1544 lines
60 KiB
C++
1544 lines
60 KiB
C++
//===-- primary64.h ---------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SCUDO_PRIMARY64_H_
|
|
#define SCUDO_PRIMARY64_H_
|
|
|
|
#include "bytemap.h"
|
|
#include "common.h"
|
|
#include "list.h"
|
|
#include "local_cache.h"
|
|
#include "mem_map.h"
|
|
#include "memtag.h"
|
|
#include "options.h"
|
|
#include "release.h"
|
|
#include "stats.h"
|
|
#include "string_utils.h"
|
|
#include "thread_annotations.h"
|
|
|
|
namespace scudo {
|
|
|
|
// SizeClassAllocator64 is an allocator tuned for 64-bit address space.
|
|
//
|
|
// It starts by reserving NumClasses * 2^RegionSizeLog bytes, equally divided in
|
|
// Regions, specific to each size class. Note that the base of that mapping is
|
|
// random (based to the platform specific map() capabilities). If
|
|
// PrimaryEnableRandomOffset is set, each Region actually starts at a random
|
|
// offset from its base.
|
|
//
|
|
// Regions are mapped incrementally on demand to fulfill allocation requests,
|
|
// those mappings being split into equally sized Blocks based on the size class
|
|
// they belong to. The Blocks created are shuffled to prevent predictable
|
|
// address patterns (the predictability increases with the size of the Blocks).
|
|
//
|
|
// The 1st Region (for size class 0) holds the TransferBatches. This is a
|
|
// structure used to transfer arrays of available pointers from the class size
|
|
// freelist to the thread specific freelist, and back.
|
|
//
|
|
// The memory used by this allocator is never unmapped, but can be partially
|
|
// released if the platform allows for it.
|
|
|
|
template <typename Config> class SizeClassAllocator64 {
|
|
public:
|
|
typedef typename Config::Primary::CompactPtrT CompactPtrT;
|
|
typedef typename Config::Primary::SizeClassMap SizeClassMap;
|
|
static const uptr CompactPtrScale = Config::Primary::CompactPtrScale;
|
|
static const uptr GroupSizeLog = Config::Primary::GroupSizeLog;
|
|
static const uptr GroupScale = GroupSizeLog - CompactPtrScale;
|
|
typedef SizeClassAllocator64<Config> ThisT;
|
|
typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
|
|
typedef typename CacheT::TransferBatch TransferBatch;
|
|
typedef typename CacheT::BatchGroup BatchGroup;
|
|
|
|
static uptr getSizeByClassId(uptr ClassId) {
|
|
return (ClassId == SizeClassMap::BatchClassId)
|
|
? roundUp(sizeof(TransferBatch), 1U << CompactPtrScale)
|
|
: SizeClassMap::getSizeByClassId(ClassId);
|
|
}
|
|
|
|
static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
|
|
|
|
void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
|
|
DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
|
|
|
|
const uptr PageSize = getPageSizeCached();
|
|
const uptr GroupSize = (1U << GroupSizeLog);
|
|
const uptr PagesInGroup = GroupSize / PageSize;
|
|
const uptr MinSizeClass = getSizeByClassId(1);
|
|
// When trying to release pages back to memory, visiting smaller size
|
|
// classes is expensive. Therefore, we only try to release smaller size
|
|
// classes when the amount of free blocks goes over a certain threshold (See
|
|
// the comment in releaseToOSMaybe() for more details). For example, for
|
|
// size class 32, we only do the release when the size of free blocks is
|
|
// greater than 97% of pages in a group. However, this may introduce another
|
|
// issue that if the number of free blocks is bouncing between 97% ~ 100%.
|
|
// Which means we may try many page releases but only release very few of
|
|
// them (less than 3% in a group). Even though we have
|
|
// `&ReleaseToOsIntervalMs` which slightly reduce the frequency of these
|
|
// calls but it will be better to have another guard to mitigate this issue.
|
|
//
|
|
// Here we add another constraint on the minimum size requirement. The
|
|
// constraint is determined by the size of in-use blocks in the minimal size
|
|
// class. Take size class 32 as an example,
|
|
//
|
|
// +- one memory group -+
|
|
// +----------------------+------+
|
|
// | 97% of free blocks | |
|
|
// +----------------------+------+
|
|
// \ /
|
|
// 3% in-use blocks
|
|
//
|
|
// * The release size threshold is 97%.
|
|
//
|
|
// The 3% size in a group is about 7 pages. For two consecutive
|
|
// releaseToOSMaybe(), we require the difference between `PushedBlocks`
|
|
// should be greater than 7 pages. This mitigates the page releasing
|
|
// thrashing which is caused by memory usage bouncing around the threshold.
|
|
// The smallest size class takes longest time to do the page release so we
|
|
// use its size of in-use blocks as a heuristic.
|
|
SmallerBlockReleasePageDelta =
|
|
PagesInGroup * (1 + MinSizeClass / 16U) / 100;
|
|
|
|
// Reserve the space required for the Primary.
|
|
CHECK(ReservedMemory.create(/*Addr=*/0U, PrimarySize,
|
|
"scudo:primary_reserve"));
|
|
PrimaryBase = ReservedMemory.getBase();
|
|
DCHECK_NE(PrimaryBase, 0U);
|
|
|
|
u32 Seed;
|
|
const u64 Time = getMonotonicTimeFast();
|
|
if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
|
|
Seed = static_cast<u32>(Time ^ (PrimaryBase >> 12));
|
|
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
RegionInfo *Region = getRegionInfo(I);
|
|
// The actual start of a region is offset by a random number of pages
|
|
// when PrimaryEnableRandomOffset is set.
|
|
Region->RegionBeg =
|
|
(PrimaryBase + (I << Config::Primary::RegionSizeLog)) +
|
|
(Config::Primary::EnableRandomOffset
|
|
? ((getRandomModN(&Seed, 16) + 1) * PageSize)
|
|
: 0);
|
|
Region->RandState = getRandomU32(&Seed);
|
|
// Releasing small blocks is expensive, set a higher threshold to avoid
|
|
// frequent page releases.
|
|
if (isSmallBlock(getSizeByClassId(I)))
|
|
Region->TryReleaseThreshold = PageSize * SmallerBlockReleasePageDelta;
|
|
else
|
|
Region->TryReleaseThreshold = PageSize;
|
|
Region->ReleaseInfo.LastReleaseAtNs = Time;
|
|
|
|
Region->MemMapInfo.MemMap = ReservedMemory.dispatch(
|
|
PrimaryBase + (I << Config::Primary::RegionSizeLog), RegionSize);
|
|
CHECK(Region->MemMapInfo.MemMap.isAllocated());
|
|
}
|
|
shuffle(RegionInfoArray, NumClasses, &Seed);
|
|
|
|
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
|
|
}
|
|
|
|
void unmapTestOnly() NO_THREAD_SAFETY_ANALYSIS {
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
RegionInfo *Region = getRegionInfo(I);
|
|
*Region = {};
|
|
}
|
|
if (PrimaryBase)
|
|
ReservedMemory.release();
|
|
PrimaryBase = 0U;
|
|
}
|
|
|
|
// When all blocks are freed, it has to be the same size as `AllocatedUser`.
|
|
void verifyAllBlocksAreReleasedTestOnly() {
|
|
// `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
|
|
uptr BatchClassUsedInFreeLists = 0;
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
// We have to count BatchClassUsedInFreeLists in other regions first.
