tdesktop/Telegram/SourceFiles/ui/image/image_prepare.cpp

588 lines
16 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop application for the Telegram messaging service.
For license and copyright information please follow this link:
https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
*/
#include "ui/image/image_prepare.h"
namespace Images {
namespace {
TG_FORCE_INLINE uint64 blurGetColors(const uchar *p) {
return (uint64)p[0] + ((uint64)p[1] << 16) + ((uint64)p[2] << 32) + ((uint64)p[3] << 48);
}
const QImage &circleMask(QSize size) {
Assert(Global::started());
uint64 key = (uint64(uint32(size.width())) << 32)
| uint64(uint32(size.height()));
static auto masks = base::flat_map<uint64, QImage>();
const auto i = masks.find(key);
if (i != end(masks)) {
return i->second;
}
auto mask = QImage(
size,
QImage::Format_ARGB32_Premultiplied);
mask.fill(Qt::transparent);
{
Painter p(&mask);
PainterHighQualityEnabler hq(p);
p.setBrush(Qt::white);
p.setPen(Qt::NoPen);
p.drawEllipse(QRect(QPoint(), size));
}
return masks.emplace(key, std::move(mask)).first->second;
}
} // namespace
QPixmap PixmapFast(QImage &&image) {
Expects(image.format() == QImage::Format_ARGB32_Premultiplied
|| image.format() == QImage::Format_RGB32);
return QPixmap::fromImage(std::move(image), Qt::NoFormatConversion);
}
QImage prepareBlur(QImage img) {
if (img.isNull()) {
return img;
}
const auto ratio = img.devicePixelRatio();
const auto fmt = img.format();
if (fmt != QImage::Format_RGB32 && fmt != QImage::Format_ARGB32_Premultiplied) {
img = std::move(img).convertToFormat(QImage::Format_ARGB32_Premultiplied);
img.setDevicePixelRatio(ratio);
}
uchar *pix = img.bits();
if (pix) {
int w = img.width(), h = img.height(), wold = w, hold = h;
const int radius = 3;
const int r1 = radius + 1;
const int div = radius * 2 + 1;
const int stride = w * 4;
if (radius < 16 && div < w && div < h && stride <= w * 4) {
bool withalpha = img.hasAlphaChannel();
if (withalpha) {
QImage imgsmall(w, h, img.format());
{
Painter p(&imgsmall);
PainterHighQualityEnabler hq(p);
p.setCompositionMode(QPainter::CompositionMode_Source);
p.fillRect(0, 0, w, h, Qt::transparent);
p.drawImage(QRect(radius, radius, w - 2 * radius, h - 2 * radius), img, QRect(0, 0, w, h));
}
imgsmall.setDevicePixelRatio(ratio);
auto was = img;
img = std::move(imgsmall);
imgsmall = QImage();
Assert(!img.isNull());
pix = img.bits();
if (!pix) return was;
}
uint64 *rgb = new uint64[w * h];
int x, y, i;
int yw = 0;
const int we = w - r1;
for (y = 0; y < h; y++) {
uint64 cur = blurGetColors(&pix[yw]);
uint64 rgballsum = -radius * cur;
uint64 rgbsum = cur * ((r1 * (r1 + 1)) >> 1);
for (i = 1; i <= radius; i++) {
uint64 cur = blurGetColors(&pix[yw + i * 4]);
rgbsum += cur * (r1 - i);
rgballsum += cur;
}
x = 0;
#define update(start, middle, end) \
rgb[y * w + x] = (rgbsum >> 4) & 0x00FF00FF00FF00FFLL; \
rgballsum += blurGetColors(&pix[yw + (start) * 4]) - 2 * blurGetColors(&pix[yw + (middle) * 4]) + blurGetColors(&pix[yw + (end) * 4]); \
rgbsum += rgballsum; \
x++;
while (x < r1) {
update(0, x, x + r1);
}
while (x < we) {
update(x - r1, x, x + r1);
}
while (x < w) {
update(x - r1, x, w - 1);
}
#undef update
yw += stride;
}
const int he = h - r1;
for (x = 0; x < w; x++) {
uint64 rgballsum = -radius * rgb[x];
uint64 rgbsum = rgb[x] * ((r1 * (r1 + 1)) >> 1);
for (i = 1; i <= radius; i++) {
rgbsum += rgb[i * w + x] * (r1 - i);
rgballsum += rgb[i * w + x];
}
y = 0;
int yi = x * 4;
#define update(start, middle, end) \
uint64 res = rgbsum >> 4; \
pix[yi] = res & 0xFF; \
pix[yi + 1] = (res >> 16) & 0xFF; \
pix[yi + 2] = (res >> 32) & 0xFF; \
pix[yi + 3] = (res >> 48) & 0xFF; \
rgballsum += rgb[x + (start) * w] - 2 * rgb[x + (middle) * w] + rgb[x + (end) * w]; \
rgbsum += rgballsum; \
y++; \
yi += stride;
while (y < r1) {
update(0, y, y + r1);
}
while (y < he) {
