tdesktop/Telegram/SourceFiles/types.h

981 lines
26 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop version of Telegram messaging app, see https://telegram.org
Telegram Desktop is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
It is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
In addition, as a special exception, the copyright holders give permission
to link the code of portions of this program with the OpenSSL library.
Full license: https://github.com/telegramdesktop/tdesktop/blob/master/LICENSE
Copyright (c) 2014-2016 John Preston, https://desktop.telegram.org
*/
#pragma once
template <typename T>
void deleteAndMark(T *&link) {
delete link;
link = reinterpret_cast<T*>(0x00000BAD);
}
template <typename T>
T *getPointerAndReset(T *&ptr) {
T *result = nullptr;
qSwap(result, ptr);
return result;
}
struct NullType {
};
template <typename T>
class OrderedSet : public QMap<T, NullType> {
public:
void insert(const T &v) {
QMap<T, NullType>::insert(v, NullType());
}
};
#define qsl(s) QStringLiteral(s)
#define qstr(s) QLatin1String(s, sizeof(s) - 1)
// using for_const instead of plain range-based for loop to ensure usage of const_iterator
// it is important for the copy-on-write Qt containers
// if you have "QVector<T*> v" then "for (T * const p : v)" will still call QVector::detach(),
// while "for_const(T *p, v)" won't and "for_const(T *&p, v)" won't compile
template <typename T>
struct ForConstTraits {
typedef const T &ExpressionType;
};
#define for_const(range_declaration, range_expression) for (range_declaration : static_cast<ForConstTraits<decltype(range_expression)>::ExpressionType>(range_expression))
template <typename Enum>
inline QFlags<Enum> qFlags(Enum v) {
return QFlags<Enum>(v);
}
//typedef unsigned char uchar; // Qt has uchar
typedef qint16 int16;
typedef quint16 uint16;
typedef qint32 int32;
typedef quint32 uint32;
typedef qint64 int64;
typedef quint64 uint64;
static const int32 ScrollMax = INT_MAX;
extern uint64 _SharedMemoryLocation[];
template <typename T, unsigned int N>
T *SharedMemoryLocation() {
static_assert(N < 4, "Only 4 shared memory locations!");
return reinterpret_cast<T*>(_SharedMemoryLocation + N);
}
#ifdef Q_OS_WIN
typedef float float32;
typedef double float64;
#else
typedef float float32;
typedef double float64;
#endif
#include <string>
#include <exception>
#include <QtCore/QReadWriteLock>
#include <ctime>
using std::string;
using std::exception;
using std::swap;
#include "logs.h"
static volatile int *t_assert_nullptr = 0;
inline void t_noop() {}
inline void t_assert_fail(const char *message, const char *file, int32 line) {
QString info(qsl("%1 %2:%3").arg(message).arg(file).arg(line));
LOG(("Assertion Failed! %1 %2:%3").arg(info));
SignalHandlers::setAssertionInfo(info);
*t_assert_nullptr = 0;
}
#define t_assert_full(condition, message, file, line) ((!(condition)) ? t_assert_fail(message, file, line) : t_noop())
#define t_assert_c(condition, comment) t_assert_full(condition, "\"" #condition "\" (" comment ")", __FILE__, __LINE__)
#define t_assert(condition) t_assert_full(condition, "\"" #condition "\"", __FILE__, __LINE__)
class Exception : public exception {
public:
Exception(const QString &msg, bool isFatal = true) : _fatal(isFatal), _msg(msg.toUtf8()) {
LOG(("Exception: %1").arg(msg));
}
bool fatal() const {
return _fatal;
}
virtual const char *what() const throw() {
return _msg.constData();
}
virtual ~Exception() throw() {
}
private:
bool _fatal;
QByteArray _msg;
};
class MTPint;
int32 myunixtime();
void unixtimeInit();
void unixtimeSet(int32 servertime, bool force = false);
