selinux-refpolicy/policy/modules/services/postgresql.te

591 lines
22 KiB
Plaintext
Raw Normal View History

policy_module(postgresql, 1.14.2)
gen_require(`
class db_database all_db_database_perms;
class db_table all_db_table_perms;
class db_procedure all_db_procedure_perms;
class db_column all_db_column_perms;
class db_tuple all_db_tuple_perms;
class db_blob all_db_blob_perms;
class db_schema all_db_schema_perms;
class db_view all_db_view_perms;
class db_sequence all_db_sequence_perms;
class db_language all_db_language_perms;
')
2005-09-19 21:17:45 +00:00
#################################
#
# Declarations
#
## <desc>
## <p>
## Allow unprived users to execute DDL statement
## </p>
## </desc>
gen_tunable(sepgsql_enable_users_ddl, true)
2010-02-08 15:34:08 +00:00
## <desc>
## <p>
2012-05-18 18:18:00 +00:00
## Allow transmit client label to foreign database
2010-02-08 15:34:08 +00:00
## </p>
## </desc>
2012-05-18 18:18:00 +00:00
gen_tunable(sepgsql_transmit_client_label, false)
2010-02-08 15:34:08 +00:00
## <desc>
## <p>
2012-05-18 18:18:00 +00:00
## Allow database admins to execute DML statement
## </p>
## </desc>
2012-05-18 18:18:00 +00:00
gen_tunable(sepgsql_unconfined_dbadm, true)
2005-09-19 21:17:45 +00:00
type postgresql_t;
type postgresql_exec_t;
init_daemon_domain(postgresql_t, postgresql_exec_t)
2005-09-19 21:17:45 +00:00
type postgresql_db_t;
files_type(postgresql_db_t)
2005-10-24 18:40:24 +00:00
type postgresql_etc_t;
files_config_file(postgresql_etc_t)
2005-09-19 21:17:45 +00:00
2010-02-08 15:34:08 +00:00
type postgresql_initrc_exec_t;
init_script_file(postgresql_initrc_exec_t)
2005-09-19 21:17:45 +00:00
type postgresql_lock_t;
files_lock_file(postgresql_lock_t)
type postgresql_log_t;
logging_log_file(postgresql_log_t)
type postgresql_tmp_t;
files_tmp_file(postgresql_tmp_t)
type postgresql_var_run_t;
files_pid_file(postgresql_var_run_t)
# database clients attribute
2010-02-08 15:34:08 +00:00
attribute sepgsql_admin_type;
attribute sepgsql_client_type;
attribute sepgsql_unconfined_type;
# database objects attribute
attribute sepgsql_database_type;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
attribute sepgsql_schema_type;
attribute sepgsql_table_type;
attribute sepgsql_sysobj_table_type;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
attribute sepgsql_sequence_type;
attribute sepgsql_view_type;
attribute sepgsql_procedure_type;
attribute sepgsql_trusted_procedure_type;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
attribute sepgsql_language_type;
attribute sepgsql_blob_type;
attribute sepgsql_module_type;
# database object types
type sepgsql_blob_t;
postgresql_blob_object(sepgsql_blob_t)
type sepgsql_db_t;
postgresql_database_object(sepgsql_db_t)
type sepgsql_fixed_table_t;
postgresql_table_object(sepgsql_fixed_table_t)
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type sepgsql_lang_t;
postgresql_language_object(sepgsql_lang_t)
type sepgsql_priv_lang_t;
postgresql_language_object(sepgsql_priv_lang_t)
type sepgsql_proc_exec_t;
typealias sepgsql_proc_exec_t alias sepgsql_proc_t;
postgresql_procedure_object(sepgsql_proc_exec_t)
type sepgsql_ro_blob_t;
postgresql_blob_object(sepgsql_ro_blob_t)
type sepgsql_ro_table_t;
postgresql_table_object(sepgsql_ro_table_t)
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type sepgsql_safe_lang_t;
postgresql_language_object(sepgsql_safe_lang_t)
type sepgsql_schema_t;
postgresql_schema_object(sepgsql_schema_t)
type sepgsql_secret_blob_t;
postgresql_blob_object(sepgsql_secret_blob_t)
type sepgsql_secret_table_t;
postgresql_table_object(sepgsql_secret_table_t)
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type sepgsql_seq_t;
postgresql_sequence_object(sepgsql_seq_t)
type sepgsql_sysobj_t;
postgresql_system_table_object(sepgsql_sysobj_t)
type sepgsql_table_t;
postgresql_table_object(sepgsql_table_t)
type sepgsql_trusted_proc_exec_t;
postgresql_trusted_procedure_object(sepgsql_trusted_proc_exec_t)
# Ranged Trusted Procedure Domain
type sepgsql_ranged_proc_t;
domain_type(sepgsql_ranged_proc_t)
role system_r types sepgsql_ranged_proc_t;
2012-05-18 18:18:00 +00:00
type sepgsql_ranged_proc_exec_t;
postgresql_trusted_procedure_object(sepgsql_ranged_proc_exec_t)