update(y - r1, y, y + r1);
}
while (y < h) {
update(y - r1, y, h - 1);
}
#undef update
}
delete[] rgb;
}
}
return img;
}
QImage BlurLargeImage(QImage image, int radius) {
const auto width = image.width();
const auto height = image.height();
if (width <= radius || height <= radius || radius < 1) {
return image;
}
if (image.format() != QImage::Format_RGB32
&& image.format() != QImage::Format_ARGB32_Premultiplied) {
image = std::move(image).convertToFormat(
QImage::Format_ARGB32_Premultiplied);
}
const auto pixels = image.bits();
const auto width_m1 = width - 1;
const auto height_m1 = height - 1;
const auto widthxheight = width * height;
const auto div = 2 * radius + 1;
const auto radius_p1 = radius + 1;
const auto divsum = radius_p1 * radius_p1;
const auto dvcount = 256 * divsum;
const auto buffers = (div * 3) // stack
+ std::max(width, height) // vmin
+ widthxheight * 3 // rgb
+ dvcount; // dv
auto storage = std::vector<int>(buffers);
auto taken = 0;
const auto take = [&](int size) {
const auto result = gsl::make_span(storage).subspan(taken, size);
taken += size;
return result;
};
// Small buffers
const auto stack = take(div * 3).data();
const auto vmin = take(std::max(width, height)).data();
// Large buffers
const auto rgb = take(widthxheight * 3).data();
const auto dvs = take(dvcount);
auto &&ints = ranges::view::ints;
for (auto &&[value, index] : ranges::view::zip(dvs, ints(0))) {
value = (index / divsum);
}
const auto dv = dvs.data();
// Variables
auto stackpointer = 0;
for (const auto x : ints(0, width)) {
vmin[x] = std::min(x + radius_p1, width_m1);
}
for (const auto y : ints(0, height)) {
auto rinsum = 0;
auto ginsum = 0;
auto binsum = 0;
auto routsum = 0;
auto goutsum = 0;
auto boutsum = 0;
auto rsum = 0;
auto gsum = 0;
auto bsum = 0;
const auto y_width = y * width;
for (const auto i : ints(-radius, radius + 1)) {
const auto sir = &stack[(i + radius) * 3];
const auto x = std::clamp(i, 0, width_m1);
const auto offset = (y_width + x) * 4;
sir[0] = pixels[offset];
sir[1] = pixels[offset + 1];
sir[2] = pixels[offset + 2];
const auto rbs = radius_p1 - std::abs(i);
rsum += sir[0] * rbs;
gsum += sir[1] * rbs;
bsum += sir[2] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
}
stackpointer = radius;
for (const auto x : ints(0, width)) {
const auto position = (y_width + x) * 3;
rgb[position] = dv[rsum];
rgb[position + 1] = dv[gsum];
rgb[position + 2] = dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
const auto stackstart = (stackpointer - radius + div) % div;
const auto sir = &stack[stackstart * 3];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
const auto offset = (y_width + vmin[x]) * 4;
sir[0] = pixels[offset];
sir[1] = pixels[offset + 1];
sir[2] = pixels[offset + 2];
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
{
stackpointer = (stackpointer + 1) % div;
const auto sir = &stack[stackpointer * 3];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
}
}
}
for (const auto y : ints(0, height)) {
vmin[y] = std::min(y + radius_p1, height_m1) * width;
}
for (const auto x : ints(0, width)) {
auto rinsum = 0;
auto ginsum = 0;
auto binsum = 0;
auto routsum = 0;
auto goutsum = 0;
auto boutsum = 0;
auto rsum = 0;
auto gsum = 0;
auto bsum = 0;
for (const auto i : ints(-radius, radius + 1)) {
const auto y = std::clamp(i, 0, height_m1);
const auto position = (y * width + x) * 3;
const auto sir = &stack[(i + radius) * 3];
sir[0] = rgb[position];
sir[1] = rgb[position + 1];
sir[2] = rgb[position + 2];
const auto rbs = radius_p1 - std::abs(i);
rsum += sir[0] * rbs;
gsum += sir[1] * rbs;
bsum += sir[2] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
}
stackpointer = radius;
for (const auto y : ints(0, height)) {
const auto offset = (y * width + x) * 4;
pixels[offset] = dv[rsum];
pixels[offset + 1] = dv[gsum];
pixels[offset + 2] = dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
