tdesktop/Telegram/SourceFiles/media/streaming/media_streaming_video_track...

1092 lines
29 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop application for the Telegram messaging service.
For license and copyright information please follow this link:
https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
*/
#include "media/streaming/media_streaming_video_track.h"
#include "media/audio/media_audio.h"
#include "base/concurrent_timer.h"
namespace Media {
namespace Streaming {
namespace {
constexpr auto kMaxFrameArea = 3840 * 2160; // usual 4K
constexpr auto kDisplaySkipped = crl::time(-1);
constexpr auto kFinishedPosition = std::numeric_limits<crl::time>::max();
static_assert(kDisplaySkipped != kTimeUnknown);
} // namespace
class VideoTrackObject final {
public:
using Frame = VideoTrack::Frame;
using Shared = VideoTrack::Shared;
VideoTrackObject(
crl::weak_on_queue<VideoTrackObject> weak,
const PlaybackOptions &options,
not_null<Shared*> shared,
Stream &&stream,
const AudioMsgId &audioId,
FnMut<void(const Information &)> ready,
Fn<void(Error)> error);
void process(std::vector<FFmpeg::Packet> &&packets);
[[nodisacrd]] rpl::producer<> checkNextFrame() const;
[[nodisacrd]] rpl::producer<> waitingForData() const;
void pause(crl::time time);
void resume(crl::time time);
void setSpeed(float64 speed);
void setWaitForMarkAsShown(bool wait);
void interrupt();
void frameShown();
void addTimelineDelay(crl::time delayed);
void updateFrameRequest(
const Instance *instance,
const FrameRequest &request);
void removeFrameRequest(const Instance *instance);
private:
enum class FrameResult {
Done,
Error,
Waiting,
Looped,
Finished,
};
using ReadEnoughState = base::optional_variant<
FrameResult,
Shared::PrepareNextCheck>;
void fail(Error error);
[[nodiscard]] bool interrupted() const;
[[nodiscard]] bool tryReadFirstFrame(FFmpeg::Packet &&packet);
[[nodiscard]] bool fillStateFromFrame();
[[nodiscard]] bool processFirstFrame();
void queueReadFrames(crl::time delay = 0);
void readFrames();
[[nodiscard]] ReadEnoughState readEnoughFrames(crl::time trackTime);
[[nodiscard]] FrameResult readFrame(not_null<Frame*> frame);
void fillRequests(not_null<Frame*> frame) const;
[[nodiscard]] QSize chooseOriginalResize() const;
void presentFrameIfNeeded();
void callReady();
[[nodiscard]] bool loopAround();
[[nodiscard]] crl::time computeDuration() const;
[[nodiscard]] int durationByPacket(const FFmpeg::Packet &packet);
// Force frame position to be clamped to [0, duration] and monotonic.
[[nodiscard]] crl::time currentFramePosition() const;
[[nodiscard]] TimePoint trackTime() const;
const crl::weak_on_queue<VideoTrackObject> _weak;
PlaybackOptions _options;
// Main thread wrapper destructor will set _shared back to nullptr.
// All queued method calls after that should be discarded.
Shared *_shared = nullptr;
Stream _stream;
AudioMsgId _audioId;
bool _readTillEnd = false;
FnMut<void(const Information &)> _ready;
Fn<void(Error)> _error;
crl::time _pausedTime = kTimeUnknown;
crl::time _resumedTime = kTimeUnknown;
int _durationByLastPacket = 0;
mutable TimePoint _syncTimePoint;
crl::time _loopingShift = 0;
rpl::event_stream<> _checkNextFrame;
rpl::event_stream<> _waitingForData;
base::flat_map<const Instance*, FrameRequest> _requests;
bool _queued = false;
base::ConcurrentTimer _readFramesTimer;
// For initial frame skipping for an exact seek.