int32 unixtime();
int32 fromServerTime(const MTPint &serverTime);
uint64 msgid();
int32 reqid();
inline QDateTime date(int32 time = -1) {
QDateTime result;
if (time >= 0) result.setTime_t(time);
return result;
}
inline QDateTime date(const MTPint &time) {
return date(fromServerTime(time));
}
inline void mylocaltime(struct tm * _Tm, const time_t * _Time) {
#ifdef Q_OS_WIN
localtime_s(_Tm, _Time);
#else
localtime_r(_Time, _Tm);
#endif
}
namespace ThirdParty {
void start();
void finish();
}
bool checkms(); // returns true if time has changed
uint64 getms(bool checked = false);
class SingleTimer : public QTimer { // single shot timer with check
Q_OBJECT
public:
SingleTimer();
void setSingleShot(bool); // is not available
void start(); // is not available
public slots:
void start(int msec);
void startIfNotActive(int msec);
void adjust() {
uint64 n = getms(true);
if (isActive()) {
if (n >= _finishing) {
start(0);
} else {
start(_finishing - n);
}
}
}
private:
uint64 _finishing;
bool _inited;
};
const static uint32 _md5_block_size = 64;
class HashMd5 {
public:
HashMd5(const void *input = 0, uint32 length = 0);
void feed(const void *input, uint32 length);
int32 *result();
private:
void init();
void finalize();
void transform(const uchar *block);
bool _finalized;
uchar _buffer[_md5_block_size];
uint32 _count[2];
uint32 _state[4];
uchar _digest[16];
};
int32 hashCrc32(const void *data, uint32 len);
int32 *hashSha1(const void *data, uint32 len, void *dest); // dest - ptr to 20 bytes, returns (int32*)dest
int32 *hashSha256(const void *data, uint32 len, void *dest); // dest - ptr to 32 bytes, returns (int32*)dest
int32 *hashMd5(const void *data, uint32 len, void *dest); // dest = ptr to 16 bytes, returns (int32*)dest
char *hashMd5Hex(const int32 *hashmd5, void *dest); // dest = ptr to 32 bytes, returns (char*)dest
inline char *hashMd5Hex(const void *data, uint32 len, void *dest) { // dest = ptr to 32 bytes, returns (char*)dest
return hashMd5Hex(HashMd5(data, len).result(), dest);
}
void memset_rand(void *data, uint32 len);
template <typename T>
inline void memsetrnd(T &value) {
memset_rand(&value, sizeof(value));
}
inline void memset_rand_bad(void *data, uint32 len) {
for (uchar *i = reinterpret_cast<uchar*>(data), *e = i + len; i != e; ++i) {
*i = uchar(rand() & 0xFF);
}
}
template <typename T>
inline void memsetrnd_bad(T &value) {
memset_rand_bad(&value, sizeof(value));
}
class ReadLockerAttempt {
public:
ReadLockerAttempt(QReadWriteLock *_lock) : success(_lock->tryLockForRead()), lock(_lock) {
}
~ReadLockerAttempt() {
if (success) {
lock->unlock();
}
}
operator bool() const {
return success;
}
private:
bool success;
QReadWriteLock *lock;
};
inline QString fromUtf8Safe(const char *str, int32 size = -1) {
if (!str || !size) return QString();
if (size < 0) size = int32(strlen(str));
QString result(QString::fromUtf8(str, size));
QByteArray back = result.toUtf8();
if (back.size() != size || memcmp(back.constData(), str, size)) return QString::fromLocal8Bit(str, size);
return result;
}
inline QString fromUtf8Safe(const QByteArray &str) {
return fromUtf8Safe(str.constData(), str.size());
}
static const QRegularExpression::PatternOptions reMultiline(QRegularExpression::DotMatchesEverythingOption | QRegularExpression::MultilineOption);
template <typename T>
inline T snap(const T &v, const T &_min, const T &_max) {
return (v < _min) ? _min : ((v > _max) ? _max : v);
}
template <typename T>
class ManagedPtr {
public:
ManagedPtr() : ptr(0) {
}
ManagedPtr(T *p) : ptr(p) {
}
T *operator->() const {
return ptr;
}
T *v() const {
return ptr;
}
protected:
T *ptr;