|
|
if (I == SizeClassMap::BatchClassId)
|
|
continue;
|
|
RegionInfo *Region = getRegionInfo(I);
|
|
ScopedLock ML(Region->MMLock);
|
|
ScopedLock FL(Region->FLLock);
|
|
const uptr BlockSize = getSizeByClassId(I);
|
|
uptr TotalBlocks = 0;
|
|
for (BatchGroup &BG : Region->FreeListInfo.BlockList) {
|
|
// `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
|
|
BatchClassUsedInFreeLists += BG.Batches.size() + 1;
|
|
for (const auto &It : BG.Batches)
|
|
TotalBlocks += It.getCount();
|
|
}
|
|
|
|
DCHECK_EQ(TotalBlocks, Region->MemMapInfo.AllocatedUser / BlockSize);
|
|
DCHECK_EQ(Region->FreeListInfo.PushedBlocks,
|
|
Region->FreeListInfo.PoppedBlocks);
|
|
}
|
|
|
|
RegionInfo *Region = getRegionInfo(SizeClassMap::BatchClassId);
|
|
ScopedLock ML(Region->MMLock);
|
|
ScopedLock FL(Region->FLLock);
|
|
const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
|
|
uptr TotalBlocks = 0;
|
|
for (BatchGroup &BG : Region->FreeListInfo.BlockList) {
|
|
if (LIKELY(!BG.Batches.empty())) {
|
|
for (const auto &It : BG.Batches)
|
|
TotalBlocks += It.getCount();
|
|
} else {
|
|
// `BatchGroup` with empty freelist doesn't have `TransferBatch` record
|
|
// itself.
|
|
++TotalBlocks;
|
|
}
|
|
}
|
|
DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
|
|
Region->MemMapInfo.AllocatedUser / BlockSize);
|
|
DCHECK_GE(Region->FreeListInfo.PoppedBlocks,
|
|
Region->FreeListInfo.PushedBlocks);
|
|
const uptr BlocksInUse =
|
|
Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks;
|
|
DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
|
|
}
|
|
|
|
TransferBatch *popBatch(CacheT *C, uptr ClassId) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
RegionInfo *Region = getRegionInfo(ClassId);
|
|
|
|
{
|
|
ScopedLock L(Region->FLLock);
|
|
TransferBatch *B = popBatchImpl(C, ClassId, Region);
|
|
if (LIKELY(B))
|
|
return B;
|
|
}
|
|
|
|
bool PrintStats = false;
|
|
TransferBatch *B = nullptr;
|
|
|
|
while (true) {
|
|
// When two threads compete for `Region->MMLock`, we only want one of them
|
|
// does the populateFreeListAndPopBatch(). To avoid both of them doing
|
|
// that, always check the freelist before mapping new pages.
|
|
//
|
|
// TODO(chiahungduan): Use a condition variable so that we don't need to
|
|
// hold `Region->MMLock` here.
|
|
ScopedLock ML(Region->MMLock);
|
|
{
|
|
ScopedLock FL(Region->FLLock);
|
|
B = popBatchImpl(C, ClassId, Region);
|
|
if (LIKELY(B))
|
|
return B;
|
|
}
|
|
|
|
const bool RegionIsExhausted = Region->Exhausted;
|
|
if (!RegionIsExhausted)
|
|
B = populateFreeListAndPopBatch(C, ClassId, Region);
|
|
PrintStats = !RegionIsExhausted && Region->Exhausted;
|
|
break;
|
|
}
|
|
|
|
// Note that `getStats()` requires locking each region so we can't call it
|
|
// while locking the Region->Mutex in the above.
|
|
if (UNLIKELY(PrintStats)) {
|
|
ScopedString Str;
|
|
getStats(&Str);
|
|
Str.append(
|
|
"Scudo OOM: The process has exhausted %zuM for size class %zu.\n",
|
|
RegionSize >> 20, getSizeByClassId(ClassId));
|
|
Str.output();
|
|
|
|
// Theoretically, BatchClass shouldn't be used up. Abort immediately when
|
|
// it happens.
|
|
if (ClassId == SizeClassMap::BatchClassId)
|
|
reportOutOfBatchClass();
|
|
}
|
|
|
|
return B;
|
|
}
|
|
|
|
// Push the array of free blocks to the designated batch group.
|
|
void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
DCHECK_GT(Size, 0);
|
|
|
|
RegionInfo *Region = getRegionInfo(ClassId);
|
|
if (ClassId == SizeClassMap::BatchClassId) {
|
|
ScopedLock L(Region->FLLock);
|
|
pushBatchClassBlocks(Region, Array, Size);
|
|
return;
|
|
}
|
|
|
|
// TODO(chiahungduan): Consider not doing grouping if the group size is not
|
|
// greater than the block size with a certain scale.
|
|
|
|
// Sort the blocks so that blocks belonging to the same group can be pushed
|
|
// together.
|
|
bool SameGroup = true;
|
|
for (u32 I = 1; I < Size; ++I) {
|
|
if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I]))
|
|
SameGroup = false;
|
|
CompactPtrT Cur = Array[I];
|
|
u32 J = I;
|
|
while (J > 0 && compactPtrGroup(Cur) < compactPtrGroup(Array[J - 1])) {
|
|
Array[J] = Array[J - 1];
|
|
--J;
|
|
}
|
|
Array[J] = Cur;
|
|
}
|
|
|
|
{
|
|
ScopedLock L(Region->FLLock);
|
|
pushBlocksImpl(C, ClassId, Region, Array, Size, SameGroup);
|
|
}
|
|
}
|
|
|
|
void disable() NO_THREAD_SAFETY_ANALYSIS {
|
|
// The BatchClassId must be locked last since other classes can use it.
|
|
for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
|
|
if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
|
|
continue;
|
|
getRegionInfo(static_cast<uptr>(I))->MMLock.lock();
|
|
getRegionInfo(static_cast<uptr>(I))->FLLock.lock();
|
|
}
|
|
getRegionInfo(SizeClassMap::BatchClassId)->MMLock.lock();
|
|
getRegionInfo(SizeClassMap::BatchClassId)->FLLock.lock();
|
|
}
|
|
|
|
void enable() NO_THREAD_SAFETY_ANALYSIS {
|
|
getRegionInfo(SizeClassMap::BatchClassId)->FLLock.unlock();
|
|
getRegionInfo(SizeClassMap::BatchClassId)->MMLock.unlock();
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
if (I == SizeClassMap::BatchClassId)
|
|
continue;
|
|
getRegionInfo(I)->FLLock.unlock();
|
|
getRegionInfo(I)->MMLock.unlock();
|
|
}
|
|
}
|
|
|
|
template <typename F> void iterateOverBlocks(F Callback) {
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
if (I == SizeClassMap::BatchClassId)
|
|
continue;
|
|
RegionInfo *Region = getRegionInfo(I);
|
|
// TODO: The call of `iterateOverBlocks` requires disabling
|
|
// SizeClassAllocator64. We may consider locking each region on demand
|
|
// only.
|
|
Region->FLLock.assertHeld();
|
|
Region->MMLock.assertHeld();
|
|
const uptr BlockSize = getSizeByClassId(I);
|
|
const uptr From = Region->RegionBeg;
|
|
const uptr To = From + Region->MemMapInfo.AllocatedUser;
|
|
for (uptr Block = From; Block < To; Block += BlockSize)
|
|
Callback(Block);
|
|
}
|
|
}
|
|
|
|
void getStats(ScopedString *Str) {
|
|
// TODO(kostyak): get the RSS per region.
