path, the decoders can be used
as-is in mpv today with a command line like:
mpv --vd=lavc:h264_cuvid foobar.mp4
Doing this will take advantage of hardware decoding, but the cost
of the memcpy to system memory adds up, especially for high
resolution video (4K etc).
To avoid that, we need an hwdec that takes advantage of CUDA's
OpenGL interop to copy from device memory into OpenGL textures.
That is what this change implements.
The process is relatively simple as only basic device context
aquisition needs to be done by us - the CUDA buffer pool is managed
by the decoder - thankfully.
The hwdec looks a bit like the vdpau interop one - the hwdec
maintains a single set of plane textures and each output frame
is repeatedly mapped into these textures to pass on.
The frames are always in NV12 format, at least until 10bit output
supports emerges.
The only slightly interesting part of the copying process is that
CUDA works by associating PBOs, so we need to define these for
each of the textures.
TODO Items:
* I need to add a download_image function for screenshots. This
would do the same copy to system memory that the decoder's
system memory output does.
* There are items to investigate on the ffmpeg side. There appears
to be a problem with timestamps for some content.
Final note: I mentioned HEVC Main10. While there is no 10bit output
support, NvDecode can return dithered 8bit NV12 so you can take
advantage of the hardware acceleration.
This particular mode requires compiling ffmpeg with a modified
header (or possibly the CUDA 8 RC) and is not upstream in ffmpeg
yet.
Usage:
You will need to specify vo=opengl and hwdec=cuda.
Note that hwdec=auto will probably not work as it will try to use
vdpau first.
mpv --hwdec=cuda --vo=opengl foobar.mp4
If you want to use filters that require frames in system memory,
just use the decoder directly without the hwdec, as documented
above.
These are different AVCodecContext fields. pkt_timebase is the correct
one for identifying the unit of packet/frame timestamps when decoding,
while time_base is for encoding. Some decoders also overwrite the
time_base field with some unrelated codec metadata.
pkt_timebase does not exist in Libav, so an #if is required.
Instead of passing through double float timestamps opaquely, pass real
timestamps. Do so by always setting a valid timebase on the
AVCodecContext for audio and video decoding.
Specifically try not to round timestamps to a too coarse timebase, which
could round off small adjustments to timestamps (such as for start time
rebasing or demux_timeline). If the timebase is considered too coarse,
make it finer.
This gets rid of the need to do this specifically for some hardware
decoding wrapper. The old method of passing through double timestamps
was also a bit questionable. While libavcodec is not supposed to
interpret timestamps at all if no timebase is provided, it was
needlessly tricky. Also, it actually does compare them with
AV_NOPTS_VALUE. This change will probably also reduce confusion in the
future.
This greatly improves the result when decoding typical (ST.2084) HDR
content, since the job of tone mapping gets significantly easier when
you're only mapping from 1000 to 250, rather than 10000 to 250.
The difference is so drastic that we can now even reasonably use
`hdr-tone-mapping=linear` and get a very perceptually uniform result
that is only slightly darker than normal. (To compensate for the extra
dynamic range)
Due to weird implementation details, this only seems to be present on
keyframes (or something like that), so we have to cache the last seen
value for the frames in between.
Also, in some files the metadata is just completely broken /
nonsensical, so I decided to apply a simple heuristic to detect
completely broken metadata.
This has two reasons:
1. I tend to add new fields to this metadata, and every time I've done
so I've consistently forgotten to update all of the dozens of places in
which this colorimetry metadata might end up getting used. While most
usages don't really care about most of the metadata, sometimes the
intend was simply to “copy” the colorimetry metadata from one struct to
another. With this being inside a substruct, those lines of code can now
simply read a.color = b.color without having to care about added or
removed fields.
2. It makes the type definitions nicer for upcoming refactors.
In going through all of the usages, I also expanded a few where I felt
that omitting the “young” fields was a bug.
This uses the normal autoprobing rules like "auto", but rejects anything
that isn't flagged as copying data back to system memory.
The chunk in command.c was dead code, so remove it instead of updating
it.