typedef ManagedPtr<T> Parent;
};
QString translitRusEng(const QString &rus);
QString rusKeyboardLayoutSwitch(const QString &from);
enum DBISendKey {
dbiskEnter = 0,
dbiskCtrlEnter = 1,
};
enum DBINotifyView {
dbinvShowPreview = 0,
dbinvShowName = 1,
dbinvShowNothing = 2,
};
enum DBIWorkMode {
dbiwmWindowAndTray = 0,
dbiwmTrayOnly = 1,
dbiwmWindowOnly = 2,
};
enum DBIConnectionType {
dbictAuto = 0,
dbictHttpAuto = 1, // not used
dbictHttpProxy = 2,
dbictTcpProxy = 3,
};
enum DBIDefaultAttach {
dbidaDocument = 0,
dbidaPhoto = 1,
};
struct ConnectionProxy {
ConnectionProxy() : port(0) {
}
QString host;
uint32 port;
QString user, password;
};
enum DBIScale {
dbisAuto = 0,
dbisOne = 1,
dbisOneAndQuarter = 2,
dbisOneAndHalf = 3,
dbisTwo = 4,
dbisScaleCount = 5,
};
static const int MatrixRowShift = 40000;
enum DBIEmojiTab {
dbietRecent = -1,
dbietPeople = 0,
dbietNature = 1,
dbietFood = 2,
dbietActivity = 3,
dbietTravel = 4,
dbietObjects = 5,
dbietSymbols = 6,
dbietStickers = 666,
};
static const int emojiTabCount = 8;
inline DBIEmojiTab emojiTabAtIndex(int index) {
return (index < 0 || index >= emojiTabCount) ? dbietRecent : DBIEmojiTab(index - 1);
}
enum DBIPlatform {
dbipWindows = 0,
dbipMac = 1,
dbipLinux64 = 2,
dbipLinux32 = 3,
dbipMacOld = 4,
};
enum DBIPeerReportSpamStatus {
dbiprsNoButton = 0, // hidden, but not in the cloud settings yet
dbiprsUnknown = 1, // contacts not loaded yet
dbiprsShowButton = 2, // show report spam button, each show peer request setting from cloud
dbiprsReportSent = 3, // report sent, but the report spam panel is not hidden yet
dbiprsHidden = 4, // hidden in the cloud or not needed (bots, contacts, etc), no more requests
dbiprsRequesting = 5, // requesting the cloud setting right now
};
typedef enum {
HitTestNone = 0,
HitTestClient,
HitTestSysButton,
HitTestIcon,
HitTestCaption,
HitTestTop,
HitTestTopRight,
HitTestRight,
HitTestBottomRight,
HitTestBottom,
HitTestBottomLeft,
HitTestLeft,
HitTestTopLeft,
} HitTestType;
inline QString strMakeFromLetters(const uint32 *letters, int32 len) {
QString result;
result.reserve(len);
for (int32 i = 0; i < len; ++i) {
result.push_back(QChar((((letters[i] << 16) & 0xFF) >> 8) | (letters[i] & 0xFF)));
}
return result;
}
class MimeType {
public:
enum TypeEnum {
Unknown,
WebP,
};
MimeType(const QMimeType &type) : _typeStruct(type), _type(Unknown) {
}
MimeType(TypeEnum type) : _type(type) {
}
QStringList globPatterns() const;
QString filterString() const;
QString name() const;
private:
QMimeType _typeStruct;
TypeEnum _type;
};
MimeType mimeTypeForName(const QString &mime);
MimeType mimeTypeForFile(const QFileInfo &file);
MimeType mimeTypeForData(const QByteArray &data);
inline int32 rowscount(int32 count, int32 perrow) {
return (count + perrow - 1) / perrow;
}
inline int32 floorclamp(int32 value, int32 step, int32 lowest, int32 highest) {
return qMin(qMax(value / step, lowest), highest);
}
inline int32 floorclamp(float64 value, int32 step, int32 lowest, int32 highest) {
return qMin(qMax(qFloor(value / step), lowest), highest);
}
inline int32 ceilclamp(int32 value, int32 step, int32 lowest, int32 highest) {
return qMax(qMin((value / step) + ((value % step) ? 1 : 0), highest), lowest);
}
inline int32 ceilclamp(float64 value, int32 step, int32 lowest, int32 highest) {
return qMax(qMin(qCeil(value / step), highest), lowest);
}
enum ForwardWhatMessages {
ForwardSelectedMessages,
ForwardContextMessage,
ForwardPressedMessage,
ForwardPressedLinkMessage
};
enum ShowLayerOption {
CloseOtherLayers = 0x00,
KeepOtherLayers = 0x01,
ShowAfterOtherLayers = 0x03,
AnimatedShowLayer = 0x00,