FFmpeg::FramePointer _initialSkippingFrame;
};
VideoTrackObject::VideoTrackObject(
crl::weak_on_queue<VideoTrackObject> weak,
const PlaybackOptions &options,
not_null<Shared*> shared,
Stream &&stream,
const AudioMsgId &audioId,
FnMut<void(const Information &)> ready,
Fn<void(Error)> error)
: _weak(std::move(weak))
, _options(options)
, _shared(shared)
, _stream(std::move(stream))
, _audioId(audioId)
, _ready(std::move(ready))
, _error(std::move(error))
, _readFramesTimer(_weak, [=] { readFrames(); }) {
Expects(_stream.duration > 1);
Expects(_ready != nullptr);
Expects(_error != nullptr);
}
rpl::producer<> VideoTrackObject::checkNextFrame() const {
return interrupted()
? (rpl::complete<>() | rpl::type_erased())
: !_shared->firstPresentHappened()
? (_checkNextFrame.events() | rpl::type_erased())
: _checkNextFrame.events_starting_with({});
}
rpl::producer<> VideoTrackObject::waitingForData() const {
return interrupted()
? (rpl::never() | rpl::type_erased())
: _waitingForData.events();
}
void VideoTrackObject::process(std::vector<FFmpeg::Packet> &&packets) {
if (interrupted() || packets.empty()) {
return;
}
if (packets.front().empty()) {
Assert(packets.size() == 1);
_readTillEnd = true;
} else if (!_readTillEnd) {
//for (const auto &packet : packets) {
// // Maybe it is enough to count by list.back()?.. hope so.
// accumulate_max(
// _durationByLastPacket,
// durationByPacket(packet));
// if (interrupted()) {
// return;
// }
//}
accumulate_max(
_durationByLastPacket,
durationByPacket(packets.back()));
if (interrupted()) {
return;
}
}
for (auto i = begin(packets), e = end(packets); i != e; ++i) {
if (_shared->initialized()) {
_stream.queue.insert(
end(_stream.queue),
std::make_move_iterator(i),
std::make_move_iterator(e));
queueReadFrames();
break;
} else if (!tryReadFirstFrame(std::move(*i))) {
fail(Error::InvalidData);
break;
}
}
}
int VideoTrackObject::durationByPacket(const FFmpeg::Packet &packet) {
// We've set this value on the first cycle.
if (_loopingShift || _stream.duration != kDurationUnavailable) {
return 0;
}
const auto result = FFmpeg::DurationByPacket(packet, _stream.timeBase);
if (result < 0) {
fail(Error::InvalidData);
return 0;
}
Ensures(result > 0);
return result;
}
void VideoTrackObject::queueReadFrames(crl::time delay) {
if (delay > 0) {
_readFramesTimer.callOnce(delay);
} else if (!_queued) {
_queued = true;
_weak.with([](VideoTrackObject &that) {
that._queued = false;
that.readFrames();
});
}
}
void VideoTrackObject::readFrames() {
if (interrupted()) {
return;
}
auto time = trackTime().trackTime;
while (true) {
const auto result = readEnoughFrames(time);
result.match([&](FrameResult result) {
if (result == FrameResult::Done
|| result == FrameResult::Finished) {
presentFrameIfNeeded();
} else if (result == FrameResult::Looped) {
const auto duration = computeDuration();
Assert(duration != kDurationUnavailable);
time -= duration;
}
}, [&](Shared::PrepareNextCheck delay) {
Expects(delay == kTimeUnknown || delay > 0);
if (delay != kTimeUnknown) {
queueReadFrames(delay);
}
}, [](std::nullopt_t) {
});
if (result.has_value()) {
break;
}
}
}
auto VideoTrackObject::readEnoughFrames(crl::time trackTime)
-> ReadEnoughState {
const auto dropStaleFrames = !_options.waitForMarkAsShown;
const auto state = _shared->prepareState(trackTime, dropStaleFrames);
return state.match([&](Shared::PrepareFrame frame) -> ReadEnoughState {
while (true) {
const auto result = readFrame(frame);
if (result != FrameResult::Done) {
return result;
} else if (!dropStaleFrames
|| !VideoTrack::IsStale(frame, trackTime)) {
return std::nullopt;
}
}
}, [&](Shared::PrepareNextCheck delay) -> ReadEnoughState {
return delay;
}, [&](std::nullopt_t) -> ReadEnoughState {
return FrameResult::Done;
});
}
bool VideoTrackObject::loopAround() {
const auto duration = computeDuration();
if (duration == kDurationUnavailable) {
LOG(("Streaming Error: "
"Couldn't find out the real video stream duration."));
return false;
}
avcodec_flush_buffers(_stream.codec.get());
_loopingShift += duration;
_readTillEnd = false;
return true;
}
crl::time VideoTrackObject::computeDuration() const {
if (_stream.duration != kDurationUnavailable) {
return _stream.duration;
} else if ((_loopingShift || _readTillEnd) && _durationByLastPacket) {
// We looped, so it already holds full stream duration.
