
Group 14 Project 3: NATBox

Dylan Callaghan: 21831599@sun.ac.za
Stephen Cochrane: 21748209@sun.ac.za

September 25, 2020

1 Introduction

The goal of this project was to create a simulated NATbox environment and
implementation. The core purpose of the NATbox was to be able to translate
incoming and outgoing packets, so as to maintain the appearance of a private
local network. The implementation was intended to have functionality for send-
ing multiple packet types (UDP/TCP, IMCP, DHCP), and be able to translate
them accordingly. In addition to this, a minimal DHCP implementation was
to be present which allowed the allocation of internal IP addresses to internal
clients.

2 Unimplemented Features

We implemented all of the required features from the project spec. For the
chosen NATbox technology, we have implemented traditional NAT.

3 Additional features

Apart from doing the simplistic traditional NAT implementation, for the rest
of the project, we implemented a number of additional features. These include:

• Internet Server:
The server for actually sending the messages between clients/NATboxes
in our implementation mimics the realworld internet. As such, there are
a number of additional features associated with it:

– Effective Routing
The server has an algorithm for sending packets through the simu-
lated internet it has created, where packets only go through nodes
directly on the way to the destination.

– External client communication
The server allows for external clients to communicate with each other
(External to External) without sending messages to the NATbox

1



(done by the previous feature). This simulates the design of the
internet.

– Multiple NATboxes
The server allows multiple NATboxes to exist connected to it (like
the real internet). Packets can be sent to and from NATboxes just
like in the real internet. Essentially, this makes the NATboxes actual
gateways to simulated local networks on the server, where each local
network has it’s own address space in the range for internal networks.
A client connected to one NATbox, therefore, can send a packet
to another client connected to another NATbox (provided the first
client knows the mapped external IP address of the second client).
The two NATboxes will translate their respective clients’ addresses
transparently, so that each client thinks it is sending to an external
client.

• Advanced client shell:
The client process has an advanced shell to allow for sending of many dif-
ferent types of packets, as well as various other commands. Any command
can be run at any time, making the client side implementation more seem-
less. The commands available are (for more details, see the help command
in the client):

– help

Provides a list of commands as well as a short description of each of
them.

– help <command>

Provides a detailed description of a particular command including
the values for the (optional) parameters.

– send <protocol> <dest ip>

Sends a paquet (encapsulated inside a network packet), to the given
destination using the supplied protocol.

– whoami

Displays the IP information of the client. This includes it’s IP ad-
dress, as well as the NATBox IP address that it is connected to (for
internal).

– iplist (<all>)

Displays IP addresses that are assigned on the server to some host.
This command can be used to find clients to send to. Without the
<all> option, only IP addresses on the local network (the whole ”in-
ternet” for an external client), are shown. With the <all> option,
both local and external IP addresses are shown (specific to a NAT-
box).

– rep

Repeats the last command

2



– ping <ip> <amount>

Sends <amount> number of ping packets to the given destination ip
address.

• TCP Acks
In addition to the required responses for all paquets routed to a client, a
TCP paquet has an additional ACK packet response. This is to simulate
the actual implementation of a TCP packet in the real internet, which
requires ACKs to ensure reliability.

• Ping command
The ping command from the client shell above allows for any number of
ping packets to be sent. This mimics the actual functionality of the ping
terminal command which continuously sends ping packets.

4 Description of files

The current classes included are,

• Server

• Client

• DHCP

• Packet wrappers (TCP, UDP, ICMP, DHCP, ACK, ARP, IP, Ethernet)

• NATtable

• NATbox

• optargs

The first item, Server, is the backbone of the simulation, and handles the rout-
ing of packets (containing paquets) to the correct socket. We decided to have
a central server (as opposed to the server running on the natbox) as this allows
us to have multiple natboxes (each with their own internal clients) to connect
to the server and communicate with each other/ external clients.

The Client however, acts as a connection on the network, either connected
to a natbox (in this case an internal client) or an external Client which simply
connects directly to the network. The Client has a shell allowing for easier us-
age for the different functions. To see the available commands, simply invoke
“help”, and all the commands will be shown.

The DHCP object, when constructed, will generate IP’s (first attempting to
retrieve a non-used IP from a pool of free’d IP’s) and give them to the requestee.
On closing, the requestee can give back the used IP to the DHCP object, which

3



in turn adds it to the freely available IP’s.

The packet wrappers are a collection of classes, that each represent a packet
(sequence of bytes), and allowing the formatting of the specified packet in an
easy way by just calling getters and setters, as opposed to working with the
byte sequence directly. Each wrapper has three constructors, one taking the
values for the packet, thus constructing a complete packet, another taking no
arguments, which constructs an “empty” packet, and lastly, a constructor that
takes a byte sequence and unpacks it into object form, allowing easy reading of
the data.

The NATtable is an object representing the NAT table for a NAT box. It
stores all the translation entries and allows thread safe retrieval and addition to
the table. It contains a threaded timer to evict entries older than the specified
refresh time as well.