ForceFastShowLayer = 0x04,
};
typedef QFlags<ShowLayerOption> ShowLayerOptions;
static int32 FullArcLength = 360 * 16;
static int32 QuarterArcLength = (FullArcLength / 4);
static int32 MinArcLength = (FullArcLength / 360);
static int32 AlmostFullArcLength = (FullArcLength - MinArcLength);
template <typename T1, typename T2>
class RefPairImplementation {
public:
template <typename T3, typename T4>
const RefPairImplementation &operator=(const RefPairImplementation<T3, T4> &other) const {
_first = other._first;
_second = other._second;
return *this;
}
template <typename T3, typename T4>
const RefPairImplementation &operator=(const QPair<T3, T4> &other) const {
_first = other.first;
_second = other.second;
return *this;
}
private:
RefPairImplementation(T1 &first, T2 &second) : _first(first), _second(second) {
}
RefPairImplementation(const RefPairImplementation &other);
template <typename T3, typename T4>
friend RefPairImplementation<T3, T4> RefPairCreator(T3 &first, T4 &second);
T1 &_first;
T2 &_second;
};
template <typename T1, typename T2>
inline RefPairImplementation<T1, T2> RefPairCreator(T1 &first, T2 &second) {
return RefPairImplementation<T1, T2>(first, second);
}
#define RefPair(Type1, Name1, Type2, Name2) Type1 Name1; Type2 Name2; RefPairCreator(Name1, Name2)
template <typename I>
inline void destroyImplementation(I *&ptr) {
if (ptr) {
ptr->destroy();
ptr = 0;
}
deleteAndMark(ptr);
}
class Interfaces;
typedef void(*InterfaceConstruct)(void *location, Interfaces *interfaces);
typedef void(*InterfaceDestruct)(void *location);
typedef void(*InterfaceMove)(void *location, void *waslocation);
struct InterfaceWrapStruct {
InterfaceWrapStruct() : Size(0), Construct(0), Destruct(0) {
}
InterfaceWrapStruct(int size, InterfaceConstruct construct, InterfaceDestruct destruct, InterfaceMove move)
: Size(size)
, Construct(construct)
, Destruct(destruct)
, Move(move) {
}
int Size;
InterfaceConstruct Construct;
InterfaceDestruct Destruct;
InterfaceMove Move;
};
template <int Value, int Denominator>
struct CeilDivideMinimumOne {
static const int Result = ((Value / Denominator) + ((!Value || (Value % Denominator)) ? 1 : 0));
};
template <typename Type>
struct InterfaceWrapTemplate {
static const int Size = CeilDivideMinimumOne<sizeof(Type), sizeof(uint64)>::Result * sizeof(uint64);
static void Construct(void *location, Interfaces *interfaces) {
new (location) Type(interfaces);
}
static void Destruct(void *location) {
((Type*)location)->~Type();
}
static void Move(void *location, void *waslocation) {
*(Type*)location = *(Type*)waslocation;
}
};
extern InterfaceWrapStruct InterfaceWraps[64];
extern QAtomicInt InterfaceIndexLast;
template <typename Type>
class BasicInterface {
public:
static int Index() {
static QAtomicInt _index(0);
if (int index = _index.loadAcquire()) {
return index - 1;
}
while (true) {
int last = InterfaceIndexLast.loadAcquire();
if (InterfaceIndexLast.testAndSetOrdered(last, last + 1)) {
t_assert(last < 64);
if (_index.testAndSetOrdered(0, last + 1)) {
InterfaceWraps[last] = InterfaceWrapStruct(InterfaceWrapTemplate<Type>::Size, InterfaceWrapTemplate<Type>::Construct, InterfaceWrapTemplate<Type>::Destruct, InterfaceWrapTemplate<Type>::Move);
}
break;
}
}
return _index.loadAcquire() - 1;
}
static uint64 Bit() {
return (1ULL << Index());
}
};
template <typename Type>
class BasicInterfaceWithPointer : public BasicInterface<Type> {
public:
BasicInterfaceWithPointer(Interfaces *interfaces) : interfaces(interfaces) {
}
Interfaces *interfaces = 0;
};
class InterfacesMetadata {
public:
InterfacesMetadata(uint64 mask) : size(0), last(64), _mask(mask) {