# Types for temporary objects
#
# XXX - All the temporary objects are eliminated at end of database session
# and invisible from other sessions, so it is unnecessary to restrict users
# operations on temporary object. For policy simplification, only one type
# is defined for temporary objects under the "pg_temp" schema.
type sepgsql_temp_object_t;
postgresql_table_object(sepgsql_temp_object_t)
postgresql_sequence_object(sepgsql_temp_object_t)
postgresql_view_object(sepgsql_temp_object_t)
postgresql_procedure_object(sepgsql_temp_object_t)
2012-05-18 18:18:00 +00:00
# Trusted Procedure Domain
type sepgsql_trusted_proc_t;
domain_type(sepgsql_trusted_proc_t)
postgresql_unconfined(sepgsql_trusted_proc_t)
role system_r types sepgsql_trusted_proc_t;
type sepgsql_view_t;
postgresql_view_object(sepgsql_view_t)
# Types for unprivileged client
type unpriv_sepgsql_blob_t;
postgresql_blob_object(unpriv_sepgsql_blob_t)
type unpriv_sepgsql_proc_exec_t;
postgresql_procedure_object(unpriv_sepgsql_proc_exec_t)
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type unpriv_sepgsql_schema_t;
postgresql_schema_object(unpriv_sepgsql_schema_t)
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type unpriv_sepgsql_seq_t;
postgresql_sequence_object(unpriv_sepgsql_seq_t)
type unpriv_sepgsql_sysobj_t;
postgresql_system_table_object(unpriv_sepgsql_sysobj_t)
type unpriv_sepgsql_table_t;
postgresql_table_object(unpriv_sepgsql_table_t)
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type unpriv_sepgsql_view_t;
postgresql_view_object(unpriv_sepgsql_view_t)
# Types for UBAC
2008-11-05 16:10:46 +00:00
type user_sepgsql_blob_t;
typealias user_sepgsql_blob_t alias { staff_sepgsql_blob_t sysadm_sepgsql_blob_t };
typealias user_sepgsql_blob_t alias { auditadm_sepgsql_blob_t secadm_sepgsql_blob_t };
postgresql_blob_object(user_sepgsql_blob_t)
type user_sepgsql_proc_exec_t;
typealias user_sepgsql_proc_exec_t alias { staff_sepgsql_proc_exec_t sysadm_sepgsql_proc_exec_t };
typealias user_sepgsql_proc_exec_t alias { auditadm_sepgsql_proc_exec_t secadm_sepgsql_proc_exec_t };
postgresql_procedure_object(user_sepgsql_proc_exec_t)
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type user_sepgsql_schema_t;
typealias user_sepgsql_schema_t alias { staff_sepgsql_schema_t sysadm_sepgsql_schema_t };
typealias user_sepgsql_schema_t alias { auditadm_sepgsql_schema_t secadm_sepgsql_schema_t };
postgresql_schema_object(user_sepgsql_schema_t)
type user_sepgsql_seq_t;
typealias user_sepgsql_seq_t alias { staff_sepgsql_seq_t sysadm_sepgsql_seq_t };
typealias user_sepgsql_seq_t alias { auditadm_sepgsql_seq_t secadm_sepgsql_seq_t };
postgresql_sequence_object(user_sepgsql_seq_t)
2008-11-05 16:10:46 +00:00
type user_sepgsql_sysobj_t;
typealias user_sepgsql_sysobj_t alias { staff_sepgsql_sysobj_t sysadm_sepgsql_sysobj_t };
typealias user_sepgsql_sysobj_t alias { auditadm_sepgsql_sysobj_t secadm_sepgsql_sysobj_t };
postgresql_system_table_object(user_sepgsql_sysobj_t)
type user_sepgsql_table_t;
typealias user_sepgsql_table_t alias { staff_sepgsql_table_t sysadm_sepgsql_table_t };
typealias user_sepgsql_table_t alias { auditadm_sepgsql_table_t secadm_sepgsql_table_t };
postgresql_table_object(user_sepgsql_table_t)
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type user_sepgsql_view_t;
typealias user_sepgsql_view_t alias { staff_sepgsql_view_t sysadm_sepgsql_view_t };
typealias user_sepgsql_view_t alias { auditadm_sepgsql_view_t secadm_sepgsql_view_t };
postgresql_view_object(user_sepgsql_view_t)
2005-09-19 21:17:45 +00:00