return _durationByLastPacket;
}
return kDurationUnavailable;
}
auto VideoTrackObject::readFrame(not_null<Frame*> frame) -> FrameResult {
if (const auto error = ReadNextFrame(_stream)) {
if (error.code() == AVERROR_EOF) {
if (!_options.loop) {
frame->position = kFinishedPosition;
frame->displayed = kTimeUnknown;
return FrameResult::Finished;
} else if (loopAround()) {
return FrameResult::Looped;
} else {
fail(Error::InvalidData);
return FrameResult::Error;
}
} else if (error.code() != AVERROR(EAGAIN) || _readTillEnd) {
fail(Error::InvalidData);
return FrameResult::Error;
}
Assert(_stream.queue.empty());
_waitingForData.fire({});
return FrameResult::Waiting;
}
const auto position = currentFramePosition();
if (position == kTimeUnknown) {
fail(Error::InvalidData);
return FrameResult::Error;
}
std::swap(frame->decoded, _stream.frame);
frame->position = position;
frame->displayed = kTimeUnknown;
return FrameResult::Done;
}
void VideoTrackObject::fillRequests(not_null<Frame*> frame) const {
auto i = frame->prepared.begin();
for (const auto &[instance, request] : _requests) {
while (i != frame->prepared.end() && i->first < instance) {
i = frame->prepared.erase(i);
}
if (i == frame->prepared.end() || i->first > instance) {
i = frame->prepared.emplace(instance, request).first;
}
++i;
}
while (i != frame->prepared.end()) {
i = frame->prepared.erase(i);
}
}
QSize VideoTrackObject::chooseOriginalResize() const {
auto chosen = QSize();
for (const auto &[_, request] : _requests) {
if (request.resize.isEmpty()) {
return QSize();
}
const auto byWidth = (request.resize.width() >= chosen.width());
const auto byHeight = (request.resize.height() >= chosen.height());
if (byWidth && byHeight) {
chosen = request.resize;
} else if (byWidth || byHeight) {
return QSize();
}
}
return chosen;
}
void VideoTrackObject::presentFrameIfNeeded() {
if (_pausedTime != kTimeUnknown || _resumedTime == kTimeUnknown) {
return;
}
const auto rasterize = [&](not_null<Frame*> frame) {
Expects(frame->position != kFinishedPosition);
fillRequests(frame);
frame->alpha = (frame->decoded->format == AV_PIX_FMT_BGRA);
frame->original = ConvertFrame(
_stream,
frame->decoded.get(),
chooseOriginalResize(),
std::move(frame->original));
if (frame->original.isNull()) {
frame->prepared.clear();
fail(Error::InvalidData);
return;
}
VideoTrack::PrepareFrameByRequests(frame, _stream.rotation);
Ensures(VideoTrack::IsRasterized(frame));
};
const auto dropStaleFrames = !_options.waitForMarkAsShown;
const auto presented = _shared->presentFrame(
trackTime(),
_options.speed,
dropStaleFrames,
rasterize);
addTimelineDelay(presented.addedWorldTimeDelay);
if (presented.displayPosition == kFinishedPosition) {
interrupt();
_checkNextFrame = rpl::event_stream<>();
return;
} else if (presented.displayPosition != kTimeUnknown) {
_checkNextFrame.fire({});
}
if (presented.nextCheckDelay != kTimeUnknown) {
Assert(presented.nextCheckDelay >= 0);
queueReadFrames(presented.nextCheckDelay);
}
}
void VideoTrackObject::pause(crl::time time) {
Expects(_syncTimePoint.valid());
if (interrupted()) {
return;
} else if (_pausedTime == kTimeUnknown) {
_pausedTime = time;
}
}
void VideoTrackObject::resume(crl::time time) {
Expects(_syncTimePoint.trackTime != kTimeUnknown);
if (interrupted()) {
return;
}
// Resumed time used to validate sync to audio.