for (int i = 0; i < 64; ++i) {
uint64 m = (1 << i);
if (_mask & m) {
int s = InterfaceWraps[i].Size;
if (s) {
offsets[i] = size;
size += s;
} else {
offsets[i] = -1;
}
} else if (_mask < m) {
last = i;
for (; i < 64; ++i) {
offsets[i] = -1;
}
} else {
offsets[i] = -1;
}
}
}
int size, last;
int offsets[64];
bool equals(uint64 mask) const {
return _mask == mask;
}
uint64 maskadd(uint64 mask) const {
return _mask | mask;
}
uint64 maskremove(uint64 mask) const {
return _mask & (~mask);
}
private:
uint64 _mask;
};
const InterfacesMetadata *GetInterfacesMetadata(uint64 mask);
class Interfaces {
public:
Interfaces(uint64 mask = 0) : _data(zerodata()) {
if (mask) {
const InterfacesMetadata *meta = GetInterfacesMetadata(mask);
int32 size = sizeof(const InterfacesMetadata *) + meta->size;
void *data = operator new(size);
if (!data) { // terminate if we can't allocate memory
throw "Can't allocate memory!";
}
_data = data;
_meta() = meta;
for (int i = 0; i < meta->last; ++i) {
int offset = meta->offsets[i];
if (offset >= 0) {
try {
InterfaceWraps[i].Construct(_dataptrunsafe(offset), this);
} catch (...) {
while (i > 0) {
--i;
offset = meta->offsets[--i];
if (offset >= 0) {
InterfaceWraps[i].Destruct(_dataptrunsafe(offset));
}
}
throw;
}
}
}
}
}
void UpdateInterfaces(uint64 mask = 0) {
if (!_meta()->equals(mask)) {
Interfaces tmp(mask);
tmp.swap(*this);
if (_data != zerodata() && tmp._data != zerodata()) {
const InterfacesMetadata *meta = _meta(), *wasmeta = tmp._meta();
for (int i = 0; i < meta->last; ++i) {
int offset = meta->offsets[i], wasoffset = wasmeta->offsets[i];
if (offset >= 0 && wasoffset >= 0) {
InterfaceWraps[i].Move(_dataptrunsafe(offset), tmp._dataptrunsafe(wasoffset));
}
}
}
}
}
void AddInterfaces(uint64 mask = 0) {
UpdateInterfaces(_meta()->maskadd(mask));
}
void RemoveInterfaces(uint64 mask = 0) {
UpdateInterfaces(_meta()->maskremove(mask));
}
~Interfaces() {
if (_data != zerodata()) {
const InterfacesMetadata *meta = _meta();
for (int i = 0; i < meta->last; ++i) {
int offset = meta->offsets[i];
if (offset >= 0) {
InterfaceWraps[i].Destruct(_dataptrunsafe(offset));
}
}
operator delete(_data);
}
}
template <typename Type>
Type *Get() {
return static_cast<Type*>(_dataptr(_meta()->offsets[Type::Index()]));
}
template <typename Type>
const Type *Get() const {
return static_cast<const Type*>(_dataptr(_meta()->offsets[Type::Index()]));
}
template <typename Type>
bool Is() const {
return (_meta()->offsets[Type::Index()] >= 0);
}
private:
static const InterfacesMetadata *ZeroInterfacesMetadata;
static void *zerodata() {
return &ZeroInterfacesMetadata;
}
void *_dataptrunsafe(int skip) const {
return (char*)_data + sizeof(const InterfacesMetadata*) + skip;
}
void *_dataptr(int skip) const {
return (skip >= 0) ? _dataptrunsafe(skip) : 0;
}
const InterfacesMetadata *&_meta() const {
return *static_cast<const InterfacesMetadata**>(_data);
}
void *_data;
Interfaces(const Interfaces &other);
Interfaces &operator=(const Interfaces &other);
void swap(Interfaces &other) {
std::swap(_data, other._data);
}
};
template <typename R, typename A1, typename A2>
class SharedCallback2 {
public:
virtual R call(A1 channel, A2 msgId) const = 0;
virtual ~SharedCallback2() {
}
typedef QSharedPointer<SharedCallback2<R, A1, A2> > Ptr;
};
template <typename R>
class FunctionImplementation {
public:
virtual R call() = 0;
virtual void destroy() { delete this; }
virtual ~FunctionImplementation() {}
};
template <typename R>
class NullFunctionImplementation : public FunctionImplementation<R> {
public:
virtual R call() { return R(); }
virtual void destroy() {}