########################################
#
# postgresql Local policy
#
allow postgresql_t self:capability { kill dac_override dac_read_search chown fowner fsetid setuid setgid sys_nice sys_tty_config sys_admin };
dontaudit postgresql_t self:capability { sys_tty_config sys_admin };
allow postgresql_t self:process signal_perms;
allow postgresql_t self:fifo_file rw_fifo_file_perms;
allow postgresql_t self:file { getattr read };
2005-09-19 21:17:45 +00:00
allow postgresql_t self:sem create_sem_perms;
allow postgresql_t self:shm create_shm_perms;
allow postgresql_t self:tcp_socket create_stream_socket_perms;
allow postgresql_t self:udp_socket create_stream_socket_perms;
allow postgresql_t self:unix_dgram_socket create_socket_perms;
allow postgresql_t self:unix_stream_socket create_stream_socket_perms;
allow postgresql_t self:netlink_selinux_socket create_socket_perms;
tunable_policy(`sepgsql_transmit_client_label',`
allow postgresql_t self:process { setsockcreate };
')
allow postgresql_t sepgsql_database_type:db_database *;
allow postgresql_t sepgsql_module_type:db_database install_module;
# Database/Loadable module
allow sepgsql_database_type sepgsql_module_type:db_database load_module;
allow postgresql_t {sepgsql_schema_type sepgsql_temp_object_t}:db_schema *;
type_transition postgresql_t sepgsql_database_type:db_schema sepgsql_schema_t;
type_transition postgresql_t sepgsql_database_type:db_schema sepgsql_temp_object_t "pg_temp";
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow postgresql_t sepgsql_table_type:{ db_table db_column db_tuple } *;
type_transition postgresql_t sepgsql_schema_type:db_table sepgsql_sysobj_t;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow postgresql_t sepgsql_sequence_type:db_sequence *;
type_transition postgresql_t sepgsql_schema_type:db_sequence sepgsql_seq_t;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow postgresql_t sepgsql_view_type:db_view *;
type_transition postgresql_t sepgsql_schema_type:db_view sepgsql_view_t;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow postgresql_t sepgsql_procedure_type:db_procedure *;
type_transition postgresql_t sepgsql_schema_type:db_procedure sepgsql_proc_exec_t;
allow postgresql_t sepgsql_blob_type:db_blob *;
type_transition postgresql_t sepgsql_database_type:db_blob sepgsql_blob_t;
2005-09-19 21:17:45 +00:00
manage_dirs_pattern(postgresql_t, postgresql_db_t, postgresql_db_t)
manage_files_pattern(postgresql_t, postgresql_db_t, postgresql_db_t)
manage_lnk_files_pattern(postgresql_t, postgresql_db_t, postgresql_db_t)
manage_fifo_files_pattern(postgresql_t, postgresql_db_t, postgresql_db_t)
manage_sock_files_pattern(postgresql_t, postgresql_db_t, postgresql_db_t)
2006-02-21 18:40:44 +00:00
files_var_lib_filetrans(postgresql_t, postgresql_db_t, { dir file lnk_file sock_file fifo_file })
2005-09-19 21:17:45 +00:00
2006-12-12 20:08:08 +00:00
allow postgresql_t postgresql_etc_t:dir list_dir_perms;
read_files_pattern(postgresql_t, postgresql_etc_t, postgresql_etc_t)
read_lnk_files_pattern(postgresql_t, postgresql_etc_t, postgresql_etc_t)
2005-09-19 21:17:45 +00:00
allow postgresql_t postgresql_exec_t:lnk_file { getattr read };
can_exec(postgresql_t, postgresql_exec_t )
2006-12-12 20:08:08 +00:00
allow postgresql_t postgresql_lock_t:file manage_file_perms;
2009-06-26 14:40:13 +00:00
files_lock_filetrans(postgresql_t, postgresql_lock_t, file)
2005-09-19 21:17:45 +00:00
manage_files_pattern(postgresql_t, postgresql_log_t, postgresql_log_t)
logging_log_filetrans(postgresql_t, postgresql_log_t, { file dir })