_resumedTime = time;
if (_pausedTime != kTimeUnknown) {
Assert(_pausedTime <= time);
_syncTimePoint.worldTime += (time - _pausedTime);
_pausedTime = kTimeUnknown;
} else {
_syncTimePoint.worldTime = time;
}
queueReadFrames();
Ensures(_syncTimePoint.valid());
Ensures(_pausedTime == kTimeUnknown);
}
void VideoTrackObject::setSpeed(float64 speed) {
if (interrupted()) {
return;
}
if (_syncTimePoint.valid()) {
_syncTimePoint = trackTime();
}
_options.speed = speed;
}
void VideoTrackObject::setWaitForMarkAsShown(bool wait) {
if (interrupted()) {
return;
}
_options.waitForMarkAsShown = wait;
}
bool VideoTrackObject::interrupted() const {
return (_shared == nullptr);
}
void VideoTrackObject::frameShown() {
if (interrupted()) {
return;
}
queueReadFrames();
}
void VideoTrackObject::addTimelineDelay(crl::time delayed) {
Expects(_syncTimePoint.valid());
if (!delayed) {
return;
}
_syncTimePoint.worldTime += delayed;
}
void VideoTrackObject::updateFrameRequest(
const Instance *instance,
const FrameRequest &request) {
_requests.emplace(instance, request);
}
void VideoTrackObject::removeFrameRequest(const Instance *instance) {
_requests.remove(instance);
}
bool VideoTrackObject::tryReadFirstFrame(FFmpeg::Packet &&packet) {
if (ProcessPacket(_stream, std::move(packet)).failed()) {
return false;
}
while (true) {
if (const auto error = ReadNextFrame(_stream)) {
if (error.code() == AVERROR_EOF) {
if (!_initialSkippingFrame) {
return false;
}
// Return the last valid frame if we seek too far.
_stream.frame = std::move(_initialSkippingFrame);
return processFirstFrame();
} else if (error.code() != AVERROR(EAGAIN) || _readTillEnd) {
return false;
} else {
// Waiting for more packets.
return true;
}
} else if (!fillStateFromFrame()) {
return false;
} else if (_syncTimePoint.trackTime >= _options.position) {
return processFirstFrame();
}
// Seek was with AVSEEK_FLAG_BACKWARD so first we get old frames.
// Try skipping frames until one is after the requested position.
std::swap(_initialSkippingFrame, _stream.frame);
if (!_stream.frame) {
_stream.frame = FFmpeg::MakeFramePointer();
}
}
}
bool VideoTrackObject::processFirstFrame() {
if (_stream.frame->width * _stream.frame->height >= kMaxFrameArea) {
return false;
}
auto frame = ConvertFrame(
_stream,
_stream.frame.get(),
QSize(),
QImage());
if (frame.isNull()) {
return false;
}
_shared->init(std::move(frame), _syncTimePoint.trackTime);
callReady();
queueReadFrames();
return true;
}
crl::time VideoTrackObject::currentFramePosition() const {
const auto position = FramePosition(_stream);
if (position == kTimeUnknown || position == kFinishedPosition) {
return kTimeUnknown;
}
return _loopingShift + std::clamp(
position,
crl::time(0),
computeDuration() - 1);
}
bool VideoTrackObject::fillStateFromFrame() {
const auto position = currentFramePosition();
if (position == kTimeUnknown) {
return false;
}
_syncTimePoint.trackTime = position;
return true;
}
void VideoTrackObject::callReady() {
Expects(_ready != nullptr);
const auto frame = _shared->frameForPaint();
auto data = VideoInformation();
data.size = FFmpeg::CorrectByAspect(
frame->original.size(),
_stream.aspect);
if (FFmpeg::RotationSwapWidthHeight(_stream.rotation)) {
data.size.transpose();
}
data.cover = frame->original;
data.rotation = _stream.rotation;
data.state.duration = _stream.duration;
