Using the LLVM static analyzer, we get a warning about leaked memory pointed by bcurrent. Since the warning happens within "main" and we don't care about deallocating the memory and just call "exit" which gets rid of the warning.
570 lines
14 KiB
C
570 lines
14 KiB
C
/* Copyright 2005,2013 Tresys Technology
|
|
*
|
|
* Some parts of this came from matchpathcon.c in libselinux
|
|
*/
|
|
|
|
/* PURPOSE OF THIS PROGRAM
|
|
* The original setfiles sorting algorithm did not take into
|
|
* account regular expression specificity. With the current
|
|
* strict and targeted policies this is not an issue because
|
|
* the file contexts are partially hand sorted and concatenated
|
|
* in the right order so that the matches are generally correct.
|
|
* The way reference policy and loadable policy modules handle
|
|
* file contexts makes them come out in an unpredictable order
|
|
* and therefore setfiles (or this standalone tool) need to sort
|
|
* the regular expressions in a deterministic and stable way.
|
|
*/
|
|
|
|
#define BUF_SIZE 4096;
|
|
#define _GNU_SOURCE
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
|
|
typedef unsigned char bool_t;
|
|
|
|
/* file_context_node
|
|
* A node used in a linked list of file contexts.c
|
|
* Each node contains the regular expression, the type and
|
|
* the context, as well as information about the regular
|
|
* expression. The regular expression data (meta, stem_len
|
|
* and str_len) can be filled in by using the fc_fill_data
|
|
* function after the regular expression has been loaded.
|
|
* next points to the next node in the linked list.
|
|
*/
|
|
typedef struct file_context_node {
|
|
char *path;
|
|
char *file_type;
|
|
char *context;
|
|
bool_t meta;
|
|
int stem_len;
|
|
int str_len;
|
|
struct file_context_node *next;
|
|
} file_context_node_t;
|
|
|
|
void file_context_node_destroy(file_context_node_t *x)
|
|
{
|
|
free(x->path);
|
|
free(x->file_type);
|
|
free(x->context);
|
|
}
|
|
|
|
|
|
|
|
/* file_context_bucket
|
|
* A node used in a linked list of buckets that contain
|
|
* file_context_node's.
|
|
* Each node contains a pointer to a file_context_node which
|
|
* is the header of its linked list. This linked list is the
|
|
* content of this bucket.
|
|
* next points to the next bucket in the linked list.
|
|
*/
|
|
typedef struct file_context_bucket {
|
|
file_context_node_t *data;
|
|
struct file_context_bucket *next;
|
|
} file_context_bucket_t;
|
|
|
|
|
|
|
|
/* fc_compare
|
|
* Compares two file contexts' regular expressions and returns:
|
|
* -1 if a is less specific than b
|
|
* 0 if a and be are equally specific
|
|
* 1 if a is more specific than b
|
|
* The comparison is based on the following statements,
|
|
* in order from most important to least important, given a and b:
|
|
* If a is a regular expression and b is not,
|
|
* -> a is less specific than b.
|
|
* If a's stem length is shorter than b's stem length,
|
|
* -> a is less specific than b.
|
|
* If a's string length is shorter than b's string length,
|
|
* -> a is less specific than b.
|
|
* If a does not have a specified type and b does,
|
|
* -> a is less specific than b.
|
|
*/
|
|
int fc_compare(file_context_node_t *a, file_context_node_t *b)
|
|
{
|
|
/* Check to see if either a or b have meta characters
|
|
* and the other doesn't. */
|
|
if (a->meta && !b->meta)
|
|
return -1;
|
|
if (b->meta && !a->meta)
|
|
return 1;
|
|
|
|
/* Check to see if either a or b have a shorter stem
|
|
* length than the other. */
|
|
if (a->stem_len < b->stem_len)
|
|
return -1;
|
|
if (b->stem_len < a->stem_len)
|
|
return 1;
|
|
|
|
/* Check to see if either a or b have a shorter string
|
|
* length than the other. */
|
|
if (a->str_len < b->str_len)
|
|
return -1;
|
|
if (b->str_len < a->str_len)
|
|
return 1;
|
|
|
|
/* Check to see if either a or b has a specified type
|
|
* and the other doesn't. */
|
|
if (!a->file_type && b->file_type)
|
|
return -1;
|
|
if (!b->file_type && a->file_type)
|
|
return 1;
|
|
|
|
/* If none of the above conditions were satisfied,
|
|
* then a and b are equally specific. */
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/* fc_merge
|
|
* Merges two sorted file context linked lists into one
|
|
* sorted one.
