When using dumb mode, we can actually redraw a frame without uploading
it. Marking this as fresh as well results in unpredictable pass
behavior, which is confusing and makes debugging harder. So mark it as a
redraw instead, in that case.
In the past, this always measured the per-shader execution times of the
individual OSD parts, which was thrown off because the shader was reused
anyway. (And apparently recording the OSD shader execution times was
removed completely, probably because of them being so unrealiably
anyway)
Since ra_timer no longer has the restriction of not allowing timers to
run concurrently, we can just wrap the entire OSD block inside a single
osd_timer now, and record that. (Technically, this can still be off when
using --blend-subtitles=video/yes and showing a full-screen OSD at the
same time. Maybe this can be done better?)
In order to prevent code duplication and keep the ra abstraction as
small as possible, `ra` only implements the actual timer queries,
it does not do pooling/averaging of the results. This is instead moved
to a ra-neutral struct timer_pool in utils.c.
This code is pretty much for the sake of vo_opengl_cb API users. It
resets certain state that either the user or our code doesn't reset
correctly. This is somewhat outdated. With GL implicit state being
so awfully large, it seems more reasonable require that any code
restores the default state when returning to the caller. Some
exceptions are defined in opengl_cb.h.
Now all GL-specifics of shader compilation are abstracted through ra.
Of course we still have everything hardcoded to GLSL - that isn't going
to change.
Some things will probably change later - in particular, the way we pass
uniforms and textures to the shader. Currently, there is a confusing
mismatch between "primitive" uniforms like floats, and others like
textures.
Also, SSBOs are not abstracted yet.
Instead of having a mutable ra_tex field (and the only one), move the
flag to struct ra, since we have only 2 tex_upload user calls anyway,
and both want the same PBO behavior. (At first I considered making it
a RA_TEX_UPLOAD_ flag, but why bother. PBOs are a terribly GL-specific
thing, so we can't expect a reasonable abstraction of it anyway.)
This requires a silly extension to ra_fns.tex_upload: since the OSD
texture can be much larger than the actual OSD image data to upload, a
mechanism for uploading only to a small part of the texture is needed.
Otherwise, we'd have to realloc/copy the data, just to pad it, and then
pay for uploading the padding too.
The RA_TEX_UPLOAD_DISCARD flag is not interpreted by GL (not sure how
you'd tell GL about this), but it clarifies the API and might be
helpful if we support other backend APIs in the future.
Another "small" step towards removing GL dependencies from the renderer.
This commit generally passes ra_tex objects instead of GL FBO integer
IDs to various rendering functions. video.c still manually binds the
FBOs when calling shaders.
This also happens to fix a memory leak with output_fbo.
Further work removing GL dependencies from the actual video renderer,
and moving them into ra backends.
Use of glInvalidateFramebuffer() falls away. I'd like to keep this, but
it's better to readd it once shader runs are in ra.
This currently only works when using lcms-based color management
(--icc-profile-*).
In principle, we could also support using lcms even when the user has
not specified an ICC profile, by generating the profile against a fixed
reference (--target-prim/--target-trc) instead. I still might do that
some day, simply because 3dlut provides a higher quality conversion than
our simple gamut mapping does for stuff like BT.2020, and also because
it's now needed to enable embedded ICC profiles. But that would be a
separate change, so preserve the status quo for now.
(Besides, my opinion is still that you should be using an ICC profile if
you care about colors being accurate _at all_)
Breaks on mesa for whatever reason... even though it doesn't generate a
GLSL shader compiler error
Shouldn't make a performance difference for us because we cache `pos`
anyway, and most compute shaders will probably cache all of their
samples to shmem. Might have to re-visit this when we have an actual use
case for repeated sampling inside CS though. (RAVU + anti-ringing is a
possible candidate for that)
This broke float textures, which were actually used by some shaders.
There were probably some other bugs as well.
Lots of code can be avoided by using ra_tex_params directly, so do that.
The main change is that COMPONENT/FORMAT are replaced by a single FORMAT
directive, which takes different parameters now. Due to the mess with
16/32 bit float textures, and because we want to support other APIs than
just GL in the future, it's not really clear how this should be handled,
and the nice component/type separation makes things actually harder. So
just jump the gun and use the ra_format.name names, which were
originally meant mostly for debugging. (This is probably something that
will be regretted later.)