2005-09-19 21:17:45 +00:00
manage_dirs_pattern(postgresql_t, postgresql_tmp_t, postgresql_tmp_t)
manage_files_pattern(postgresql_t, postgresql_tmp_t, postgresql_tmp_t)
manage_lnk_files_pattern(postgresql_t, postgresql_tmp_t, postgresql_tmp_t)
manage_fifo_files_pattern(postgresql_t, postgresql_tmp_t, postgresql_tmp_t)
manage_sock_files_pattern(postgresql_t, postgresql_tmp_t, postgresql_tmp_t)
2006-02-21 18:40:44 +00:00
files_tmp_filetrans(postgresql_t, postgresql_tmp_t, { dir file sock_file })
fs_tmpfs_filetrans(postgresql_t, postgresql_tmp_t, { dir file lnk_file sock_file fifo_file })
2005-09-19 21:17:45 +00:00
2010-09-01 15:06:38 +00:00
manage_dirs_pattern(postgresql_t, postgresql_var_run_t, postgresql_var_run_t)
manage_files_pattern(postgresql_t, postgresql_var_run_t, postgresql_var_run_t)
manage_sock_files_pattern(postgresql_t, postgresql_var_run_t, postgresql_var_run_t)
2010-09-01 15:06:38 +00:00
files_pid_filetrans(postgresql_t, postgresql_var_run_t, { dir file })
2005-09-19 21:17:45 +00:00
kernel_read_kernel_sysctls(postgresql_t)
2005-09-19 21:17:45 +00:00
kernel_read_system_state(postgresql_t)
kernel_list_proc(postgresql_t)
kernel_read_all_sysctls(postgresql_t)
2005-09-19 21:17:45 +00:00
kernel_read_proc_symlinks(postgresql_t)
corenet_all_recvfrom_unlabeled(postgresql_t)
corenet_all_recvfrom_netlabel(postgresql_t)
corenet_tcp_sendrecv_generic_if(postgresql_t)
corenet_udp_sendrecv_generic_if(postgresql_t)
corenet_tcp_sendrecv_generic_node(postgresql_t)
corenet_udp_sendrecv_generic_node(postgresql_t)
2005-09-19 21:17:45 +00:00
corenet_tcp_sendrecv_all_ports(postgresql_t)
corenet_udp_sendrecv_all_ports(postgresql_t)
corenet_udp_bind_generic_node(postgresql_t)
corenet_tcp_bind_generic_node(postgresql_t)
2005-09-19 21:17:45 +00:00
corenet_tcp_bind_postgresql_port(postgresql_t)
corenet_tcp_connect_auth_port(postgresql_t)
corenet_tcp_connect_postgresql_port(postgresql_t)
2006-05-30 19:46:34 +00:00
corenet_sendrecv_postgresql_server_packets(postgresql_t)
corenet_sendrecv_auth_client_packets(postgresql_t)
2005-09-19 21:17:45 +00:00
dev_read_sysfs(postgresql_t)
dev_read_urand(postgresql_t)
fs_getattr_all_fs(postgresql_t)
fs_search_auto_mountpoints(postgresql_t)
2008-08-14 15:10:41 +00:00
fs_rw_hugetlbfs_files(postgresql_t)
2005-09-19 21:17:45 +00:00
selinux_get_enforce_mode(postgresql_t)
selinux_validate_context(postgresql_t)
selinux_compute_access_vector(postgresql_t)
selinux_compute_create_context(postgresql_t)
selinux_compute_relabel_context(postgresql_t)
2005-09-19 21:17:45 +00:00
term_use_controlling_term(postgresql_t)
corecmd_exec_bin(postgresql_t)
corecmd_exec_shell(postgresql_t)
2006-02-02 21:08:12 +00:00
domain_dontaudit_list_all_domains_state(postgresql_t)
2006-02-20 21:33:25 +00:00
domain_use_interactive_fds(postgresql_t)
2005-09-19 21:17:45 +00:00
files_dontaudit_search_home(postgresql_t)
files_manage_etc_files(postgresql_t)
files_search_etc(postgresql_t)
files_read_etc_runtime_files(postgresql_t)
files_read_usr_files(postgresql_t)
auth_use_pam(postgresql_t)
init_read_utmp(postgresql_t)
2005-09-19 21:17:45 +00:00
logging_send_syslog_msg(postgresql_t)
logging_send_audit_msgs(postgresql_t)
2005-09-19 21:17:45 +00:00
miscfiles_read_localization(postgresql_t)
seutil_libselinux_linked(postgresql_t)
seutil_read_default_contexts(postgresql_t)
2005-09-19 21:17:45 +00:00
2006-02-20 21:33:25 +00:00
userdom_dontaudit_use_unpriv_user_fds(postgresql_t)
2008-11-05 16:10:46 +00:00
userdom_dontaudit_search_user_home_dirs(postgresql_t)
userdom_dontaudit_use_user_terminals(postgresql_t)