const auto stackstart = (stackpointer - radius + div) % div;
const auto sir = &stack[stackstart * 3];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
const auto position = (vmin[y] + x) * 3;
sir[0] = rgb[position];
sir[1] = rgb[position + 1];
sir[2] = rgb[position + 2];
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
{
stackpointer = (stackpointer + 1) % div;
const auto sir = &stack[stackpointer * 3];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
}
}
}
return image;
}
void prepareCircle(QImage &img) {
Assert(!img.isNull());
img = img.convertToFormat(QImage::Format_ARGB32_Premultiplied);
Assert(!img.isNull());
Painter p(&img);
p.setCompositionMode(QPainter::CompositionMode_DestinationIn);
p.drawImage(
QRect(QPoint(), img.size() / img.devicePixelRatio()),
circleMask(img.size()));
}
void prepareRound(
QImage &image,
QImage *cornerMasks,
RectParts corners,
QRect target) {
if (target.isNull()) {
target = QRect(QPoint(), image.size());
} else {
Assert(QRect(QPoint(), image.size()).contains(target));
}
auto cornerWidth = cornerMasks[0].width();
auto cornerHeight = cornerMasks[0].height();
auto imageWidth = image.width();
auto imageHeight = image.height();
if (imageWidth < 2 * cornerWidth || imageHeight < 2 * cornerHeight) {
return;
}
constexpr auto imageIntsPerPixel = 1;
auto imageIntsPerLine = (image.bytesPerLine() >> 2);
Assert(image.depth() == static_cast<int>((imageIntsPerPixel * sizeof(uint32)) << 3));
Assert(image.bytesPerLine() == (imageIntsPerLine << 2));
auto ints = reinterpret_cast<uint32*>(image.bits());
auto intsTopLeft = ints + target.x() + target.y() * imageWidth;
auto intsTopRight = ints + target.x() + target.width() - cornerWidth + target.y() * imageWidth;
auto intsBottomLeft = ints + target.x() + (target.y() + target.height() - cornerHeight) * imageWidth;
auto intsBottomRight = ints + target.x() + target.width() - cornerWidth + (target.y() + target.height() - cornerHeight) * imageWidth;
auto maskCorner = [&](uint32 *imageInts, const QImage &mask) {
auto maskWidth = mask.width();
auto maskHeight = mask.height();
auto maskBytesPerPixel = (mask.depth() >> 3);
auto maskBytesPerLine = mask.bytesPerLine();
auto maskBytesAdded = maskBytesPerLine - maskWidth * maskBytesPerPixel;
auto maskBytes = mask.constBits();
Assert(maskBytesAdded >= 0);
Assert(mask.depth() == (maskBytesPerPixel << 3));
auto imageIntsAdded = imageIntsPerLine - maskWidth * imageIntsPerPixel;
Assert(imageIntsAdded >= 0);
for (auto y = 0; y != maskHeight; ++y) {
for (auto x = 0; x != maskWidth; ++x) {
auto opacity = static_cast<anim::ShiftedMultiplier>(*maskBytes) + 1;
*imageInts = anim::unshifted(anim::shifted(*imageInts) * opacity);
maskBytes += maskBytesPerPixel;
imageInts += imageIntsPerPixel;
}
maskBytes += maskBytesAdded;
imageInts += imageIntsAdded;
}
};
if (corners & RectPart::TopLeft) maskCorner(intsTopLeft, cornerMasks[0]);
if (corners & RectPart::TopRight) maskCorner(intsTopRight, cornerMasks[1]);
if (corners & RectPart::BottomLeft) maskCorner(intsBottomLeft, cornerMasks[2]);
if (corners & RectPart::BottomRight) maskCorner(intsBottomRight, cornerMasks[3]);
}
void prepareRound(
QImage &image,
ImageRoundRadius radius,
RectParts corners,
QRect target) {
if (!static_cast<int>(corners)) {
return;
} else if (radius == ImageRoundRadius::Ellipse) {
Assert((corners & RectPart::AllCorners) == RectPart::AllCorners);
Assert(target.isNull());
prepareCircle(image);
return;
}
Assert(!image.isNull());
image.setDevicePixelRatio(cRetinaFactor());
image = std::move(image).convertToFormat(QImage::Format_ARGB32_Premultiplied);
Assert(!image.isNull());
auto masks = App::cornersMask(radius);
prepareRound(image, masks, corners, target);
}
QImage prepareColored(style::color add, QImage image) {
return prepareColored(add->c, std::move(image));
}