|
|
uptr TotalMapped = 0;
|
|
uptr PoppedBlocks = 0;
|
|
uptr PushedBlocks = 0;
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
RegionInfo *Region = getRegionInfo(I);
|
|
{
|
|
ScopedLock L(Region->MMLock);
|
|
TotalMapped += Region->MemMapInfo.MappedUser;
|
|
}
|
|
{
|
|
ScopedLock L(Region->FLLock);
|
|
PoppedBlocks += Region->FreeListInfo.PoppedBlocks;
|
|
PushedBlocks += Region->FreeListInfo.PushedBlocks;
|
|
}
|
|
}
|
|
Str->append("Stats: SizeClassAllocator64: %zuM mapped (%uM rss) in %zu "
|
|
"allocations; remains %zu\n",
|
|
TotalMapped >> 20, 0U, PoppedBlocks,
|
|
PoppedBlocks - PushedBlocks);
|
|
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
RegionInfo *Region = getRegionInfo(I);
|
|
ScopedLock L1(Region->MMLock);
|
|
ScopedLock L2(Region->FLLock);
|
|
getStats(Str, I, Region);
|
|
}
|
|
}
|
|
|
|
bool setOption(Option O, sptr Value) {
|
|
if (O == Option::ReleaseInterval) {
|
|
const s32 Interval = Max(Min(static_cast<s32>(Value),
|
|
Config::Primary::MaxReleaseToOsIntervalMs),
|
|
Config::Primary::MinReleaseToOsIntervalMs);
|
|
atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
|
|
return true;
|
|
}
|
|
// Not supported by the Primary, but not an error either.
|
|
return true;
|
|
}
|
|
|
|
uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
|
|
RegionInfo *Region = getRegionInfo(ClassId);
|
|
// Note that the tryLock() may fail spuriously, given that it should rarely
|
|
// happen and page releasing is fine to skip, we don't take certain
|
|
// approaches to ensure one page release is done.
|
|
if (Region->MMLock.tryLock()) {
|
|
uptr BytesReleased = releaseToOSMaybe(Region, ClassId, ReleaseType);
|
|
Region->MMLock.unlock();
|
|
return BytesReleased;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uptr releaseToOS(ReleaseToOS ReleaseType) {
|
|
uptr TotalReleasedBytes = 0;
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
if (I == SizeClassMap::BatchClassId)
|
|
continue;
|
|
RegionInfo *Region = getRegionInfo(I);
|
|
ScopedLock L(Region->MMLock);
|
|
TotalReleasedBytes += releaseToOSMaybe(Region, I, ReleaseType);
|
|
}
|
|
return TotalReleasedBytes;
|
|
}
|
|
|
|
const char *getRegionInfoArrayAddress() const {
|
|
return reinterpret_cast<const char *>(RegionInfoArray);
|
|
}
|
|
|
|
static uptr getRegionInfoArraySize() { return sizeof(RegionInfoArray); }
|
|
|
|
uptr getCompactPtrBaseByClassId(uptr ClassId) {
|
|
return getRegionInfo(ClassId)->RegionBeg;
|
|
}
|
|
|
|
CompactPtrT compactPtr(uptr ClassId, uptr Ptr) {
|
|
DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
|
|
return compactPtrInternal(getCompactPtrBaseByClassId(ClassId), Ptr);
|
|
}
|
|
|
|
void *decompactPtr(uptr ClassId, CompactPtrT CompactPtr) {
|
|
DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
|
|
return reinterpret_cast<void *>(
|
|
decompactPtrInternal(getCompactPtrBaseByClassId(ClassId), CompactPtr));
|
|
}
|
|
|
|
static BlockInfo findNearestBlock(const char *RegionInfoData,
|
|
uptr Ptr) NO_THREAD_SAFETY_ANALYSIS {
|
|
const RegionInfo *RegionInfoArray =
|
|
reinterpret_cast<const RegionInfo *>(RegionInfoData);
|
|
|
|
uptr ClassId;
|
|
uptr MinDistance = -1UL;
|
|
for (uptr I = 0; I != NumClasses; ++I) {
|
|
if (I == SizeClassMap::BatchClassId)
|
|
continue;
|
|
uptr Begin = RegionInfoArray[I].RegionBeg;
|
|
// TODO(chiahungduan): In fact, We need to lock the RegionInfo::MMLock.
|
|
// However, the RegionInfoData is passed with const qualifier and lock the
|
|
// mutex requires modifying RegionInfoData, which means we need to remove
|
|
// the const qualifier. This may lead to another undefined behavior (The
|
|
// first one is accessing `AllocatedUser` without locking. It's better to
|
|
// pass `RegionInfoData` as `void *` then we can lock the mutex properly.
|
|
uptr End = Begin + RegionInfoArray[I].MemMapInfo.AllocatedUser;
|
|
if (Begin > End || End - Begin < SizeClassMap::getSizeByClassId(I))
|
|
continue;
|
|
uptr RegionDistance;
|
|
if (Begin <= Ptr) {
|
|
if (Ptr < End)
|
|
RegionDistance = 0;
|
|
else
|
|
RegionDistance = Ptr - End;
|
|
} else {
|
|
RegionDistance = Begin - Ptr;
|
|
}
|
|
|
|
if (RegionDistance < MinDistance) {
|
|
MinDistance = RegionDistance;
|
|
ClassId = I;
|
|
}
|
|
}
|
|
|
|
BlockInfo B = {};
|
|
if (MinDistance <= 8192) {
|
|
B.RegionBegin = RegionInfoArray[ClassId].RegionBeg;
|
|
B.RegionEnd =
|
|
B.RegionBegin + RegionInfoArray[ClassId].MemMapInfo.AllocatedUser;
|
|
B.BlockSize = SizeClassMap::getSizeByClassId(ClassId);
|
|
B.BlockBegin =
|
|
B.RegionBegin + uptr(sptr(Ptr - B.RegionBegin) / sptr(B.BlockSize) *
|
|
sptr(B.BlockSize));
|
|
while (B.BlockBegin < B.RegionBegin)
|
|
B.BlockBegin += B.BlockSize;
|
|
while (B.RegionEnd < B.BlockBegin + B.BlockSize)
|
|
B.BlockBegin -= B.BlockSize;
|
|
}
|
|
return B;
|
|
}
|
|
|
|
AtomicOptions Options;
|
|
|
|
private:
|
|
static const uptr RegionSize = 1UL << Config::Primary::RegionSizeLog;
|
|
static const uptr NumClasses = SizeClassMap::NumClasses;
|
|
static const uptr PrimarySize = RegionSize * NumClasses;
|
|
|
|
static const uptr MapSizeIncrement = Config::Primary::MapSizeIncrement;
|
|
// Fill at most this number of batches from the newly map'd memory.
|
|
static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
|
|
|
|
struct ReleaseToOsInfo {
|
|
uptr BytesInFreeListAtLastCheckpoint;
|
|
uptr RangesReleased;
|
|
uptr LastReleasedBytes;
|
|
u64 LastReleaseAtNs;
|
|
};
|
|
|
|
struct BlocksInfo {
|
|
SinglyLinkedList<BatchGroup> BlockList = {};
|
|
uptr PoppedBlocks = 0;
|
|
uptr PushedBlocks = 0;
|
|
};
|
|
|
|
struct PagesInfo {
|
|
MemMapT MemMap = {};
|
|
// Bytes mapped for user memory.
|
|
uptr MappedUser = 0;
|
|
// Bytes allocated for user memory.
|
|
uptr AllocatedUser = 0;
|
|
};
|
|
|
|
struct UnpaddedRegionInfo {
|
|
// Mutex for operations on freelist
|
|
HybridMutex FLLock;
|
|
// Mutex for memmap operations
|
|
HybridMutex MMLock ACQUIRED_BEFORE(FLLock);
|
|
// `RegionBeg` is initialized before thread creation and won't be changed.
|
|
uptr RegionBeg = 0;
|
|
u32 RandState GUARDED_BY(MMLock) = 0;
|
|
BlocksInfo FreeListInfo GUARDED_BY(FLLock);
|
|
PagesInfo MemMapInfo GUARDED_BY(MMLock);
|
|
// The minimum size of pushed blocks to trigger page release.