2005-09-19 21:17:45 +00:00
2011-09-09 14:10:03 +00:00
optional_policy(`
mta_getattr_spool(postgresql_t)
')
2005-09-19 21:17:45 +00:00
tunable_policy(`allow_execmem',`
allow postgresql_t self:process execmem;
')
optional_policy(`
2005-09-19 21:17:45 +00:00
consoletype_exec(postgresql_t)
')
optional_policy(`
2005-09-19 21:17:45 +00:00
cron_search_spool(postgresql_t)
2009-06-26 14:40:13 +00:00
cron_system_entry(postgresql_t, postgresql_exec_t)
2005-09-19 21:17:45 +00:00
')
optional_policy(`
2005-09-19 21:17:45 +00:00
hostname_exec(postgresql_t)
')
optional_policy(`
ipsec_match_default_spd(postgresql_t)
')
optional_policy(`
2005-09-19 21:17:45 +00:00
kerberos_use(postgresql_t)
')
optional_policy(`
2005-09-19 21:17:45 +00:00
seutil_sigchld_newrole(postgresql_t)
')
optional_policy(`
2005-09-19 21:17:45 +00:00
udev_read_db(postgresql_t)
')
2012-05-18 18:18:00 +00:00
########################################
#
# Ranged Trusted Procedure Domain
#
# XXX - the purpose of this domain is to switch security context of
# the database client using dynamic domain transition; typically,
# used for connection pooling software that shall assign a security
# context at beginning of the user session based on the credentials
# being invisible from unprivileged domains.
#
allow sepgsql_ranged_proc_t self:process setcurrent;
domain_dyntrans_type(sepgsql_ranged_proc_t)
mcs_process_set_categories(sepgsql_ranged_proc_t)
mls_process_set_level(sepgsql_ranged_proc_t)
postgresql_unconfined(sepgsql_ranged_proc_t)
########################################
#
# Rules common to all clients
#
allow sepgsql_client_type sepgsql_db_t:db_database { getattr access get_param set_param };
type_transition sepgsql_client_type sepgsql_client_type:db_database sepgsql_db_t;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_client_type sepgsql_schema_t:db_schema { getattr search };
allow sepgsql_client_type sepgsql_fixed_table_t:db_table { getattr select insert lock };
allow sepgsql_client_type sepgsql_fixed_table_t:db_column { getattr select insert };
allow sepgsql_client_type sepgsql_fixed_table_t:db_tuple { select insert };
allow sepgsql_client_type sepgsql_table_t:db_table { getattr select update insert delete lock };
allow sepgsql_client_type sepgsql_table_t:db_column { getattr select update insert };
allow sepgsql_client_type sepgsql_table_t:db_tuple { select update insert delete };
allow sepgsql_client_type sepgsql_ro_table_t:db_table { getattr select lock };
allow sepgsql_client_type sepgsql_ro_table_t:db_column { getattr select };
allow sepgsql_client_type sepgsql_ro_table_t:db_tuple { select };
allow sepgsql_client_type sepgsql_secret_table_t:db_table getattr;
allow sepgsql_client_type sepgsql_secret_table_t:db_column getattr;
allow sepgsql_client_type sepgsql_sysobj_t:db_table { getattr select lock };
allow sepgsql_client_type sepgsql_sysobj_t:db_column { getattr select };
allow sepgsql_client_type sepgsql_sysobj_t:db_tuple { use select };
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_client_type sepgsql_seq_t:db_sequence { getattr get_value next_value };
allow sepgsql_client_type sepgsql_view_t:db_view { getattr expand };
allow sepgsql_client_type sepgsql_proc_exec_t:db_procedure { getattr execute install };
allow sepgsql_client_type sepgsql_trusted_procedure_type:db_procedure { getattr execute entrypoint };
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_client_type sepgsql_lang_t:db_language { getattr };
allow sepgsql_client_type sepgsql_safe_lang_t:db_language { getattr execute };