|
|
* Pass two lists a and b, and after the completion of fc_merge,
|
|
* the final list is contained in a, and b is empty.
|
|
*/
|
|
file_context_node_t *fc_merge(file_context_node_t *a,
|
|
file_context_node_t *b)
|
|
{
|
|
file_context_node_t *a_current;
|
|
file_context_node_t *b_current;
|
|
file_context_node_t *temp;
|
|
file_context_node_t *jumpto;
|
|
|
|
|
|
|
|
/* If a is a empty list, and b is not,
|
|
* set a as b and proceed to the end. */
|
|
if (!a && b)
|
|
a = b;
|
|
/* If b is an empty list, leave a as it is. */
|
|
else if (!b) {
|
|
} else {
|
|
/* Make it so the list a has the lesser
|
|
* first element always. */
|
|
if (fc_compare(a, b) == 1) {
|
|
temp = a;
|
|
a = b;
|
|
b = temp;
|
|
}
|
|
a_current = a;
|
|
b_current = b;
|
|
|
|
/* Merge by inserting b's nodes in between a's nodes. */
|
|
while (a_current->next && b_current) {
|
|
jumpto = a_current->next;
|
|
|
|
/* Insert b's nodes in between the current a node
|
|
* and the next a node.*/
|
|
while (b_current && a_current->next &&
|
|
fc_compare(a_current->next,
|
|
b_current) != -1) {
|
|
|
|
|
|
temp = a_current->next;
|
|
a_current->next = b_current;
|
|
b_current = b_current->next;
|
|
a_current->next->next = temp;
|
|
a_current = a_current->next;
|
|
}
|
|
|
|
/* Skip all the inserted node from b to the
|
|
* next node in the original a. */
|
|
a_current = jumpto;
|
|
}
|
|
|
|
|
|
/* if there is anything left in b to be inserted,
|
|
put it on the end */
|
|
if (b_current) {
|
|
a_current->next = b_current;
|
|
}
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
|
|
|
|
/* fc_merge_sort
|
|
* Sorts file contexts from least specific to more specific.
|
|
* The bucket linked list is passed and after the completion
|
|
* of the fc_merge_sort function, there is only one bucket
|
|
* (pointed to by master) that contains a linked list
|
|
* of all the file contexts, in sorted order.
|
|
* Explanation of the algorithm:
|
|
* The algorithm implemented in fc_merge_sort is an iterative
|
|
* implementation of merge sort.
|
|
* At first, each bucket has a linked list of file contexts
|
|
* that are 1 element each.
|
|
* Each pass, each odd numbered bucket is merged into the bucket
|
|
* before it. This halves the number of buckets each pass.
|
|
* It will continue passing over the buckets (as described above)
|
|
* until there is only one bucket left, containing the list of
|
|
* file contexts, sorted.
|
|
*/
|
|
void fc_merge_sort(file_context_bucket_t *master)
|
|
{
|
|
|
|
|
|
file_context_bucket_t *current;
|
|
file_context_bucket_t *temp;
|
|
|
|
/* Loop until master is the only bucket left
|
|
* so that this will stop when master contains
|
|
* the sorted list. */
|
|
while (master->next) {
|
|
current = master;
|
|
|
|
/* This loop merges buckets two-by-two. */
|
|
while (current) {
|
|
|
|
if (current->next) {
|
|
|
|
current->data =
|
|
fc_merge(current->data,
|
|
current->next->data);
|
|
|
|
|
|
|
|
temp = current->next;
|
|
current->next = current->next->next;
|
|
|
|
free(temp);
|
|
|
|
}
|
|
|
|
|
|
current = current->next;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/* fc_fill_data
|
|
* This processes a regular expression in a file context
|
|
* and sets the data held in file_context_node, namely
|
|
* meta, str_len and stem_len.
|
|
* The following changes are made to fc_node after the
|
|
* the completion of the function:
|
|
* fc_node->meta = 1 if path has a meta character, 0 if not.
|
|
* fc_node->str_len = The string length of the entire path
|
|
* fc_node->stem_len = The number of characters up until
|
|
* the first meta character.
|
|
*/
|
|
void fc_fill_data(file_context_node_t *fc_node)
|
|
{
|
|
int c = 0;
|
|
|
|
fc_node->meta = 0;
|
|
fc_node->stem_len = 0;
|
|
fc_node->str_len = 0;
|
|
|
|
/* Process until the string termination character
|
|
* has been reached.