QImage prepareColored(QColor add, QImage image) {
const auto format = image.format();
if (format != QImage::Format_RGB32 && format != QImage::Format_ARGB32_Premultiplied) {
image = std::move(image).convertToFormat(QImage::Format_ARGB32_Premultiplied);
}
if (const auto pix = image.bits()) {
const auto ca = int(add.alphaF() * 0xFF);
const auto cr = int(add.redF() * 0xFF);
const auto cg = int(add.greenF() * 0xFF);
const auto cb = int(add .blueF() * 0xFF);
const auto w = image.width();
const auto h = image.height();
const auto size = w * h * 4;
for (auto i = index_type(); i != size; i += 4) {
int b = pix[i], g = pix[i + 1], r = pix[i + 2], a = pix[i + 3], aca = a * ca;
pix[i + 0] = uchar(b + ((aca * (cb - b)) >> 16));
pix[i + 1] = uchar(g + ((aca * (cg - g)) >> 16));
pix[i + 2] = uchar(r + ((aca * (cr - r)) >> 16));
pix[i + 3] = uchar(a + ((aca * (0xFF - a)) >> 16));
}
}
return image;
}
QImage prepareOpaque(QImage image) {
if (image.hasAlphaChannel()) {
image = std::move(image).convertToFormat(QImage::Format_ARGB32_Premultiplied);
auto ints = reinterpret_cast<uint32*>(image.bits());
auto bg = anim::shifted(st::imageBgTransparent->c);
auto width = image.width();
auto height = image.height();
auto addPerLine = (image.bytesPerLine() / sizeof(uint32)) - width;
for (auto y = 0; y != height; ++y) {
for (auto x = 0; x != width; ++x) {
auto components = anim::shifted(*ints);
*ints++ = anim::unshifted(components * 256 + bg * (256 - anim::getAlpha(components)));
}
ints += addPerLine;
}
}
return image;
}
QImage prepare(QImage img, int w, int h, Images::Options options, int outerw, int outerh, const style::color *colored) {
Assert(!img.isNull());
if (options & Images::Option::Blurred) {
img = prepareBlur(std::move(img));
Assert(!img.isNull());
}
if (w <= 0 || (w == img.width() && (h <= 0 || h == img.height()))) {
} else if (h <= 0) {
img = img.scaledToWidth(w, (options & Images::Option::Smooth) ? Qt::SmoothTransformation : Qt::FastTransformation);
Assert(!img.isNull());
} else {
img = img.scaled(w, h, Qt::IgnoreAspectRatio, (options & Images::Option::Smooth) ? Qt::SmoothTransformation : Qt::FastTransformation);
Assert(!img.isNull());
}
if (outerw > 0 && outerh > 0) {
outerw *= cIntRetinaFactor();
outerh *= cIntRetinaFactor();
if (outerw != w || outerh != h) {
img.setDevicePixelRatio(cRetinaFactor());
auto result = QImage(outerw, outerh, QImage::Format_ARGB32_Premultiplied);
result.setDevicePixelRatio(cRetinaFactor());
if (options & Images::Option::TransparentBackground) {
result.fill(Qt::transparent);
}
{
QPainter p(&result);
if (!(options & Images::Option::TransparentBackground)) {
if (w < outerw || h < outerh) {
p.fillRect(0, 0, result.width(), result.height(), st::imageBg);
}
}
p.drawImage((result.width() - img.width()) / (2 * cIntRetinaFactor()), (result.height() - img.height()) / (2 * cIntRetinaFactor()), img);
}
img = result;
Assert(!img.isNull());
}
}
auto corners = [](Images::Options options) {
return ((options & Images::Option::RoundedTopLeft) ? RectPart::TopLeft : RectPart::None)
| ((options & Images::Option::RoundedTopRight) ? RectPart::TopRight : RectPart::None)
| ((options & Images::Option::RoundedBottomLeft) ? RectPart::BottomLeft : RectPart::None)
| ((options & Images::Option::RoundedBottomRight) ? RectPart::BottomRight : RectPart::None);
};
if (options & Images::Option::Circled) {
prepareCircle(img);
Assert(!img.isNull());
} else if (options & Images::Option::RoundedLarge) {
prepareRound(img, ImageRoundRadius::Large, corners(options));
Assert(!img.isNull());
} else if (options & Images::Option::RoundedSmall) {
prepareRound(img, ImageRoundRadius::Small, corners(options));
Assert(!img.isNull());
}
if (options & Images::Option::Colored) {
Assert(colored != nullptr);
img = prepareColored(*colored, std::move(img));
}
img.setDevicePixelRatio(cRetinaFactor());
return img;
}
} // namespace Images