We don't have any reason to disable either. Both are loaded dynamically
at runtime anyway. There is also no reason why dxva2 would disappear
from libavcodec any time soon.
The main change is with video/hwdec.h. mp_hwdec_info is made opaque (and
renamed to mp_hwdec_devices). Its accessors are mainly thread-safe (or
documented where not), which makes the whole thing saner and cleaner. In
particular, thread-safety rules become less subtle and more obvious.
The new internal API makes it easier to support multiple OpenGL interop
backends. (Although this is not done yet, and it's not clear whether it
ever will.)
This also removes all the API-specific fields from mp_hwdec_ctx and
replaces them with a "ctx" field. For d3d in particular, we drop the
mp_d3d_ctx struct completely, and pass the interfaces directly.
Remove the emulation checks from vaapi.c and vdpau.c; they are
pointless, and the checks that matter are done on the VO layer.
The d3d hardware decoders might slightly change behavior: dxva2-copy
will not use the VO device anymore if the VO supports proper interop.
This pretty much assumes that any in such cases the VO will not use any
form of exclusive mode, which makes using the VO device in copy mode
unnecessary.
This is a big refactor. Some things may be untested and could be broken.
This uses ID3D11VideoProcessor to convert the video to a RGBA surface,
which is then bound to ANGLE. Currently ANGLE does not provide any way
to bind nv12 surfaces directly, so this will have to do.
ID3D11VideoContext1 would give us slightly more control about the
colorspace conversion, though it's still not good, and not available
in MinGW headers yet.
The video processor is created lazily, because we need to have the coded
frame size, of which AVFrame and mp_image have no concept of. Doing the
creation lazily is less of a pain than somehow hacking the coded frame
size into mp_image.
I'm not really sure how ID3D11VideoProcessorInputView is supposed to
work. We recreate it on every frame, which is simple and hopefully
doesn't affect performance.
For Mediacodec in particular we don't care about the format. It can just
decode to whatever it wants. The only case we would care about is it not
returning an opaque format if we don't have proper interop, but
libavcodec always returns non-opaque formats by default.
Use the recently added lavc_suffix mechanism to select the wrapper
decoder.
With all hwdec callbacks being optional, and RPI/Mediacodec having only
dummy callbacks, all the callbacks can be removed as well.
The result is that the vd_lavc_hwdec struct for both of them is tiny.
It's better to move them to vd_lavc.c directly, because they are so
trivial and small.
This is intended for cases when --hwdec needs to override the decoder
implementation in use, like for example on the RPI.
It does two things:
1. Allow the hwdec to indicate a decoder suffix. libavcodec by
convention adds a suffix to all wrapper decoders, and here we start
relying on it. While not necessarily the best idea, it's the only
thing we got. libavcodec's hwaccel list is useless, because it only
has the codec ID, not the associated decoder's name.
2. Make --hwdec=auto work properly. It shouldn't fail anymore, and hwdec
probing should reliably work, even if a different decoder is selected
with --vd. The semantics of --hwdec should dictate that it overrides
the default decoder.
Until now, the presence of the process_image() callback was used to set
a delay queue with a hardcoded size. Change this to a vd_lavc_hwdec
field instead, so the decoder can explicitly set this if it's really
needed.
Do this so process_image() can be used in the VideoToolbox glue code for
something entirely unrelated.
Some functions which expected a codec name (i.e. the name of the video
format itself) were passed a decoder name. Most "native" libavcodec
decoders have the same name as the codec, so this was never an issue.
This should mean that e.g. using "--vd=lavc:h264_mmal --hwdec=mmal"
should now actually enable native surface mode (instead of doing copy-
back).
AVFormatContext.codec is deprecated now, and you're supposed to use
AVFormatContext.codecpar instead.
Handle this for all of the normal playback code.
Encoding mode isn't touched.
This commit adds the d3d11va-copy hwdec mode using the ffmpeg d3d11va
api. Functions in common with dxva2 are handled in a separate decode/d3d.c
file. A future commit will rewrite decode/dxva2.c to share this code.