data.state.position = _syncTimePoint.trackTime;
data.state.receivedTill = _readTillEnd
? _stream.duration
: _syncTimePoint.trackTime;
base::take(_ready)({ data });
}
TimePoint VideoTrackObject::trackTime() const {
auto result = TimePoint();
result.worldTime = (_pausedTime != kTimeUnknown)
? _pausedTime
: crl::now();
if (!_syncTimePoint) {
result.trackTime = _syncTimePoint.trackTime;
return result;
}
Assert(_resumedTime != kTimeUnknown);
if (_options.syncVideoByAudio && _audioId.externalPlayId()) {
const auto mixer = Media::Player::mixer();
const auto point = mixer->getExternalSyncTimePoint(_audioId);
if (point && point.worldTime > _resumedTime) {
_syncTimePoint = point;
}
}
const auto adjust = (result.worldTime - _syncTimePoint.worldTime);
result.trackTime = _syncTimePoint.trackTime
+ crl::time(std::round(adjust * _options.speed));
return result;
}
void VideoTrackObject::interrupt() {
_shared = nullptr;
}
void VideoTrackObject::fail(Error error) {
interrupt();
_error(error);
}
void VideoTrack::Shared::init(QImage &&cover, crl::time position) {
Expects(!initialized());
_frames[0].original = std::move(cover);
_frames[0].position = position;
// Usually main thread sets displayed time before _counter increment.
// But in this case we update _counter, so we set a fake displayed time.
_frames[0].displayed = kDisplaySkipped;
_delay = 0;
_counter.store(0, std::memory_order_release);
}
int VideoTrack::Shared::counter() const {
return _counter.load(std::memory_order_acquire);
}
bool VideoTrack::Shared::initialized() const {
return (counter() != kCounterUninitialized);
}
not_null<VideoTrack::Frame*> VideoTrack::Shared::getFrame(int index) {
Expects(index >= 0 && index < kFramesCount);
return &_frames[index];
}
not_null<const VideoTrack::Frame*> VideoTrack::Shared::getFrame(
int index) const {
Expects(index >= 0 && index < kFramesCount);
return &_frames[index];
}
auto VideoTrack::Shared::prepareState(
crl::time trackTime,
bool dropStaleFrames)
-> PrepareState {
const auto prepareNext = [&](int index) -> PrepareState {
const auto frame = getFrame(index);
const auto next = getFrame((index + 1) % kFramesCount);
if (!IsDecoded(frame)) {
return frame;
} else if (!IsDecoded(next)) {
return next;
} else if (next->position < frame->position) {
std::swap(*frame, *next);
}
if (next->position == kFinishedPosition || !dropStaleFrames) {
return PrepareNextCheck(kTimeUnknown);
} else if (IsStale(frame, trackTime)) {
std::swap(*frame, *next);
next->displayed = kDisplaySkipped;
return next;
} else {
return PrepareNextCheck(frame->position - trackTime + 1);
}
};
const auto finishPrepare = [&](int index) -> PrepareState {
// If player already awaits next frame - we ignore if it's stale.
dropStaleFrames = false;
const auto result = prepareNext(index);
return result.is<PrepareNextCheck>() ? PrepareState() : result;
};
switch (counter()) {
case 0: return finishPrepare(1);
case 1: return prepareNext(2);
case 2: return finishPrepare(2);
case 3: return prepareNext(3);
case 4: return finishPrepare(3);
case 5: return prepareNext(0);
case 6: return finishPrepare(0);
case 7: return prepareNext(1);
}
Unexpected("Counter value in VideoTrack::Shared::prepareState.");
}
// Sometimes main thread subscribes to check frame requests before
// the first frame is ready and presented and sometimes after.