The NATbox class handles all functionality of the NAT box implementation
(excluding server functions such as sending messages). It contains a NATtable
object and interfaces with this to store address translations. It also keeps track
of the connected clients and assigns internal IP addresses to them. The physical
sending functionality of the NATbox is deferred to the server, as our implemen-
tation supports only the server sending messages.

5 Program description

When the server is started up, it starts a loop waiting for incoming connections.
When a client connects (First we describe an external client, abbrevaited as
EC), the server accepts the EC’s connection, and allocates an external IP and
sends it back to the EC. This is done using the external mode of the DHCP
server which acts like an ISP (as for this implementation, the server simulates
the internet). Once this initial “handshake” is completed the server forks this
connection to a slave handler thread. On the EC, once started, it receives its IP
and generates its MAC address. Then it starts its interactive shell, and prints
any received messages (as well as executes instructions entered into the shell).
To see the commands invoke “help”.

An internal client (abbreviated IC) establishes a connection with the server
similar to how an EC does in that the servers accepts the IC’s connection. How-
ever the setup for an internal client includes a (minimal) DHCP request and
response interaction with the NATbox to retrieve its’ IP address. Also, after
the initial setup, the forked thread has a link to the NATbox thread, and so
any message that needs to be sent outside the internal network will be sent to
the NATbox to be translated and sent on. On the client side, the client MAC
is generated and then the DHCP interaction is executed, after which the shell
is started.

4



When sending a packet, the packet is sent to the server, where the server
peeks into the packet for the destination IP, and simply passes the entire packet
to the correct socket (in a super simplified explanation, we simply map the sock-
ets to their IP’s).

When a client starts up, and after the initial “handshake”, a thread is forked
which handles all incoming packets, and simply prints them to standerd out
(print output depends on whether the verbose flag is given).

6 Experiments

Most of the expirements we performed involved sending different paquets to
clients (with varying payloads and payload sizes). Examples of Paquet types
sent include:

• TCP

• UDP

• ICMP and

• DHCP

The “paths”/“routes” we sent these paquets over include:

• internal → external

• internal → internal (clients on the same NATBox)

• external → external (Our solution allows this since we have a central
server)

• internal→ internal (with both internal clients being on separate natboxes,
with effectively double NAT taking place)

The results of these experiments saw that for internal → internal (on the same
NAT box), the paquets remained unchanged by the NAT box, and so the IP’s
remained internal IP’s.

For internal to external, we observed the paquets being routed through the
associated NAT box first, and the header being translated accordingly. Also,
an entry was added in the NAT table, and the paquet was then sent to the ex-
ternal host. This meant that when the external host replied with an automated
response, the packet was sent back to the NAT box and then translated back us-
ing the NAT table entry before sending to the internal client. In conclusion, we
saw that the external host had no knowledge of the internal host being internal,
abiding by the transparency of a NAT box.

For internal to internal (on different NAT boxes), we saw an interesting
but indeed correct response. The paquets being routed were passed through
each of the two internal networks NAT boxes before being sent to and from the

5



clients, being translated as they went. This meant that each of the two clients
were unaware of the other being on a private network connected to a NAT box.
This astonishing result meant that our implementation was completely scalable,
allowing for multiple NAT box support, and translating paquets correctly for all
simulated network traffic.

Something cool we discovered during the testing, was due to our ping im-
plementation, when we ping an IP that does not exits, an ICMP error paquet is
returned and the ping terminates, this closely mimics real life ping implemen-
tations.

Our TCP implementation also has a built in ack system. And so, when
a TCP message was sent, we observed an ACK being sent back to the sender.
This mimicked the real implementation of TCP on the internet. When the ACK
arrived at the sender again, the sender checked against its sent TCP packets, and
asserted that the TCP message had been received by the client. This resulted in
an output displaying each time that the TCP message had gone through. And
hence in conclusion, we can state that TCP messages as payloads of the paquets
are successfully routed.

The TCP Ack system makes use of an “ack assert” system, in short, when a
TCP message is sent, the code hash generated for that TCP message is stored
in a list/queue, and when a TCP Ack is recieved, we check the list/queue to see
if that code exists, if it does, we remove the code ack from the list, and assert
that the ack has been recieved. If the ack code cannot be found, the packet is
simply dropped.

UDP (and hence DHCP) messages were experimented with similar to the
TCP messages above. Since their implementation is similar to that of TCP
(except that the stringent checks are not in place), we saw all of these paquet
types being sent successfully like TCP.

Another experiment we conducted was to send paquets to host addresses on
the network that do not exist (are not mapped to a host). We experimented
with all of TCP, UDP, and ICMP ping paquets for this. In all of the cases,
our system responded with an ICMP error response message, saying that the
destination host was unreachable. This was the expected result, as on the real
world internet, trying to send any packet to an unreachable host will return this
packet type. We hence concluded that our ICMP implementation, as well as
our server, correctly responded to any error condition.