The mp_set_av_packet()/mp_pts_from_av() functions check whether the
timebase is set at all (i.e. AVRational.num!=0), so there's no need to
fiddle with pointers.
Completely pointless abominations that FFmpeg refuses to remove. They
are ancient, long deprecated API which we can't use anymore. They
confused users as well.
Pretend that they don't exist. Due to the way --vd works, they can't
even be forced anymore. The older hack which explicitly rejects these
can be dropped as well.
This is in preparation for a hypothetical API change in libavcodec,
which would allow the decoder to return multiple video frames before
accepting a new input packet.
In theory, the body of the if() added to vd_lavc.c could be replaced
with this code:
packet->buffer += ret;
packet->len -= ret;
but currently this is not needed, as libavformat already outputs one
frame per packet. Also, using libavcodec this way could lead to a
"deadlock" if the decoder refuses to consume e.g. garbage padding, so
enabling this now would introduce bugs.
(Adding this now for easier testing, and for symmetry with the audio
code.)
Until now (and in mplayer traditionally), avi timestamps were handled
with a timestamp FIFO. AVI timestamps are essentially just strictly
increasing frame numbers and are not reordered like normal timestamps.
Limiting the FIFO is required because frames can be dropped. To make
it worse, frame dropping can't be distinguished from the decoder not
returning output due to increasing the buffering required for B-frames.
("Measuring" the buffering at playback start seems like an interesting
idea, but won't work as the buffering could be increased mid-playback.)
Another problem are skipped frames (packets with data, but which do
not contain a video frame).
Besides dropped and skipped frames, there is the problem that we can't
always know the delay. External decoders like MMAL are not going to
tell us. (And later perhaps others, like direct VideoToolbox usage.)
In general, this works not-well enough that I prefer the solution of
passing through AVI timestamps as DTS. This is slightly incorrect,
because most decoders treat DTS as mpeg-style timestamps, which
already include a b-frame delay, and thus will be shifted by a few
frames. This means there will be a problem with A/V sync in some
situations.
Note that the FFmpeg AVI demuxer shifts timestamps by an additional
amount (which increases after the first seek!?!?), which makes the
situation worse. It works well with VfW-muxed Matroska files, though.
On RPI, the first X timestamps are broken until the MMAL decoder "locks
on".
fd339e3f53 introduced a regression that caused
segfault while uniniting dxva2 decoder (and possibly vdpau too). The problem was
that it freed the avctx earlier, before calling the backend-specific uninit
which referenced it.
Revert some of the changes of that commit, and avoid calling flush by
checking whether the codec is open instead.
(Based on a PR by Kevin Mitchell.)
Signed-off-by: wm4 <wm4@nowhere>
It can be "dangerous". In particular, the decoder might have failed to
initialize, and is now in a broken state. avcodec_flush_buffers() is not
expected to be called in this state, and could trigger undefined
behavior.
Avoids "problems". In particular, it makes MMAL output a NOPTS timestamp
if the input timestamp was NOPTS.
Don't do it for other decoders. Ideally, we will at some point in the
future switch to integer fractions for timestamps at least up until the
filter layer. But this would be a larger change, and for now I'd prefer
keeping the not-rounded demuxer timestamps (if we have them).
Commit b53cb8de added a delay queue for decoded frames. This is supposed
to be used with copy-back decoders like dxva2-copy and vaapi-copy.
Surfaces returned by them can't be referenced after uninitializing the
decoders, so they have to be released before destroying the decoder.
Move the flush_all() call above decoder uninit accordingly. Also move
the destruction of the AVFrame used for decoding (just for being
defensive - normally it doesn't hold any reference).
We just need to provide an entrypoint for it, and move the main init
code to a separate function. This gets rid of the messy video chain full
reinit in command.c, which completely destroyed and recreated the video
state for the purpose of mid-stream hw/sw switching.
Don't give the "software_fallback_decoder" field special meaning. Alwass
set it, and rename it to "decoder". Whether hw decoding is used is
determined by the "hwdec" field already.