# Only DBA can implement SQL procedures using `unsafe' procedural languages.
# The `unsafe' one provides a capability to access internal data structure,
# so we don't allow user-defined function being implemented using `unsafe' one.
allow sepgsql_proc_exec_t sepgsql_lang_t:db_language { implement };
allow sepgsql_procedure_type sepgsql_safe_lang_t:db_language { implement };
allow sepgsql_client_type sepgsql_blob_t:db_blob { create drop getattr setattr read write };
allow sepgsql_client_type sepgsql_ro_blob_t:db_blob { getattr read };
allow sepgsql_client_type sepgsql_secret_blob_t:db_blob getattr;
# The purpose of the dontaudit rule in row-level access control is to prevent a flood of logs.
# If a client tries to SELECT a table including violated tuples, these are filtered from
# the result set as if not exist, but its access denied longs can be recorded within log files.
# In generally, the number of tuples are much larger than the number of columns, tables and so on.
# So, it makes a flood of logs when many tuples are violated.
#
# The default policy does not prevent anything for sepgsql_client_type sepgsql_unconfined_type,
# so we don't need "dontaudit" rules in Type-Enforcement. However, MLS/MCS can prevent them
# to access classified tuples and can make a audit record.
#
# Therefore, the following rule is applied for any domains which can connect SE-PostgreSQL.
2010-02-08 15:34:08 +00:00
dontaudit { postgresql_t sepgsql_admin_type sepgsql_client_type sepgsql_unconfined_type } { sepgsql_table_type -sepgsql_sysobj_table_type }:db_tuple { use select update insert delete };
# It is always allowed to operate temporary objects for any database client.
allow sepgsql_client_type sepgsql_temp_object_t:{db_schema db_table db_column db_tuple db_sequence db_view db_procedure} ~{ relabelto relabelfrom };