static NullFunctionImplementation<R> SharedInstance;
};
template <typename R>
NullFunctionImplementation<R> NullFunctionImplementation<R>::SharedInstance;
template <typename R>
class FunctionCreator {
public:
FunctionCreator(FunctionImplementation<R> *ptr) : _ptr(ptr) {}
FunctionCreator(const FunctionCreator<R> &other) : _ptr(other.create()) {}
FunctionImplementation<R> *create() const { return getPointerAndReset(_ptr); }
~FunctionCreator() { destroyImplementation(_ptr); }
private:
FunctionCreator<R> &operator=(const FunctionCreator<R> &other);
mutable FunctionImplementation<R> *_ptr;
};
template <typename R>
class Function {
public:
typedef FunctionCreator<R> Creator;
static Creator Null() { return Creator(&NullFunctionImplementation<R>::SharedInstance); }
Function(const Creator &creator) : _implementation(creator.create()) {}
R call() { return _implementation->call(); }
~Function() { destroyImplementation(_implementation); }
private:
Function(const Function<R> &other);
Function<R> &operator=(const Function<R> &other);
FunctionImplementation<R> *_implementation;
};
template <typename R>
class WrappedFunction : public FunctionImplementation<R> {
public:
typedef R(*Method)();
WrappedFunction(Method method) : _method(method) {}
virtual R call() { return (*_method)(); }
private:
Method _method;
};
template <typename R>
inline FunctionCreator<R> func(R(*method)()) {
return FunctionCreator<R>(new WrappedFunction<R>(method));
}
template <typename O, typename I, typename R>
class ObjectFunction : public FunctionImplementation<R> {
public:
typedef R(I::*Method)();
ObjectFunction(O *obj, Method method) : _obj(obj), _method(method) {}
virtual R call() { return (_obj->*_method)(); }
private:
O *_obj;
Method _method;
};
template <typename O, typename I, typename R>
inline FunctionCreator<R> func(O *obj, R(I::*method)()) {
return FunctionCreator<R>(new ObjectFunction<O, I, R>(obj, method));
}
template <typename R, typename A1>
class Function1Implementation {
public:
virtual R call(A1 a1) = 0;
virtual void destroy() { delete this; }
virtual ~Function1Implementation() {}
};
template <typename R, typename A1>
class NullFunction1Implementation : public Function1Implementation<R, A1> {
public:
virtual R call(A1 a1) { return R(); }
virtual void destroy() {}
static NullFunction1Implementation<R, A1> SharedInstance;
};
template <typename R, typename A1>
NullFunction1Implementation<R, A1> NullFunction1Implementation<R, A1>::SharedInstance;
template <typename R, typename A1>
class Function1Creator {
public:
Function1Creator(Function1Implementation<R, A1> *ptr) : _ptr(ptr) {}
Function1Creator(const Function1Creator<R, A1> &other) : _ptr(other.create()) {}
Function1Implementation<R, A1> *create() const { return getPointerAndReset(_ptr); }
~Function1Creator() { destroyImplementation(_ptr); }
private:
Function1Creator<R, A1> &operator=(const Function1Creator<R, A1> &other);
mutable Function1Implementation<R, A1> *_ptr;
};
template <typename R, typename A1>
class Function1 {
public:
typedef Function1Creator<R, A1> Creator;
static Creator Null() { return Creator(&NullFunction1Implementation<R, A1>::SharedInstance); }
Function1(const Creator &creator) : _implementation(creator.create()) {}
R call(A1 a1) { return _implementation->call(a1); }
~Function1() { _implementation->destroy(); }
private:
Function1(const Function1<R, A1> &other);
Function1<R, A1> &operator=(const Function1<R, A1> &other);
Function1Implementation<R, A1> *_implementation;
};
template <typename R, typename A1>
class WrappedFunction1 : public Function1Implementation<R, A1> {
public:
typedef R(*Method)(A1);