|
|
uptr TryReleaseThreshold GUARDED_BY(MMLock) = 0;
|
|
ReleaseToOsInfo ReleaseInfo GUARDED_BY(MMLock) = {};
|
|
bool Exhausted GUARDED_BY(MMLock) = false;
|
|
};
|
|
struct RegionInfo : UnpaddedRegionInfo {
|
|
char Padding[SCUDO_CACHE_LINE_SIZE -
|
|
(sizeof(UnpaddedRegionInfo) % SCUDO_CACHE_LINE_SIZE)] = {};
|
|
};
|
|
static_assert(sizeof(RegionInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
|
|
|
|
RegionInfo *getRegionInfo(uptr ClassId) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
return &RegionInfoArray[ClassId];
|
|
}
|
|
|
|
uptr getRegionBaseByClassId(uptr ClassId) {
|
|
return roundDown(getRegionInfo(ClassId)->RegionBeg - PrimaryBase,
|
|
RegionSize) +
|
|
PrimaryBase;
|
|
}
|
|
|
|
static CompactPtrT compactPtrInternal(uptr Base, uptr Ptr) {
|
|
return static_cast<CompactPtrT>((Ptr - Base) >> CompactPtrScale);
|
|
}
|
|
|
|
static uptr decompactPtrInternal(uptr Base, CompactPtrT CompactPtr) {
|
|
return Base + (static_cast<uptr>(CompactPtr) << CompactPtrScale);
|
|
}
|
|
|
|
static uptr compactPtrGroup(CompactPtrT CompactPtr) {
|
|
const uptr Mask = (static_cast<uptr>(1) << GroupScale) - 1;
|
|
return static_cast<uptr>(CompactPtr) & ~Mask;
|
|
}
|
|
static uptr decompactGroupBase(uptr Base, uptr CompactPtrGroupBase) {
|
|
DCHECK_EQ(CompactPtrGroupBase % (static_cast<uptr>(1) << (GroupScale)), 0U);
|
|
return Base + (CompactPtrGroupBase << CompactPtrScale);
|
|
}
|
|
|
|
ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
|
|
const uptr PageSize = getPageSizeCached();
|
|
return BlockSize < PageSize / 16U;
|
|
}
|
|
|
|
ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
|
|
const uptr PageSize = getPageSizeCached();
|
|
return BlockSize > PageSize;
|
|
}
|
|
|
|
void pushBatchClassBlocks(RegionInfo *Region, CompactPtrT *Array, u32 Size)
|
|
REQUIRES(Region->FLLock) {
|
|
DCHECK_EQ(Region, getRegionInfo(SizeClassMap::BatchClassId));
|
|
|
|
// Free blocks are recorded by TransferBatch in freelist for all
|
|
// size-classes. In addition, TransferBatch is allocated from BatchClassId.
|
|
// In order not to use additional block to record the free blocks in
|
|
// BatchClassId, they are self-contained. I.e., A TransferBatch records the
|
|
// block address of itself. See the figure below:
|
|
//
|
|
// TransferBatch at 0xABCD
|
|
// +----------------------------+
|
|
// | Free blocks' addr |
|
|
// | +------+------+------+ |
|
|
// | |0xABCD|... |... | |
|
|
// | +------+------+------+ |
|
|
// +----------------------------+
|
|
//
|
|
// When we allocate all the free blocks in the TransferBatch, the block used
|
|
// by TransferBatch is also free for use. We don't need to recycle the
|
|
// TransferBatch. Note that the correctness is maintained by the invariant,
|
|
//
|
|
// The unit of each popBatch() request is entire TransferBatch. Return
|
|
// part of the blocks in a TransferBatch is invalid.
|
|
//
|
|
// This ensures that TransferBatch won't leak the address itself while it's
|
|
// still holding other valid data.
|
|
//
|
|
// Besides, BatchGroup is also allocated from BatchClassId and has its
|
|
// address recorded in the TransferBatch too. To maintain the correctness,
|
|
//
|
|
// The address of BatchGroup is always recorded in the last TransferBatch
|
|
// in the freelist (also imply that the freelist should only be
|
|
// updated with push_front). Once the last TransferBatch is popped,
|
|
// the block used by BatchGroup is also free for use.
|
|
//
|
|
// With this approach, the blocks used by BatchGroup and TransferBatch are
|
|
// reusable and don't need additional space for them.
|
|
|
|
Region->FreeListInfo.PushedBlocks += Size;
|
|
BatchGroup *BG = Region->FreeListInfo.BlockList.front();
|
|
|
|
if (BG == nullptr) {
|
|
// Construct `BatchGroup` on the last element.
|
|
BG = reinterpret_cast<BatchGroup *>(
|
|
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
|
|
--Size;
|
|
BG->Batches.clear();
|
|
// BatchClass hasn't enabled memory group. Use `0` to indicate there's no
|
|
// memory group here.
|
|
BG->CompactPtrGroupBase = 0;
|
|
// `BG` is also the block of BatchClassId. Note that this is different
|
|
// from `CreateGroup` in `pushBlocksImpl`
|
|
BG->PushedBlocks = 1;
|
|
BG->BytesInBGAtLastCheckpoint = 0;
|
|
BG->MaxCachedPerBatch = TransferBatch::getMaxCached(
|
|
getSizeByClassId(SizeClassMap::BatchClassId));
|
|
|
|
Region->FreeListInfo.BlockList.push_front(BG);
|
|
}
|
|
|
|
if (UNLIKELY(Size == 0))
|
|
return;
|
|
|
|
// This happens under 2 cases.
|
|
// 1. just allocated a new `BatchGroup`.
|
|
// 2. Only 1 block is pushed when the freelist is empty.
|
|
if (BG->Batches.empty()) {
|
|
// Construct the `TransferBatch` on the last element.
|
|
TransferBatch *TB = reinterpret_cast<TransferBatch *>(
|
|
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
|
|
TB->clear();
|
|
// As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
|
|
// recorded in the TransferBatch.
|
|
TB->add(Array[Size - 1]);
|
|
TB->add(
|
|
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
|
|
--Size;
|
|
DCHECK_EQ(BG->PushedBlocks, 1U);
|
|
// `TB` is also the block of BatchClassId.
|
|
BG->PushedBlocks += 1;
|
|
BG->Batches.push_front(TB);
|
|
}
|
|
|
|
TransferBatch *CurBatch = BG->Batches.front();
|
|
DCHECK_NE(CurBatch, nullptr);
|
|
|
|
for (u32 I = 0; I < Size;) {
|
|
u16 UnusedSlots =
|
|
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
|
|
if (UnusedSlots == 0) {
|
|
CurBatch = reinterpret_cast<TransferBatch *>(
|
|
decompactPtr(SizeClassMap::BatchClassId, Array[I]));
|
|
CurBatch->clear();
|
|
// Self-contained
|
|
CurBatch->add(Array[I]);
|
|
++I;
|
|
// TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
|
|
// BatchClassId.
|
|
BG->Batches.push_front(CurBatch);
|
|
UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
|
|
}
|
|
// `UnusedSlots` is u16 so the result will be also fit in u16.
|
|
const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
|
|
CurBatch->appendFromArray(&Array[I], AppendSize);
|
|
I += AppendSize;
|
|
}
|
|
|
|
BG->PushedBlocks += Size;
|
|
}
|
|
|
|
// Push the blocks to their batch group. The layout will be like,
|
|
//
|
|
// FreeListInfo.BlockList - > BG -> BG -> BG
|
|
// | | |
|
|
// v v v
|
|
// TB TB TB
|
|
// |
|
|
// v
|
|
// TB
|
|
//
|
|
// Each BlockGroup(BG) will associate with unique group id and the free blocks
|
|
// are managed by a list of TransferBatch(TB). To reduce the time of inserting
|
|
// blocks, BGs are sorted and the input `Array` are supposed to be sorted so
|
|
// that we can get better performance of maintaining sorted property.