|
|
* Note: this while loop has been adapted from
|
|
* spec_hasMetaChars in matchpathcon.c from
|
|
* libselinux-1.22. */
|
|
while (fc_node->path[c] != '\0') {
|
|
switch (fc_node->path[c]) {
|
|
case '.':
|
|
case '^':
|
|
case '$':
|
|
case '?':
|
|
case '*':
|
|
case '+':
|
|
case '|':
|
|
case '[':
|
|
case '(':
|
|
case '{':
|
|
/* If a meta character is found,
|
|
* set meta to one */
|
|
fc_node->meta = 1;
|
|
break;
|
|
case '\\':
|
|
/* If a escape character is found,
|
|
* skip the next character. */
|
|
c++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* If no meta character has been found yet,
|
|
* add one to the stem length. */
|
|
if (!fc_node->meta)
|
|
fc_node->stem_len++;
|
|
|
|
fc_node->str_len++;
|
|
c++;
|
|
}
|
|
}
|
|
|
|
/* main
|
|
* This program takes in two arguments, the input filename and the
|
|
* output filename. The input file should be syntactically correct.
|
|
* Overall what is done in the main is read in the file and store each
|
|
* line of code, sort it, then output it to the output file.
|
|
*/
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int lines;
|
|
size_t start, finish, regex_len, context_len;
|
|
size_t line_len, buf_len, i;
|
|
char *input_name, *output_name, *line_buf;
|
|
|
|
file_context_node_t *temp;
|
|
file_context_node_t *head;
|
|
file_context_node_t *current;
|
|
file_context_bucket_t *master;
|
|
file_context_bucket_t *bcurrent;
|
|
|
|
FILE *in_file, *out_file;
|
|
|
|
|
|
/* Check for the correct number of command line arguments. */
|
|
if (argc < 2 || argc > 3) {
|
|
fprintf(stderr, "Usage: %s <infile> [<outfile>]\n",argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
input_name = argv[1];
|
|
output_name = (argc >= 3) ? argv[2] : NULL;
|
|
|
|
lines = 0;
|
|
|
|
/* Open the input file. */
|
|
if (!(in_file = fopen(input_name, "r"))) {
|
|
fprintf(stderr, "Error: failure opening input file for read.\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Initialize the head of the linked list. */
|
|
head = current = (file_context_node_t*)malloc(sizeof(file_context_node_t));
|
|
head->next = NULL;
|
|
|
|
/* Parse the file into a file_context linked list. */
|
|
line_buf = NULL;
|
|
|
|
while ( getline(&line_buf, &buf_len, in_file) != -1 ){
|
|
line_len = strlen(line_buf);
|
|
if( line_len == 0 || line_len == 1)
|
|
continue;
|
|
/* Get rid of whitespace from the front of the line. */
|
|
for (i = 0; i < line_len; i++) {
|
|
if (!isspace(line_buf[i]))
|
|
break;
|
|
}
|
|
|
|
|
|
if (i >= line_len)
|
|
continue;
|
|
/* Check if the line isn't empty and isn't a comment */
|
|
if (line_buf[i] == '#')
|
|
continue;
|
|
|
|
/* We have a valid line - allocate a new node. */
|
|
temp = (file_context_node_t *)malloc(sizeof(file_context_node_t));
|
|
if (!temp) {
|
|
fprintf(stderr, "Error: failure allocating memory.\n");
|
|
return 1;
|
|
}
|
|
temp->next = NULL;
|
|
memset(temp, 0, sizeof(file_context_node_t));
|
|
|
|
/* Parse out the regular expression from the line. */
|
|
start = i;
|
|
|
|
|
|
while (i < line_len && (!isspace(line_buf[i])))
|
|
i++;
|
|
finish = i;
|
|
|
|
|
|
regex_len = finish - start;
|
|
|
|
if (regex_len == 0) {
|
|
file_context_node_destroy(temp);
|
|
free(temp);
|
|
|
|
|
|
continue;
|
|
}
|
|
|
|
temp->path = (char*)strndup(&line_buf[start], regex_len);
|
|
if (!temp->path) {
|
|
file_context_node_destroy(temp);
|
|
free(temp);
|
|
fprintf(stderr, "Error: failure allocating memory.\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Get rid of whitespace after the regular expression. */
|
|
for (; i < line_len; i++) {
|
|
|
|
if (!isspace(line_buf[i]))
|
|
break;
|