WrappedFunction1(Method method) : _method(method) {}
virtual R call(A1 a1) { return (*_method)(a1); }
private:
Method _method;
};
template <typename R, typename A1>
inline Function1Creator<R, A1> func(R(*method)(A1)) {
return Function1Creator<R, A1>(new WrappedFunction1<R, A1>(method));
}
template <typename O, typename I, typename R, typename A1>
class ObjectFunction1 : public Function1Implementation<R, A1> {
public:
typedef R(I::*Method)(A1);
ObjectFunction1(O *obj, Method method) : _obj(obj), _method(method) {}
virtual R call(A1 a1) { return (_obj->*_method)(a1); }
private:
O *_obj;
Method _method;
};
template <typename O, typename I, typename R, typename A1>
Function1Creator<R, A1> func(O *obj, R(I::*method)(A1)) {
return Function1Creator<R, A1>(new ObjectFunction1<O, I, R, A1>(obj, method));
}
template <typename R, typename A1, typename A2>
class Function2Implementation {
public:
virtual R call(A1 a1, A2 a2) = 0;
virtual void destroy() { delete this; }
virtual ~Function2Implementation() {}
};
template <typename R, typename A1, typename A2>
class NullFunction2Implementation : public Function2Implementation<R, A1, A2> {
public:
virtual R call(A1 a1, A2 a2) { return R(); }
virtual void destroy() {}
static NullFunction2Implementation<R, A1, A2> SharedInstance;
};
template <typename R, typename A1, typename A2>
NullFunction2Implementation<R, A1, A2> NullFunction2Implementation<R, A1, A2>::SharedInstance;
template <typename R, typename A1, typename A2>
class Function2Creator {
public:
Function2Creator(Function2Implementation<R, A1, A2> *ptr) : _ptr(ptr) {}
Function2Creator(const Function2Creator<R, A1, A2> &other) : _ptr(other.create()) {}
Function2Implementation<R, A1, A2> *create() const { return getPointerAndReset(_ptr); }
~Function2Creator() { destroyImplementation(_ptr); }
private:
Function2Creator<R, A1, A2> &operator=(const Function2Creator<R, A1, A2> &other);
mutable Function2Implementation<R, A1, A2> *_ptr;
};
template <typename R, typename A1, typename A2>
class Function2 {
public:
typedef Function2Creator<R, A1, A2> Creator;
static Creator Null() { return Creator(&NullFunction2Implementation<R, A1, A2>::SharedInstance); }
Function2(const Creator &creator) : _implementation(creator.create()) {}
R call(A1 a1, A2 a2) { return _implementation->call(a1, a2); }
~Function2() { destroyImplementation(_implementation); }
private:
Function2(const Function2<R, A1, A2> &other);
Function2<R, A1, A2> &operator=(const Function2<R, A1, A2> &other);
Function2Implementation<R, A1, A2> *_implementation;
};
template <typename R, typename A1, typename A2>
class WrappedFunction2 : public Function2Implementation<R, A1, A2> {
public:
typedef R(*Method)(A1, A2);
WrappedFunction2(Method method) : _method(method) {}
virtual R call(A1 a1, A2 a2) { return (*_method)(a1, a2); }
private:
Method _method;
};
template <typename R, typename A1, typename A2>
Function2Creator<R, A1, A2> func(R(*method)(A1, A2)) {
return Function2Creator<R, A1, A2>(new WrappedFunction2<R, A1, A2>(method));
}
template <typename O, typename I, typename R, typename A1, typename A2>
class ObjectFunction2 : public Function2Implementation<R, A1, A2> {
public:
typedef R(I::*Method)(A1, A2);
ObjectFunction2(O *obj, Method method) : _obj(obj), _method(method) {}
virtual R call(A1 a1, A2 a2) { return (_obj->*_method)(a1, a2); }
private:
O *_obj;
Method _method;
};
template <typename O, typename I, typename R, typename A1, typename A2>
Function2Creator<R, A1, A2> func(O *obj, R(I::*method)(A1, A2)) {
return Function2Creator<R, A1, A2>(new ObjectFunction2<O, I, R, A1, A2>(obj, method));
}