|
|
// Use `SameGroup=true` to indicate that all blocks in the array are from the
|
|
// same group then we will skip checking the group id of each block.
|
|
void pushBlocksImpl(CacheT *C, uptr ClassId, RegionInfo *Region,
|
|
CompactPtrT *Array, u32 Size, bool SameGroup = false)
|
|
REQUIRES(Region->FLLock) {
|
|
DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
|
|
DCHECK_GT(Size, 0U);
|
|
|
|
auto CreateGroup = [&](uptr CompactPtrGroupBase) {
|
|
BatchGroup *BG = C->createGroup();
|
|
BG->Batches.clear();
|
|
TransferBatch *TB = C->createBatch(ClassId, nullptr);
|
|
TB->clear();
|
|
|
|
BG->CompactPtrGroupBase = CompactPtrGroupBase;
|
|
BG->Batches.push_front(TB);
|
|
BG->PushedBlocks = 0;
|
|
BG->BytesInBGAtLastCheckpoint = 0;
|
|
BG->MaxCachedPerBatch =
|
|
TransferBatch::getMaxCached(getSizeByClassId(ClassId));
|
|
|
|
return BG;
|
|
};
|
|
|
|
auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) {
|
|
SinglyLinkedList<TransferBatch> &Batches = BG->Batches;
|
|
TransferBatch *CurBatch = Batches.front();
|
|
DCHECK_NE(CurBatch, nullptr);
|
|
|
|
for (u32 I = 0; I < Size;) {
|
|
DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
|
|
u16 UnusedSlots =
|
|
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
|
|
if (UnusedSlots == 0) {
|
|
CurBatch = C->createBatch(
|
|
ClassId,
|
|
reinterpret_cast<void *>(decompactPtr(ClassId, Array[I])));
|
|
CurBatch->clear();
|
|
Batches.push_front(CurBatch);
|
|
UnusedSlots = BG->MaxCachedPerBatch;
|
|
}
|
|
// `UnusedSlots` is u16 so the result will be also fit in u16.
|
|
u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
|
|
CurBatch->appendFromArray(&Array[I], AppendSize);
|
|
I += AppendSize;
|
|
}
|
|
|
|
BG->PushedBlocks += Size;
|
|
};
|
|
|
|
Region->FreeListInfo.PushedBlocks += Size;
|
|
BatchGroup *Cur = Region->FreeListInfo.BlockList.front();
|
|
|
|
if (ClassId == SizeClassMap::BatchClassId) {
|
|
if (Cur == nullptr) {
|
|
// Don't need to classify BatchClassId.
|
|
Cur = CreateGroup(/*CompactPtrGroupBase=*/0);
|
|
Region->FreeListInfo.BlockList.push_front(Cur);
|
|
}
|
|
InsertBlocks(Cur, Array, Size);
|
|
return;
|
|
}
|
|
|
|
// In the following, `Cur` always points to the BatchGroup for blocks that
|
|
// will be pushed next. `Prev` is the element right before `Cur`.
|
|
BatchGroup *Prev = nullptr;
|
|
|
|
while (Cur != nullptr &&
|
|
compactPtrGroup(Array[0]) > Cur->CompactPtrGroupBase) {
|
|
Prev = Cur;
|
|
Cur = Cur->Next;
|
|
}
|
|
|
|
if (Cur == nullptr ||
|
|
compactPtrGroup(Array[0]) != Cur->CompactPtrGroupBase) {
|
|
Cur = CreateGroup(compactPtrGroup(Array[0]));
|
|
if (Prev == nullptr)
|
|
Region->FreeListInfo.BlockList.push_front(Cur);
|
|
else
|
|
Region->FreeListInfo.BlockList.insert(Prev, Cur);
|
|
}
|
|
|
|
// All the blocks are from the same group, just push without checking group
|
|
// id.
|
|
if (SameGroup) {
|
|
for (u32 I = 0; I < Size; ++I)
|
|
DCHECK_EQ(compactPtrGroup(Array[I]), Cur->CompactPtrGroupBase);
|
|
|
|
InsertBlocks(Cur, Array, Size);
|
|
return;
|
|
}
|
|
|
|
// The blocks are sorted by group id. Determine the segment of group and
|
|
// push them to their group together.
|
|
u32 Count = 1;
|
|
for (u32 I = 1; I < Size; ++I) {
|
|
if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) {
|
|
DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->CompactPtrGroupBase);
|
|
InsertBlocks(Cur, Array + I - Count, Count);
|
|
|
|
while (Cur != nullptr &&
|
|
compactPtrGroup(Array[I]) > Cur->CompactPtrGroupBase) {
|
|
Prev = Cur;
|
|
Cur = Cur->Next;
|
|
}
|
|
|
|
if (Cur == nullptr ||
|
|
compactPtrGroup(Array[I]) != Cur->CompactPtrGroupBase) {
|
|
Cur = CreateGroup(compactPtrGroup(Array[I]));
|
|
DCHECK_NE(Prev, nullptr);
|
|
Region->FreeListInfo.BlockList.insert(Prev, Cur);
|
|
}
|
|
|
|
Count = 1;
|
|
} else {
|
|
++Count;
|
|
}
|
|
}
|
|
|
|
InsertBlocks(Cur, Array + Size - Count, Count);
|
|
}
|
|
|
|
// Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest
|
|
// group id will be considered first.
|
|
//
|
|
// The region mutex needs to be held while calling this method.
|
|
TransferBatch *popBatchImpl(CacheT *C, uptr ClassId, RegionInfo *Region)
|
|
REQUIRES(Region->FLLock) {
|
|
if (Region->FreeListInfo.BlockList.empty())
|
|
return nullptr;
|
|
|
|
SinglyLinkedList<TransferBatch> &Batches =
|
|
Region->FreeListInfo.BlockList.front()->Batches;
|
|
|
|
if (Batches.empty()) {
|
|
DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
|
|
BatchGroup *BG = Region->FreeListInfo.BlockList.front();
|
|
Region->FreeListInfo.BlockList.pop_front();
|
|
|
|
// Block used by `BatchGroup` is from BatchClassId. Turn the block into
|
|
// `TransferBatch` with single block.
|
|
TransferBatch *TB = reinterpret_cast<TransferBatch *>(BG);
|
|
TB->clear();
|
|
TB->add(
|
|
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB)));
|
|
Region->FreeListInfo.PoppedBlocks += 1;
|
|
return TB;
|
|
}
|
|
|
|
TransferBatch *B = Batches.front();
|
|
Batches.pop_front();
|
|
DCHECK_NE(B, nullptr);
|
|
DCHECK_GT(B->getCount(), 0U);
|
|
|
|
if (Batches.empty()) {
|
|
BatchGroup *BG = Region->FreeListInfo.BlockList.front();
|
|
Region->FreeListInfo.BlockList.pop_front();
|
|
|
|
// We don't keep BatchGroup with zero blocks to avoid empty-checking while
|
|
// allocating. Note that block used by constructing BatchGroup is recorded
|
|
// as free blocks in the last element of BatchGroup::Batches. Which means,
|
|
// once we pop the last TransferBatch, the block is implicitly
|
|
// deallocated.
|
|
if (ClassId != SizeClassMap::BatchClassId)
|
|
C->deallocate(SizeClassMap::BatchClassId, BG);
|
|
}
|
|
|
|
Region->FreeListInfo.PoppedBlocks += B->getCount();
|
|
|
|
return B;
|
|
}
|
|
|
|
// Refill the freelist and return one batch.