|
}
|
|
|
|
if (i == line_len) {
|
|
file_context_node_destroy(temp);
|
|
free(temp);
|
|
continue;
|
|
}
|
|
|
|
/* Parse out the type from the line (if it
|
|
* is there). */
|
|
if (line_buf[i] == '-') {
|
|
temp->file_type = (char *)malloc(sizeof(char) * 3);
|
|
if (!(temp->file_type)) {
|
|
fprintf(stderr, "Error: failure allocating memory.\n");
|
|
return 1;
|
|
}
|
|
|
|
if( i + 2 >= line_len ) {
|
|
file_context_node_destroy(temp);
|
|
free(temp);
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Fill the type into the array. */
|
|
temp->file_type[0] = line_buf[i];
|
|
temp->file_type[1] = line_buf[i + 1];
|
|
i += 2;
|
|
temp->file_type[2] = 0;
|
|
|
|
/* Get rid of whitespace after the type. */
|
|
for (; i < line_len; i++) {
|
|
if (!isspace(line_buf[i]))
|
|
break;
|
|
}
|
|
|
|
if (i == line_len) {
|
|
|
|
file_context_node_destroy(temp);
|
|
free(temp);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Parse out the context from the line. */
|
|
start = i;
|
|
while (i < line_len && (!isspace(line_buf[i])))
|
|
i++;
|
|
finish = i;
|
|
|
|
context_len = finish - start;
|
|
|
|
temp->context = (char*)strndup(&line_buf[start], context_len);
|
|
if (!temp->context) {
|
|
file_context_node_destroy(temp);
|
|
free(temp);
|
|
fprintf(stderr, "Error: failure allocating memory.\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Set all the data about the regular
|
|
* expression. */
|
|
fc_fill_data(temp);
|
|
|
|
/* Link this line of code at the end of
|
|
* the linked list. */
|
|
current->next = temp;
|
|
current = current->next;
|
|
lines++;
|
|
|
|
|
|
free(line_buf);
|
|
line_buf = NULL;
|
|
}
|
|
fclose(in_file);
|
|
|
|
/* Create the bucket linked list from the earlier linked list. */
|
|
current = head->next;
|
|
bcurrent = master =
|
|
(file_context_bucket_t *)
|
|
malloc(sizeof(file_context_bucket_t));
|
|
bcurrent->next = NULL;
|
|
bcurrent->data = NULL;
|
|
|
|
/* Go until all the nodes have been put in individual buckets. */
|
|
while (current) {
|
|
/* Copy over the file context line into the bucket. */
|
|
bcurrent->data = current;
|
|
current = current->next;
|
|
|
|
/* Detach the node in the bucket from the old list. */
|
|
bcurrent->data->next = NULL;
|
|
|
|
/* If there should be another bucket, put one at the end. */
|
|
if (current) {
|
|
bcurrent->next =
|
|
(file_context_bucket_t *)
|
|
malloc(sizeof(file_context_bucket_t));
|
|
if (!(bcurrent->next)) {
|
|
printf
|
|
("Error: failure allocating memory.\n");
|
|
exit(-1);
|
|
}
|
|
|
|
/* Make sure the new bucket thinks it's the end of the
|
|
* list. */
|
|
bcurrent->next->next = NULL;
|
|
|
|
bcurrent = bcurrent->next;
|
|
}
|
|
|
|
}
|
|
|
|
/* Sort the bucket list. */
|
|
fc_merge_sort(master);
|
|
|
|
/* Open the output file. */
|
|
if (output_name) {
|
|
if (!(out_file = fopen(output_name, "w"))) {
|
|
printf("Error: failure opening output file for write.\n");
|
|
return -1;
|
|
}
|
|
} else {
|
|
out_file = stdout;
|
|
}
|
|
|
|
/* Output the sorted file_context linked list to the output file. */
|
|
current = master->data;
|
|
while (current) {
|
|
/* Output the path. */
|
|
fprintf(out_file, "%s\t\t", current->path);
|
|
|
|
/* Output the type, if there is one. */
|
|
if (current->file_type) {
|
|
fprintf(out_file, "%s\t", current->file_type);
|
|
}
|
|
|
|
/* Output the context. */
|
|
fprintf(out_file, "%s\n", current->context);
|
|
|
|
/* Remove the node. */
|
|
temp = current;
|
|
current = current->next;
|
|
|
|
file_context_node_destroy(temp);
|
|
free(temp);
|
|
|
|
}
|
|
free(master);
|
|
|
|
if (output_name) {
|
|
fclose(out_file);
|
|
}
|
|
|
|
return 0;
|
|
}
|