Still only superficially tested, but seems to work.
Fixes#4708.
Since this code was already written for HDR, and is now per-channel
(because it works better for HDR as well), we can actually reuse this to
get very high quality gamut mapping without clipping. The only required
change is to move the tone mapping from before the gamut map to after
the gamut map. Additonally, we need to also account for changes in the
signal range as a result of applying the CMS when we compute ref_peak,
which is fortunately pretty easy because we only need to consider the
case of primaries mapping to themselves.
Since `HDR` no longer really makes sense as a label, rename it to
`--tone-mapping` in general. Also fits better with
`--tone-mapping-desat` etc.
Arguably we could also rename `--hdr-compute-peak`, but that option is
basically only useful for HDR content anyway because we don't need
information about the signal range for gamut mapping.
This (finally!) gives us reasonably high quality gamut mapping even in
the absence of an ICC profile / 3DLUT.
Also add some more helpers.
Fix the broken math.h include statement.
utils.c uses ra_gl.h internals, which it shouldn't, and which will be
removed again as soon as this code gets converted to ra fully.
The dither texture data is created as a float array, but uploaded to a
texture with GL_R16 as internal format. We relied on GL to do the
conversion from float to uint16_t. Not all GL variants even support
this: GLES does not provide this conversion (one of the reasons why this
code has a float16 code path). Also, ra is not going to do this. So just
convert on the fly.
Still keep the float16 texture format fallback, because not all GLES
implementations provide GL_R16.
There is some possibility that we'll need to provide some kind of upload
conversion anyway for float->float16. We still rely on GL doing this
implicitly, and all GL variants support it, but with RA there might be
the need for explicit conversion. Even then, it might be best to reduce
the number of conversion cases. I'll worry about this later.
Format handling via ra_* was added earlier, but the format negotiation
part was forgotten.
Actually move some aspects of it to ra_get_imgfmt_desc(). Also make sure
the unorm and float formats selected by the common format lookup
functions are linear filterable. (For OpenGL, this is implicitly
guaranteed, so it wasn't done before.) Whether these assumptions should
be checked/enforced in the ra code at all is a bit fuzzy, but with ra
being helper code only for the actual video renderer, it's probably
justified.
Parsing the texture data as raw strings makes the textures the most
portable and self-contained. In order to facilitate different types of
shaders, the parse_user_shader interaction has been changed to instead
have it loop through blocks and call the passed functions for each valid
block parsed. This is more modular and also cleaner, with better code
separation.
Closes#4586.
- Each struct tex_hook now stores multiple hooks, this allows us to
avoid the awkward way of the current code has to add the same pass
multiple times.
- As a consequence, SHADER_MAX_HOOKS was split up into SHADER_MAX_PASSES
(number of tex_hooks) and SHADER_MAX_HOOKS (number of hooked textures
per tex_hook), and both numbers decreased correspondingly.
- Instead of having a weird free() callback, we can just leverage
talloc's recursive free behavior. The only user is the user shaders code
anyway.
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
The radius check was not strict enough, especially not for all
platforms. To fix this, actually check the hardware capabilities instead
of relying on a hard-coded maximum radius.
The textures not having an FBO actually caused regressions when trying
to render the subtitles on top of this texture (--blend-subtitles),
which still relied on an FBO.
So just kill off the logic entirely. Why worry about a single FBO wasted
when we're allocating like 10 anyway.
Fixes#4657.
According to the OpenGL spec, atomic access to SSBO variables is *not*
guaranteed to be coherent, even when reusing the same SSBO attached to
the same shader across different frames. So we actually need a
glMemoryBarrier here, at least in theory.
This bug slipped past my attention because nvidia ignores memory
barriers, but this is not necessarily always the case. Since
image_load_store is incoherent (specifically, writing to images from
compute shaders is incoherent) we need to insert a memory barrier to
make it coherent again. Since we only care about texture fetches, that's
the only barrier we need.
Two changes, compounded into one since they affect the same logic:
1. Never use linearization for HDR downscaling
2. Always use linearization for interpolation
Instead of fixing p->use_linear at the beginning of pass_render_frame,
we flip it on "dynamically" as needed. I plan on killing this
p->use_linear frame (along with other per-pass metadata) and moving them
into their own struct for tracking the "current" state of the video, but
that's a separate/upcoming refactor.