|
|
NOINLINE TransferBatch *populateFreeListAndPopBatch(CacheT *C, uptr ClassId,
|
|
RegionInfo *Region)
|
|
REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
|
|
const uptr Size = getSizeByClassId(ClassId);
|
|
const u16 MaxCount = TransferBatch::getMaxCached(Size);
|
|
|
|
const uptr RegionBeg = Region->RegionBeg;
|
|
const uptr MappedUser = Region->MemMapInfo.MappedUser;
|
|
const uptr TotalUserBytes =
|
|
Region->MemMapInfo.AllocatedUser + MaxCount * Size;
|
|
// Map more space for blocks, if necessary.
|
|
if (TotalUserBytes > MappedUser) {
|
|
// Do the mmap for the user memory.
|
|
const uptr MapSize =
|
|
roundUp(TotalUserBytes - MappedUser, MapSizeIncrement);
|
|
const uptr RegionBase = RegionBeg - getRegionBaseByClassId(ClassId);
|
|
if (UNLIKELY(RegionBase + MappedUser + MapSize > RegionSize)) {
|
|
Region->Exhausted = true;
|
|
return nullptr;
|
|
}
|
|
|
|
if (UNLIKELY(!Region->MemMapInfo.MemMap.remap(
|
|
RegionBeg + MappedUser, MapSize, "scudo:primary",
|
|
MAP_ALLOWNOMEM | MAP_RESIZABLE |
|
|
(useMemoryTagging<Config>(Options.load()) ? MAP_MEMTAG
|
|
: 0)))) {
|
|
return nullptr;
|
|
}
|
|
Region->MemMapInfo.MappedUser += MapSize;
|
|
C->getStats().add(StatMapped, MapSize);
|
|
}
|
|
|
|
const u32 NumberOfBlocks =
|
|
Min(MaxNumBatches * MaxCount,
|
|
static_cast<u32>((Region->MemMapInfo.MappedUser -
|
|
Region->MemMapInfo.AllocatedUser) /
|
|
Size));
|
|
DCHECK_GT(NumberOfBlocks, 0);
|
|
|
|
constexpr u32 ShuffleArraySize =
|
|
MaxNumBatches * TransferBatch::MaxNumCached;
|
|
CompactPtrT ShuffleArray[ShuffleArraySize];
|
|
DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
|
|
|
|
const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
|
|
uptr P = RegionBeg + Region->MemMapInfo.AllocatedUser;
|
|
for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
|
|
ShuffleArray[I] = compactPtrInternal(CompactPtrBase, P);
|
|
|
|
ScopedLock L(Region->FLLock);
|
|
|
|
if (ClassId != SizeClassMap::BatchClassId) {
|
|
u32 N = 1;
|
|
uptr CurGroup = compactPtrGroup(ShuffleArray[0]);
|
|
for (u32 I = 1; I < NumberOfBlocks; I++) {
|
|
if (UNLIKELY(compactPtrGroup(ShuffleArray[I]) != CurGroup)) {
|
|
shuffle(ShuffleArray + I - N, N, &Region->RandState);
|
|
pushBlocksImpl(C, ClassId, Region, ShuffleArray + I - N, N,
|
|
/*SameGroup=*/true);
|
|
N = 1;
|
|
CurGroup = compactPtrGroup(ShuffleArray[I]);
|
|
} else {
|
|
++N;
|
|
}
|
|
}
|
|
|
|
shuffle(ShuffleArray + NumberOfBlocks - N, N, &Region->RandState);
|
|
pushBlocksImpl(C, ClassId, Region, &ShuffleArray[NumberOfBlocks - N], N,
|
|
/*SameGroup=*/true);
|
|
} else {
|
|
pushBatchClassBlocks(Region, ShuffleArray, NumberOfBlocks);
|
|
}
|
|
|
|
TransferBatch *B = popBatchImpl(C, ClassId, Region);
|
|
DCHECK_NE(B, nullptr);
|
|
|
|
// Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
|
|
// the requests from `PushBlocks` and `PopBatch` which are external
|
|
// interfaces. `populateFreeListAndPopBatch` is the internal interface so we
|
|
// should set the values back to avoid incorrectly setting the stats.
|
|
Region->FreeListInfo.PushedBlocks -= NumberOfBlocks;
|
|
|
|
const uptr AllocatedUser = Size * NumberOfBlocks;
|
|
C->getStats().add(StatFree, AllocatedUser);
|
|
Region->MemMapInfo.AllocatedUser += AllocatedUser;
|
|
|
|
return B;
|
|
}
|
|
|
|
void getStats(ScopedString *Str, uptr ClassId, RegionInfo *Region)
|
|
REQUIRES(Region->MMLock, Region->FLLock) {
|
|
if (Region->MemMapInfo.MappedUser == 0)
|
|
return;
|
|
const uptr BlockSize = getSizeByClassId(ClassId);
|
|
const uptr InUse =
|
|
Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks;
|
|
const uptr BytesInFreeList =
|
|
Region->MemMapInfo.AllocatedUser - InUse * BlockSize;
|
|
uptr RegionPushedBytesDelta = 0;
|
|
if (BytesInFreeList >=
|
|
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
|
|
RegionPushedBytesDelta =
|
|
BytesInFreeList - Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
|
|
}
|
|
const uptr TotalChunks = Region->MemMapInfo.AllocatedUser / BlockSize;
|
|
Str->append(
|
|
"%s %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
|
|
"inuse: %6zu total: %6zu releases: %6zu last "
|
|
"released: %6zuK latest pushed bytes: %6zuK region: 0x%zx (0x%zx)\n",
|
|
Region->Exhausted ? "F" : " ", ClassId, getSizeByClassId(ClassId),
|
|
Region->MemMapInfo.MappedUser >> 10, Region->FreeListInfo.PoppedBlocks,
|
|
Region->FreeListInfo.PushedBlocks, InUse, TotalChunks,
|
|
Region->ReleaseInfo.RangesReleased,
|
|
Region->ReleaseInfo.LastReleasedBytes >> 10,
|
|
RegionPushedBytesDelta >> 10, Region->RegionBeg,
|
|
getRegionBaseByClassId(ClassId));
|
|
}
|
|
|
|
NOINLINE uptr releaseToOSMaybe(RegionInfo *Region, uptr ClassId,
|
|
ReleaseToOS ReleaseType = ReleaseToOS::Normal)
|
|
REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
|
|
ScopedLock L(Region->FLLock);
|
|
|
|
const uptr BlockSize = getSizeByClassId(ClassId);
|
|
const uptr BytesInFreeList =
|
|
Region->MemMapInfo.AllocatedUser - (Region->FreeListInfo.PoppedBlocks -
|
|
Region->FreeListInfo.PushedBlocks) *
|
|
BlockSize;
|
|
if (UNLIKELY(BytesInFreeList == 0))
|
|
return false;
|
|
|
|
const uptr AllocatedUserEnd =
|
|
Region->MemMapInfo.AllocatedUser + Region->RegionBeg;
|
|
const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
|
|
|
|
// ====================================================================== //
|
|
// 1. Check if we have enough free blocks and if it's worth doing a page
|
|
// release.
|
|
// ====================================================================== //
|
|
if (ReleaseType != ReleaseToOS::ForceAll &&
|
|
!hasChanceToReleasePages(Region, BlockSize, BytesInFreeList,
|
|
ReleaseType)) {
|
|
return 0;
|
|
}
|
|
|
|
// ====================================================================== //
|
|
// 2. Determine which groups can release the pages. Use a heuristic to
|
|
// gather groups that are candidates for doing a release.