bool VideoTrack::Shared::firstPresentHappened() const {
switch (counter()) {
case 0: return false;
case 1: return true;
}
Unexpected("Counter value in VideoTrack::Shared::firstPresentHappened.");
}
template <typename RasterizeCallback>
auto VideoTrack::Shared::presentFrame(
TimePoint time,
float64 playbackSpeed,
bool dropStaleFrames,
RasterizeCallback &&rasterize)
-> PresentFrame {
const auto present = [&](int counter, int index) -> PresentFrame {
const auto frame = getFrame(index);
const auto position = frame->position;
const auto addedWorldTimeDelay = base::take(_delay);
if (position == kFinishedPosition) {
return { kFinishedPosition, kTimeUnknown, addedWorldTimeDelay };
}
rasterize(frame);
if (!IsRasterized(frame)) {
// Error happened during frame prepare.
return { kTimeUnknown, kTimeUnknown, addedWorldTimeDelay };
}
const auto trackLeft = position - time.trackTime;
frame->display = time.worldTime
+ addedWorldTimeDelay
+ crl::time(std::round(trackLeft / playbackSpeed));
// Release this frame to the main thread for rendering.
_counter.store(
(counter + 1) % (2 * kFramesCount),
std::memory_order_release);
return { position, crl::time(0), addedWorldTimeDelay };
};
const auto nextCheckDelay = [&](int index) -> PresentFrame {
const auto frame = getFrame(index);
if (frame->position == kFinishedPosition) {
return { kFinishedPosition, kTimeUnknown };
}
const auto next = getFrame((index + 1) % kFramesCount);
if (!IsDecoded(frame) || !IsDecoded(next)) {
return { kTimeUnknown, crl::time(0) };
} else if (next->position == kFinishedPosition
|| !dropStaleFrames
|| IsStale(frame, time.trackTime)) {
return { kTimeUnknown, kTimeUnknown };
}
return { kTimeUnknown, (frame->position - time.trackTime + 1) };
};
switch (counter()) {
case 0: return present(0, 1);
case 1: return nextCheckDelay(2);
case 2: return present(2, 2);
case 3: return nextCheckDelay(3);
case 4: return present(4, 3);
case 5: return nextCheckDelay(0);
case 6: return present(6, 0);
case 7: return nextCheckDelay(1);
}
Unexpected("Counter value in VideoTrack::Shared::prepareState.");
}
crl::time VideoTrack::Shared::nextFrameDisplayTime() const {
const auto frameDisplayTime = [&](int counter) {
const auto next = (counter + 1) % (2 * kFramesCount);
const auto index = next / 2;
const auto frame = getFrame(index);
if (frame->displayed != kTimeUnknown) {
// Frame already displayed, but not yet shown.
return kFrameDisplayTimeAlreadyDone;
}
Assert(IsRasterized(frame));
Assert(frame->display != kTimeUnknown);
return frame->display;
};
switch (counter()) {
case 0: return kTimeUnknown;
case 1: return frameDisplayTime(1);
case 2: return kTimeUnknown;
case 3: return frameDisplayTime(3);
case 4: return kTimeUnknown;
case 5: return frameDisplayTime(5);
case 6: return kTimeUnknown;
case 7: return frameDisplayTime(7);
}
Unexpected("Counter value in VideoTrack::Shared::nextFrameDisplayTime.");
}
crl::time VideoTrack::Shared::markFrameDisplayed(crl::time now) {
const auto mark = [&](int counter) {
const auto next = (counter + 1) % (2 * kFramesCount);
const auto index = next / 2;
const auto frame = getFrame(index);
Assert(frame->position != kTimeUnknown);
if (frame->displayed == kTimeUnknown) {
frame->displayed = now;
}
return frame->position;
};
switch (counter()) {
case 0: Unexpected("Value 0 in VideoTrack::Shared::markFrameDisplayed.");
case 1: return mark(1);
case 2: Unexpected("Value 2 in VideoTrack::Shared::markFrameDisplayed.");
case 3: return mark(3);
case 4: Unexpected("Value 4 in VideoTrack::Shared::markFrameDisplayed.");
case 5: return mark(5);
case 6: Unexpected("Value 6 in VideoTrack::Shared::markFrameDisplayed.");
case 7: return mark(7);
}
Unexpected("Counter value in VideoTrack::Shared::markFrameDisplayed.");
}
void VideoTrack::Shared::addTimelineDelay(crl::time delayed) {
if (!delayed) {
return;
}
const auto recountCurrentFrame = [&](int counter) {
_delay += delayed;
//const auto next = (counter + 1) % (2 * kFramesCount);
//const auto index = next / 2;
//const auto frame = getFrame(index);
//if (frame->displayed != kTimeUnknown) {
// // Frame already displayed.