7 Issues encountered

A major issue that we encountered early in the project was how we were going to
send messages between clients and NATboxes. We wanted our implementation
to have one central communications class (the server), so that we didn’t have
to complicate our code by having multiple classes being able to communicate.
Our solution to this was to have one general server class which supported all
communication. Any NATbox on the simulated network would then be apart of
this server, and have it’s own private “section” of the server. This solution meant

6



that the NAT boxes did not have to be able to send messages themselves, but
rather relied on the server to simulate the “local connection” connecting them
and the clients.

One of the biggest issues we discovered later in devolpment was the problem
of mapping the socket of an external client to an internal client so the external
can send a packet to the internal client. We fixed this by having a the local
IP + natbox IP map to the internal client, which allowed us to optain the
physical socket that belonged to the specific internal client when attempting to
do external → internal communication.

8 Significant Data Structures

• NAT table
Our implementation uses a number of parallel arrays to represent the
NAT table, all stored in an object with methods to act on the NAT table.
The reasoning behind this approach was to prioritise fast searching and
retrieval of the NAT table entries, as this would be the main functionality
of the NAT table. This aproach was used instead of an array of objects
to minimise the overhead for each NAT table entry, as depending on the
number of clients and number of NAT boxes, the additional overhead
could grow in size. Also, an array was used as we can assume that the
NAT table will only ever be able to mapp as many entries as it has external
IP addresses. This means that we have a finite size, and so we can use an
array which allows for faster searching time.

• Server Routing
For server Routing, there are multiple list structures which are used to
allow for routing between different nodes on the simulated internet. The
two types of lists are:

– A list of connected external clients

– A list of internal clients

The reason for the separation is so that internal clients can be connected
to a particular NATbox, and packets can be routed through that NATbox
instead of directly to the actual clients.

9 Design

The design of our program and some decisions we made regarding it are very
interesting. Some of these include having a global server acting as an internet
or network connecting hosts, another being the implementation of DHCP that
we used. Some of these are outlined below:

• Central Server
We deicided to have a central server running for the entire simulation, and

7



clients must connect to this central server. The central server can host
multiple NATBoxes, allowing us to effectivly simulate the internet. The
server consists of a master thread (which simply accepts new connections)
and multiple slave threads, that were forked from the master thread. These
slave threads will handle reading bytestreams from the sockets, and then
will forward the bytestream to the destination slave thread (the thread
allocated to the destination IP of the paquet, so they can send it to their
respective clients.

• The DHCP server
Our implementation of the DHCP server is quite an interesting one, and
using it allowed efficient access to IP addresses. The DHCP server can run
in two modes, namely internal and external mode. The external mode of
the DHCP server allows for it to function like an ISP does when assigning
external IP addresses to clients. The internal mode on the other hand,
works like that of a DHCP server on a network, assigning internal IP
addresses to internal hosts. Both implementations make use of a pool
and generation algorithm. The generation algorithm generates new IP
addresses for the DHCP server to allocate. This function is called when
more IP addresses are needed by the clients. The pool algorithm is the
DHCP server’s way of reusing IP addresses. The pool is a data structure
containing any IP address that had been generated, but was freed up by
a client no longer using it. When a new client requests an IP address
from the DHCP server again, the pool will be consulted first, and any IP
addresses in there will be reused. If there are no available IP addresses,
then generation will take effect again.

• The NAT box – server connection
The strategy used for connecting the server and NAT box was to have
the server contain an amount of NAT boxes, and have the NAT boxes run
from within the server. This interesting implementation was used to avoid
the NAT boxes from having to replicate the functionality of the server
(send and receive messages). The implementation allows for clients to be
connected to a certain part of the server hosting that particular NAT box,
and send messages directly to that NAT box. It also intuatively allows for
multiple NAT boxes, an impressive feature specific to this implementation.

• The NAT boxes external addresses mapping
A NAT box in the real world has a set of IP addresses that it has been al-
located by the ISP, and which it uses to allow for external communication
between it’s internal clients and the external network. In our implementa-
tion, we simulated this accurately, using the DHCP server and NAT box
implementation. It works by having the server’s DHCP server allocate
each NAT box a certain amount of IP addresses. These IP addresses are
then given to the NAT box to be used to map to internal clients when
needed (for connecting to external hosts). The IP addresses are then
given to a special case of another DHCP server, which takes in only these

8



addresses, and can only give out these (it stores them in its’ pool and dis-
ables generation). This means that when the NAT box adds a new entry
into it’s NAT table, it can request from this special DHCP server, an IP
address that the NAT box has been allocated. When the NAT table entry
is evicted, it’s external IP is given back to the special DHCP server to be
reused in the table again.

9



10 Compilation

10.1 Compiling

Simply run,

$ make

11 Execution

11.1 Server

To see all available arguments, run,

$ java -cp src/ Server -h

To run the server, run,

$ java -cp src/ Server [optional args]

11.2 Client

To see all available arguments, run,

$ java -cp src/ Client -h

11.2.1 Internal Client

$ java -cp src/ Client -i <natbox ip to connect to> [optional args]

11.2.2 External Client

$ java -cp src/ Client [optional args]

12 Libraries used

• java.net.*;

• java.io.*;

• java.util.Scanner;

• java.util.ArrayList;

• java.nio.file.Files;

• java.nio.ByteBuffer;

10