|
|
// ====================================================================== //
|
|
SinglyLinkedList<BatchGroup> GroupsToRelease;
|
|
if (ReleaseType == ReleaseToOS::ForceAll) {
|
|
GroupsToRelease = Region->FreeListInfo.BlockList;
|
|
Region->FreeListInfo.BlockList.clear();
|
|
} else {
|
|
GroupsToRelease = collectGroupsToRelease(
|
|
Region, BlockSize, AllocatedUserEnd, CompactPtrBase);
|
|
}
|
|
if (GroupsToRelease.empty())
|
|
return 0;
|
|
|
|
// Ideally, we should use a class like `ScopedUnlock`. However, this form of
|
|
// unlocking is not supported by the thread-safety analysis. See
|
|
// https://clang.llvm.org/docs/ThreadSafetyAnalysis.html#no-alias-analysis
|
|
// for more details.
|
|
// Put it as local class so that we can mark the ctor/dtor with proper
|
|
// annotations associated to the target lock. Note that accessing the
|
|
// function variable in local class only works in thread-safety annotations.
|
|
// TODO: Implement general `ScopedUnlock` when it's supported.
|
|
class FLLockScopedUnlock {
|
|
public:
|
|
FLLockScopedUnlock(RegionInfo *Region) RELEASE(Region->FLLock)
|
|
: R(Region) {
|
|
R->FLLock.assertHeld();
|
|
R->FLLock.unlock();
|
|
}
|
|
~FLLockScopedUnlock() ACQUIRE(Region->FLLock) { R->FLLock.lock(); }
|
|
|
|
private:
|
|
RegionInfo *R;
|
|
};
|
|
|
|
// Note that we have extracted the `GroupsToRelease` from region freelist.
|
|
// It's safe to let pushBlocks()/popBatches() access the remaining region
|
|
// freelist. In the steps 3 and 4, we will temporarily release the FLLock
|
|
// and lock it again before step 5.
|
|
|
|
uptr ReleasedBytes = 0;
|
|
{
|
|
FLLockScopedUnlock UL(Region);
|
|
// ==================================================================== //
|
|
// 3. Mark the free blocks in `GroupsToRelease` in the
|
|
// `PageReleaseContext`. Then we can tell which pages are in-use by
|
|
// querying `PageReleaseContext`.
|
|
// ==================================================================== //
|
|
PageReleaseContext Context = markFreeBlocks(
|
|
Region, BlockSize, AllocatedUserEnd, CompactPtrBase, GroupsToRelease);
|
|
if (UNLIKELY(!Context.hasBlockMarked())) {
|
|
ScopedLock L(Region->FLLock);
|
|
mergeGroupsToReleaseBack(Region, GroupsToRelease);
|
|
return 0;
|
|
}
|
|
|
|
// ==================================================================== //
|
|
// 4. Release the unused physical pages back to the OS.
|
|
// ==================================================================== //
|
|
RegionReleaseRecorder<MemMapT> Recorder(&Region->MemMapInfo.MemMap,
|
|
Region->RegionBeg,
|
|
Context.getReleaseOffset());
|
|
auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; };
|
|
releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
|
|
if (Recorder.getReleasedRangesCount() > 0) {
|
|
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
|
|
Region->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
|
|
Region->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
|
|
}
|
|
Region->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
|
|
ReleasedBytes = Recorder.getReleasedBytes();
|
|
}
|
|
|
|
// ====================================================================== //
|
|
// 5. Merge the `GroupsToRelease` back to the freelist.
|
|
// ====================================================================== //
|
|
mergeGroupsToReleaseBack(Region, GroupsToRelease);
|
|
|
|
return ReleasedBytes;
|
|
}
|
|
|
|
bool hasChanceToReleasePages(RegionInfo *Region, uptr BlockSize,
|
|
uptr BytesInFreeList, ReleaseToOS ReleaseType)
|
|
REQUIRES(Region->MMLock, Region->FLLock) {
|
|
DCHECK_GE(Region->FreeListInfo.PoppedBlocks,
|
|
Region->FreeListInfo.PushedBlocks);
|
|
const uptr PageSize = getPageSizeCached();
|
|
|
|
// Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
|
|
// so that we won't underestimate the releasable pages. For example, the
|
|
// following is the region usage,
|
|
//
|
|
// BytesInFreeListAtLastCheckpoint AllocatedUser
|
|
// v v
|
|
// |--------------------------------------->
|
|
// ^ ^
|
|
// BytesInFreeList ReleaseThreshold
|
|
//
|
|
// In general, if we have collected enough bytes and the amount of free
|
|
// bytes meets the ReleaseThreshold, we will try to do page release. If we
|
|
// don't update `BytesInFreeListAtLastCheckpoint` when the current
|
|
// `BytesInFreeList` is smaller, we may take longer time to wait for enough
|
|
// freed blocks because we miss the bytes between
|
|
// (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
|
|
if (BytesInFreeList <=
|
|
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
|
|
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
|
|
}
|
|
|
|
const uptr RegionPushedBytesDelta =
|
|
BytesInFreeList - Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
|
|
if (RegionPushedBytesDelta < PageSize)
|
|
return false;
|
|
|
|
// Releasing smaller blocks is expensive, so we want to make sure that a
|
|
// significant amount of bytes are free, and that there has been a good
|
|
// amount of batches pushed to the freelist before attempting to release.
|
|
if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal)
|
|
if (RegionPushedBytesDelta < Region->TryReleaseThreshold)
|
|
return false;
|
|
|
|
if (ReleaseType == ReleaseToOS::Normal) {
|
|
const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
|
|
if (IntervalMs < 0)
|
|
return false;
|
|
|
|
// The constant 8 here is selected from profiling some apps and the number
|
|
// of unreleased pages in the large size classes is around 16 pages or
|
|
// more. Choose half of it as a heuristic and which also avoids page
|
|
// release every time for every pushBlocks() attempt by large blocks.
|
|
const bool ByPassReleaseInterval =
|
|
isLargeBlock(BlockSize) && RegionPushedBytesDelta > 8 * PageSize;
|
|
if (!ByPassReleaseInterval) {
|
|
if (Region->ReleaseInfo.LastReleaseAtNs +
|
|
static_cast<u64>(IntervalMs) * 1000000 >
|
|
getMonotonicTimeFast()) {
|
|
// Memory was returned recently.
|
|
return false;
|
|
}
|
|
}
|
|
} // if (ReleaseType == ReleaseToOS::Normal)
|
|
|
|
return true;
|
|
}
|
|
|
|
SinglyLinkedList<BatchGroup>
|
|
collectGroupsToRelease(RegionInfo *Region, const uptr BlockSize,
|
|
const uptr AllocatedUserEnd, const uptr CompactPtrBase)
|
|
REQUIRES(Region->MMLock, Region->FLLock) {
|
|
const uptr GroupSize = (1U << GroupSizeLog);
|
|
const uptr PageSize = getPageSizeCached();
|
|
SinglyLinkedList<BatchGroup> GroupsToRelease;
|
|
|
|
// We are examining each group and will take the minimum distance to the
|
|
// release threshold as the next Region::TryReleaseThreshold(). Note that if
|
|
// the size of free blocks has reached the release threshold, the distance
|
|
// to the next release will be PageSize * SmallerBlockReleasePageDelta. See
|
|
// the comment on `SmallerBlockReleasePageDelta` for more details.
|
|
uptr MinDistToThreshold = GroupSize;
|
|
|
|
for (BatchGroup *BG = Region->FreeListInfo.BlockList.front(),
|
|
*Prev = nullptr;
|
|
BG != nullptr;) {
|
|
// Group boundary is always GroupSize-aligned from CompactPtr base. The
|
|
// layout of memory groups is like,
|
|
//
|
|
// (CompactPtrBase)
|
|
// #1 CompactPtrGroupBase #2 CompactPtrGroupBase ...