// return;
//}
//Assert(IsRasterized(frame));
//Assert(frame->display != kTimeUnknown);
//frame->display = countFrameDisplayTime(frame->index);
};
switch (counter()) {
case 0: Unexpected("Value 0 in VideoTrack::Shared::addTimelineDelay.");
case 1: return recountCurrentFrame(1);
case 2: Unexpected("Value 2 in VideoTrack::Shared::addTimelineDelay.");
case 3: return recountCurrentFrame(3);
case 4: Unexpected("Value 4 in VideoTrack::Shared::addTimelineDelay.");
case 5: return recountCurrentFrame(5);
case 6: Unexpected("Value 6 in VideoTrack::Shared::addTimelineDelay.");
case 7: return recountCurrentFrame(7);
}
Unexpected("Counter value in VideoTrack::Shared::addTimelineDelay.");
}
bool VideoTrack::Shared::markFrameShown() {
const auto jump = [&](int counter) {
const auto next = (counter + 1) % (2 * kFramesCount);
const auto index = next / 2;
const auto frame = getFrame(index);
if (frame->displayed == kTimeUnknown) {
return false;
}
_counter.store(
next,
std::memory_order_release);
return true;
};
switch (counter()) {
case 0: return false;
case 1: return jump(1);
case 2: return false;
case 3: return jump(3);
case 4: return false;
case 5: return jump(5);
case 6: return false;
case 7: return jump(7);
}
Unexpected("Counter value in VideoTrack::Shared::markFrameShown.");
}
not_null<VideoTrack::Frame*> VideoTrack::Shared::frameForPaint() {
const auto result = getFrame(counter() / 2);
Assert(!result->original.isNull());
Assert(result->position != kTimeUnknown);
Assert(result->displayed != kTimeUnknown);
return result;
}
VideoTrack::VideoTrack(
const PlaybackOptions &options,
Stream &&stream,
const AudioMsgId &audioId,
FnMut<void(const Information &)> ready,
Fn<void(Error)> error)
: _streamIndex(stream.index)
, _streamTimeBase(stream.timeBase)
, _streamDuration(stream.duration)
, _streamRotation(stream.rotation)
//, _streamAspect(stream.aspect)
, _shared(std::make_unique<Shared>())
, _wrapped(
options,
_shared.get(),
std::move(stream),
audioId,
std::move(ready),
std::move(error)) {
}
int VideoTrack::streamIndex() const {
return _streamIndex;
}
AVRational VideoTrack::streamTimeBase() const {
return _streamTimeBase;
}
crl::time VideoTrack::streamDuration() const {
return _streamDuration;
}
void VideoTrack::process(std::vector<FFmpeg::Packet> &&packets) {
_wrapped.with([
packets = std::move(packets)
](Implementation &unwrapped) mutable {
unwrapped.process(std::move(packets));
});
}
void VideoTrack::waitForData() {
}
void VideoTrack::pause(crl::time time) {
_wrapped.with([=](Implementation &unwrapped) {
unwrapped.pause(time);
});
}
void VideoTrack::resume(crl::time time) {
_wrapped.with([=](Implementation &unwrapped) {
unwrapped.resume(time);
});
}
void VideoTrack::setSpeed(float64 speed) {
_wrapped.with([=](Implementation &unwrapped) {
unwrapped.setSpeed(speed);
});
}
void VideoTrack::setWaitForMarkAsShown(bool wait) {
_wrapped.with([=](Implementation &unwrapped) {
unwrapped.setWaitForMarkAsShown(wait);
});
}
crl::time VideoTrack::nextFrameDisplayTime() const {
return _shared->nextFrameDisplayTime();
}
crl::time VideoTrack::markFrameDisplayed(crl::time now) {
const auto result = _shared->markFrameDisplayed(now);
Ensures(result != kTimeUnknown);
return result;
}
void VideoTrack::addTimelineDelay(crl::time delayed) {
_shared->addTimelineDelay(delayed);