2011-01-14 15:13:12 +00:00
# Note that permission of creation/deletion are eventually controlled by
# create or drop permission of individual objects within shared schemas.
# So, it just allows to create/drop user specific types.
tunable_policy(`sepgsql_enable_users_ddl',`
allow sepgsql_client_type sepgsql_schema_t:db_schema { add_name remove_name };
')
2010-02-08 15:34:08 +00:00
########################################
#
# Rules common to administrator clients
#
allow sepgsql_admin_type sepgsql_database_type:db_database { create drop getattr setattr relabelfrom relabelto access };
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_admin_type sepgsql_schema_type:db_schema { create drop getattr setattr relabelfrom relabelto search add_name remove_name };
type_transition sepgsql_admin_type sepgsql_database_type:db_schema sepgsql_schema_t;
type_transition sepgsql_admin_type sepgsql_database_type:db_schema sepgsql_temp_object_t "pg_temp";
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
2010-02-08 15:34:08 +00:00
allow sepgsql_admin_type sepgsql_table_type:db_table { create drop getattr setattr relabelfrom relabelto lock };
allow sepgsql_admin_type sepgsql_table_type:db_column { create drop getattr setattr relabelfrom relabelto };
allow sepgsql_admin_type sepgsql_sysobj_table_type:db_tuple { relabelfrom relabelto use select update insert delete };
2010-02-08 15:34:08 +00:00
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type_transition sepgsql_admin_type sepgsql_schema_type:db_table sepgsql_table_t;
allow sepgsql_admin_type sepgsql_sequence_type:db_sequence { create drop getattr setattr relabelfrom relabelto get_value next_value set_value };
type_transition sepgsql_admin_type sepgsql_schema_type:db_sequence sepgsql_seq_t;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_admin_type sepgsql_view_type:db_view { create drop getattr setattr relabelfrom relabelto expand };
type_transition sepgsql_admin_type sepgsql_schema_type:db_view sepgsql_view_t;
2010-02-08 15:34:08 +00:00
allow sepgsql_admin_type sepgsql_procedure_type:db_procedure { create drop getattr relabelfrom relabelto };
allow sepgsql_admin_type sepgsql_proc_exec_t:db_procedure execute;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type_transition sepgsql_admin_type sepgsql_schema_type:db_procedure sepgsql_proc_exec_t;
2012-05-18 18:18:00 +00:00
allow sepgsql_admin_type sepgsql_temp_object_t:{db_schema db_table db_column db_tuple db_sequence db_view db_procedure} ~{ relabelto relabelfrom };
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_admin_type sepgsql_language_type:db_language { create drop getattr setattr relabelfrom relabelto execute };
type_transition sepgsql_admin_type sepgsql_database_type:db_language sepgsql_lang_t;
2010-02-08 15:34:08 +00:00
allow sepgsql_admin_type sepgsql_blob_type:db_blob { create drop getattr setattr relabelfrom relabelto };
type_transition sepgsql_admin_type sepgsql_database_type:db_blob sepgsql_blob_t;
2010-02-08 15:34:08 +00:00
allow sepgsql_admin_type sepgsql_module_type:db_database install_module;
kernel_relabelfrom_unlabeled_database(sepgsql_admin_type)
tunable_policy(`sepgsql_unconfined_dbadm',`
allow sepgsql_admin_type sepgsql_database_type:db_database *;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_admin_type sepgsql_schema_type:db_schema *;
2010-02-08 15:34:08 +00:00
allow sepgsql_admin_type sepgsql_table_type:{ db_table db_column db_tuple } *;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_admin_type sepgsql_sequence_type:db_sequence *;
allow sepgsql_admin_type sepgsql_view_type:db_view *;
2010-02-08 15:34:08 +00:00
allow sepgsql_admin_type sepgsql_proc_exec_t:db_procedure *;
allow sepgsql_admin_type sepgsql_trusted_procedure_type:db_procedure ~install;
2010-02-08 15:34:08 +00:00
allow sepgsql_admin_type sepgsql_procedure_type:db_procedure ~{ execute install };
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_admin_type sepgsql_language_type:db_language ~implement;
2010-02-08 15:34:08 +00:00
allow sepgsql_admin_type sepgsql_blob_type:db_blob *;
')
########################################
#
# Unconfined access to this module
#
allow sepgsql_unconfined_type sepgsql_database_type:db_database *;
allow sepgsql_unconfined_type {sepgsql_schema_type sepgsql_temp_object_t}:db_schema *;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type_transition sepgsql_unconfined_type sepgsql_database_type:db_schema sepgsql_schema_t;
type_transition sepgsql_unconfined_type sepgsql_database_type:db_schema sepgsql_temp_object_t "pg_temp";
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
type_transition sepgsql_unconfined_type sepgsql_schema_type:db_table sepgsql_table_t;
type_transition sepgsql_unconfined_type sepgsql_schema_type:db_sequence sepgsql_seq_t;
type_transition sepgsql_unconfined_type sepgsql_schema_type:db_view sepgsql_view_t;
type_transition sepgsql_unconfined_type sepgsql_schema_type:db_procedure sepgsql_proc_exec_t;
type_transition sepgsql_unconfined_type sepgsql_database_type:db_language sepgsql_lang_t;
type_transition sepgsql_unconfined_type sepgsql_database_type:db_blob sepgsql_blob_t;
allow sepgsql_unconfined_type sepgsql_table_type:{ db_table db_column db_tuple } *;
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_unconfined_type sepgsql_sequence_type:db_sequence *;
allow sepgsql_unconfined_type sepgsql_view_type:db_view *;