As a small bonus, reduce some code duplication in the interpolation
logic.
Fixes#4631
Mesa 17.1 supports compute shader but not full specs of OpenGL 4.3.
Change the code to detect OpenGL extension "GL_ARB_compute_shader"
rather than OpenGL version 4.3.
HDR peak detection requires SSBO, and polar scaler requires 2D array
extension. Add these extensions as requirement as well.
This performs almost 50% faster on my machine (!!), from 4650μs down to
about 3176μs for ewa_lanczossharp.
It's possible we could use a similar approach to speed up the separable
scalers, although with vastly simpler code. For separable scalers we'd
also have the additional huge benefit of only needing padding in one
direction, so we could potentially use a big 256x1 kernel or something
to essentially compute an entire row at once.
This is done via compute shaders. As a consequence, the tone mapping
algorithms had to be rewritten to compute their known constants in GLSL
(ahead of time), instead of doing it once. Didn't affect performance.
Using shmem/SSBO atomics in this way is extremely fast on nvidia, but it
might be slow on other platforms. Needs testing.
Unfortunately, setting up the SSBO still requires OpenGL calls, which
means I can't have it in video_shaders.c, where it belongs. But I'll
defer worrying about that until the backend refactor, since then I'll be
breaking up the video/video_shaders structure anyway.
These can either be invoked as dispatch_compute to do a single
computation, or finish_pass_fbo (after setting compute_size_minimum) to
render to a new texture using a compute shader. To make this stuff all
work transparently, we try really, really hard to make compute shaders
as identical to fragment shaders as possible in their behavior.
Don't use FBOTEX_FUZZY where the FBO is sized according to
p->texture_w/h, since this changes infrequently (and when it does, we
need to reset everything anyway). No real reason to make this change
other than that it possibly prevents nasty surprises in the future, so I
feel more comfortable about it.
Seems like I really like this C99 idiom. No reason not to generalize it
do snprintf(). Introduce mp_tprintf(), which basically this idiom to
snprintf(). This macro looks like it returns a string that was allocated
with alloca() on the caller site, except it's portable C99/C11. (And
unlike alloca(), the result is valid only within block scope.)
Use it in 2 places in the vo_opengl code. But it has the potential to
make a whole bunch of weird looking code look slightly nicer.
Can be enabled via --vd-lavc-dr=yes. See manpage additions for what it
does.
This reminds of the MPlayer -dr flag, but the implementation is
completely different. It's the same basic concept: letting the decoder
render into a GPU buffer to avoid a copy. Unlike MPlayer, this doesn't
try to go through filters (libavfilter doesn't support this anyway).
Unless a filter can work in-place, DR will be silently disabled. MPlayer
had very complex semantics about buffer types and management (which
apparently nobody ever understood) and weird restrictions that mostly
limited it to mpeg2 style codecs. The mpv code does not do any of this,
and just lets the decoder allocate an arbitrary number of untyped
images. (No MPlayer code was used.)
Parts of the code based on work by atomnuker (starting point for the
generic code) and haasn (some GL definitions, some basic PBO code, and
correct fencing).
In addition to using the new VAO mechanism introduced in the previous
commit, this tries to keep the OSD code self-contained. This doesn't
work all too well (because of the pass and CMS stuff), but it's still
better than before.
This removes VAO handling from video.c. Instead the shader cache will
create the VAO as needed. The consequence is that this creates a VAO
per shader, which might be a bit wasteful, but doesn't matter anyway.
Reduce this to 1 draw call per OSD pass. This removes the need for some
annoying special handling regarding 3D video support (we supported
duplicating the OSD/subtitles for side-by-side 3D output etc.).
Remove the unneeded texture sampler uniform thing.
These are apparently expensive on some drivers which are not smart
enough to turn x/42 into x*1.0/42. So, do it for them.
My great test framework says it's okay
This is unnecessary to call from gl_video_resize, because the hooks only
(possibly) change when the actual vo_opengl options change. This used to
be required back when mpv still had prescaling built in, but since that
was all moved to user shaders and the code removed, this is a left-over
artifact.