//if (!delayed) {
// return;
//}
//_wrapped.with([=](Implementation &unwrapped) mutable {
// unwrapped.addTimelineDelay(delayed);
//});
}
bool VideoTrack::markFrameShown() {
if (!_shared->markFrameShown()) {
return false;
}
_wrapped.with([](Implementation &unwrapped) {
unwrapped.frameShown();
});
return true;
}
QImage VideoTrack::frame(
const FrameRequest &request,
const Instance *instance) {
const auto frame = _shared->frameForPaint();
const auto i = frame->prepared.find(instance);
const auto none = (i == frame->prepared.end());
const auto preparedFor = frame->prepared.empty()
? FrameRequest::NonStrict()
: (none ? frame->prepared.begin() : i)->second.request;
const auto changed = !preparedFor.goodFor(request);
const auto useRequest = changed ? request : preparedFor;
if (changed) {
_wrapped.with([=](Implementation &unwrapped) {
unwrapped.updateFrameRequest(instance, useRequest);
});
}
if (!frame->alpha
&& GoodForRequest(frame->original, _streamRotation, useRequest)) {
return frame->original;
} else if (changed || none || i->second.image.isNull()) {
const auto j = none
? frame->prepared.emplace(instance, useRequest).first
: i;
if (changed && !none) {
i->second.request = useRequest;
}
if (frame->prepared.size() > 1) {
for (auto &[alreadyInstance, prepared] : frame->prepared) {
if (alreadyInstance != instance
&& prepared.request == useRequest
&& !prepared.image.isNull()) {
return prepared.image;
}
}
}
j->second.image = PrepareByRequest(
frame->original,
frame->alpha,
_streamRotation,
useRequest,
std::move(j->second.image));
return j->second.image;
}
return i->second.image;
}
void VideoTrack::unregisterInstance(not_null<const Instance*> instance) {
_wrapped.with([=](Implementation &unwrapped) {
unwrapped.removeFrameRequest(instance);
});
}
void VideoTrack::PrepareFrameByRequests(
not_null<Frame*> frame,
int rotation) {
Expects(!frame->original.isNull());
const auto begin = frame->prepared.begin();
const auto end = frame->prepared.end();
for (auto i = begin; i != end; ++i) {
auto &prepared = i->second;
if (frame->alpha
|| !GoodForRequest(frame->original, rotation, prepared.request)) {
auto j = begin;
for (; j != i; ++j) {
if (j->second.request == prepared.request) {
prepared.image = QImage();
break;
}
}
if (j == i) {
prepared.image = PrepareByRequest(
frame->original,
frame->alpha,
rotation,
prepared.request,
std::move(prepared.image));
}
}
}
}
bool VideoTrack::IsDecoded(not_null<const Frame*> frame) {
return (frame->position != kTimeUnknown)
&& (frame->displayed == kTimeUnknown);
}
bool VideoTrack::IsRasterized(not_null<const Frame*> frame) {
return IsDecoded(frame)
&& !frame->original.isNull();
}
bool VideoTrack::IsStale(not_null<const Frame*> frame, crl::time trackTime) {
Expects(IsDecoded(frame));
return (frame->position < trackTime);
}
rpl::producer<> VideoTrack::checkNextFrame() const {
return _wrapped.producer_on_main([](const Implementation &unwrapped) {
return unwrapped.checkNextFrame();
});
}
rpl::producer<> VideoTrack::waitingForData() const {
return _wrapped.producer_on_main([](const Implementation &unwrapped) {
return unwrapped.waitingForData();
});
}
VideoTrack::~VideoTrack() {
_wrapped.with([shared = std::move(_shared)](Implementation &unwrapped) {
unwrapped.interrupt();
});
}
} // namespace Streaming
} // namespace Media