# unconfined domain is not allowed to invoke user defined procedure directly.
# They have to confirm and relabel it at first.
allow sepgsql_unconfined_type sepgsql_proc_exec_t:db_procedure *;
allow sepgsql_unconfined_type sepgsql_trusted_procedure_type:db_procedure ~install;
allow sepgsql_unconfined_type sepgsql_procedure_type:db_procedure ~{ execute install };
New database object classes The attached patch adds a few database object classes, as follows: * db_schema ------------ A schema object performs as a namespace in database; similar to directories in filesystem. It seems some of (but not all) database objects are stored within a certain schema logically. We can qualify these objects using schema name. For example, a table: "my_tbl" within a schema: "my_scm" is identified by "my_scm.my_tbl". This table is completely different from "your_scm.my_tbl" that it a table within a schema: "your_scm". Its characteristics is similar to a directory in filesystem, so it has similar permissions. The 'search' controls to resolve object name within a schema. The 'add_name' and 'remove_name' controls to add/remove an object to/from a schema. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createschema.html In the past discussion, a rubix folks concerned about no object class definition for schema and catalog which is an upper level namespace. Since I'm not certain whether we have a disadvantage when 'db_schema' class is applied on catalog class, I don't add this definition yet. Default security context of 'db_table' and 'db_procedure' classes get being computed using type_transition with 'db_schema' class, instead of 'db_database' class. It reflects logical hierarchy of database object more correctly. * db_view ---------- A view object performs as a virtual table. We can run SELECT statement on views, although it has no physical entities. The definition of views are expanded in run-time, so it allows us to describe complex queries with keeping readability. This object class uniquely provides 'expand' permission that controls whether user can expand this view, or not. The default security context shall be computed by type transition rule with a schema object that owning the view. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createview.html * db_sequence -------------- A sequence object is a sequential number generator. This object class uniquely provides 'get_value', 'next_value' and 'set_value' permissions. The 'get_value' controls to reference the sequence object. The 'next_value' controls to fetch and increment the value of sequence object. The 'set_value' controls to set an arbitrary value. The default security context shall be computed by type transition rule with a schema object that owning the sequence. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createsequence.html * db_language -------------- A language object is an installed engine to execute procedures. PostgreSQL supports to define SQL procedures using regular script languages; such as Perl, Tcl, not only SQL or binary modules. In addition, v9.0 or later supports DO statement. It allows us to execute a script statement on server side without defining a SQL procedure. It requires to control whether user can execute DO statement on this language, or not. This object class uniquely provides 'implement' and 'execute' permissions. The 'implement' controls whether a procedure can be implemented with this language, or not. So, it takes security context of the procedure as subject. The 'execute' controls to execute code block using DO statement. The default security context shall be computed by type transition rule with a database object, because it is not owned by a certain schema. In the default policy, we provide two types: 'sepgsql_lang_t' and 'sepgsql_safe_lang_t' that allows unpriv users to execute DO statement. The default is 'sepgsql_leng_t'. We assume newly installed language may be harm, so DBA has to relabel it explicitly, if he want user defined procedures using the language. See also, http://developer.postgresql.org/pgdocs/postgres/sql-createlanguage.html http://developer.postgresql.org/pgdocs/postgres/sql-do.html P.S) I found a bug in MCS. It didn't constraint 'relabelfrom' permission of 'db_procedure' class. IIRC, I fixed it before, but it might be only MLS side. Sorry. Thanks, -- KaiGai Kohei <kaigai@ak.jp.nec.com> policy/flask/access_vectors | 29 ++++++++ policy/flask/security_classes | 6 ++ policy/mcs | 16 ++++- policy/mls | 58 ++++++++++++++- policy/modules/kernel/kernel.if | 8 ++ policy/modules/services/postgresql.if | 125 +++++++++++++++++++++++++++++++-- policy/modules/services/postgresql.te | 116 +++++++++++++++++++++++++++++- 7 files changed, 342 insertions(+), 16 deletions(-)
2010-12-10 09:49:24 +00:00
allow sepgsql_unconfined_type sepgsql_language_type:db_language ~implement;
allow sepgsql_unconfined_type sepgsql_blob_type:db_blob *;
allow sepgsql_unconfined_type sepgsql_module_type:db_database install_module;
kernel_relabelfrom_unlabeled_database(sepgsql_unconfined_type)