|
|
// | | |
|
|
// v v v
|
|
// +-----------------------+-----------------------+
|
|
// \ / \ /
|
|
// --- GroupSize --- --- GroupSize ---
|
|
//
|
|
// After decompacting the CompactPtrGroupBase, we expect the alignment
|
|
// property is held as well.
|
|
const uptr BatchGroupBase =
|
|
decompactGroupBase(CompactPtrBase, BG->CompactPtrGroupBase);
|
|
DCHECK_LE(Region->RegionBeg, BatchGroupBase);
|
|
DCHECK_GE(AllocatedUserEnd, BatchGroupBase);
|
|
DCHECK_EQ((Region->RegionBeg - BatchGroupBase) % GroupSize, 0U);
|
|
// TransferBatches are pushed in front of BG.Batches. The first one may
|
|
// not have all caches used.
|
|
const uptr NumBlocks = (BG->Batches.size() - 1) * BG->MaxCachedPerBatch +
|
|
BG->Batches.front()->getCount();
|
|
const uptr BytesInBG = NumBlocks * BlockSize;
|
|
|
|
if (BytesInBG <= BG->BytesInBGAtLastCheckpoint) {
|
|
BG->BytesInBGAtLastCheckpoint = BytesInBG;
|
|
Prev = BG;
|
|
BG = BG->Next;
|
|
continue;
|
|
}
|
|
|
|
const uptr PushedBytesDelta = BG->BytesInBGAtLastCheckpoint - BytesInBG;
|
|
|
|
// Given the randomness property, we try to release the pages only if the
|
|
// bytes used by free blocks exceed certain proportion of group size. Note
|
|
// that this heuristic only applies when all the spaces in a BatchGroup
|
|
// are allocated.
|
|
if (isSmallBlock(BlockSize)) {
|
|
const uptr BatchGroupEnd = BatchGroupBase + GroupSize;
|
|
const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd
|
|
? GroupSize
|
|
: AllocatedUserEnd - BatchGroupBase;
|
|
const uptr ReleaseThreshold =
|
|
(AllocatedGroupSize * (100 - 1U - BlockSize / 16U)) / 100U;
|
|
const bool HighDensity = BytesInBG >= ReleaseThreshold;
|
|
const bool MayHaveReleasedAll = NumBlocks >= (GroupSize / BlockSize);
|
|
// If all blocks in the group are released, we will do range marking
|
|
// which is fast. Otherwise, we will wait until we have accumulated
|
|
// a certain amount of free memory.
|
|
const bool ReachReleaseDelta =
|
|
MayHaveReleasedAll
|
|
? true
|
|
: PushedBytesDelta >= PageSize * SmallerBlockReleasePageDelta;
|
|
|
|
if (!HighDensity) {
|
|
DCHECK_LE(BytesInBG, ReleaseThreshold);
|
|
// The following is the usage of a memroy group,
|
|
//
|
|
// BytesInBG ReleaseThreshold
|
|
// / \ v
|
|
// +---+---------------------------+-----+
|
|
// | | | | |
|
|
// +---+---------------------------+-----+
|
|
// \ / ^
|
|
// PushedBytesDelta GroupEnd
|
|
MinDistToThreshold =
|
|
Min(MinDistToThreshold,
|
|
ReleaseThreshold - BytesInBG + PushedBytesDelta);
|
|
} else {
|
|
// If it reaches high density at this round, the next time we will try
|
|
// to release is based on SmallerBlockReleasePageDelta
|
|
MinDistToThreshold =
|
|
Min(MinDistToThreshold, PageSize * SmallerBlockReleasePageDelta);
|
|
}
|
|
|
|
if (!HighDensity || !ReachReleaseDelta) {
|
|
Prev = BG;
|
|
BG = BG->Next;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If `BG` is the first BatchGroup in the list, we only need to advance
|
|
// `BG` and call FreeListInfo.BlockList::pop_front(). No update is needed
|
|
// for `Prev`.
|
|
//
|
|
// (BG) (BG->Next)
|
|
// Prev Cur BG
|
|
// | | |
|
|
// v v v
|
|
// nil +--+ +--+
|
|
// |X | -> | | -> ...
|
|
// +--+ +--+
|
|
//
|
|
// Otherwise, `Prev` will be used to extract the `Cur` from the
|
|
// `FreeListInfo.BlockList`.
|
|
//
|
|
// (BG) (BG->Next)
|
|
// Prev Cur BG
|
|
// | | |
|
|
// v v v
|
|
// +--+ +--+ +--+
|
|
// | | -> |X | -> | | -> ...
|
|
// +--+ +--+ +--+
|
|
//
|
|
// After FreeListInfo.BlockList::extract(),
|
|
//
|
|
// Prev Cur BG
|
|
// | | |
|
|
// v v v
|
|
// +--+ +--+ +--+
|
|
// | |-+ |X | +->| | -> ...
|
|
// +--+ | +--+ | +--+
|
|
// +--------+
|
|
//
|
|
// Note that we need to advance before pushing this BatchGroup to
|
|
// GroupsToRelease because it's a destructive operation.
|
|
|
|
BatchGroup *Cur = BG;
|
|
BG = BG->Next;
|
|
|
|
// Ideally, we may want to update this only after successful release.
|
|
// However, for smaller blocks, each block marking is a costly operation.
|
|
// Therefore, we update it earlier.
|
|
// TODO: Consider updating this after releasing pages if `ReleaseRecorder`
|
|
// can tell the released bytes in each group.
|
|
Cur->BytesInBGAtLastCheckpoint = BytesInBG;
|
|
|
|
if (Prev != nullptr)
|
|
Region->FreeListInfo.BlockList.extract(Prev, Cur);
|
|
else
|
|
Region->FreeListInfo.BlockList.pop_front();
|
|
GroupsToRelease.push_back(Cur);
|
|
}
|
|
|
|
// Only small blocks have the adaptive `TryReleaseThreshold`.
|
|
if (isSmallBlock(BlockSize)) {
|
|
// If the MinDistToThreshold is not updated, that means each memory group
|
|
// may have only pushed less than a page size. In that case, just set it
|
|
// back to normal.
|
|
if (MinDistToThreshold == GroupSize)
|
|
MinDistToThreshold = PageSize * SmallerBlockReleasePageDelta;
|
|
Region->TryReleaseThreshold = MinDistToThreshold;
|
|
}
|
|
|
|
return GroupsToRelease;
|
|
}
|
|
|
|
PageReleaseContext
|
|
markFreeBlocks(RegionInfo *Region, const uptr BlockSize,
|
|
const uptr AllocatedUserEnd, const uptr CompactPtrBase,
|
|
SinglyLinkedList<BatchGroup> &GroupsToRelease)
|
|
REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
|
|
const uptr GroupSize = (1U << GroupSizeLog);
|
|
auto DecompactPtr = [CompactPtrBase](CompactPtrT CompactPtr) {
|
|
return decompactPtrInternal(CompactPtrBase, CompactPtr);
|
|
};
|
|
|
|
const uptr ReleaseBase = decompactGroupBase(
|
|
CompactPtrBase, GroupsToRelease.front()->CompactPtrGroupBase);
|
|
const uptr LastGroupEnd =
|
|
Min(decompactGroupBase(CompactPtrBase,
|
|
GroupsToRelease.back()->CompactPtrGroupBase) +
|
|
GroupSize,
|
|
AllocatedUserEnd);
|
|
// The last block may straddle the group boundary. Rounding up to BlockSize
|
|
// to get the exact range.
|
|
const uptr ReleaseEnd =
|
|
roundUpSlow(LastGroupEnd - Region->RegionBeg, BlockSize) +
|
|
Region->RegionBeg;
|
|
const uptr ReleaseRangeSize = ReleaseEnd - ReleaseBase;
|
|
const uptr ReleaseOffset = ReleaseBase - Region->RegionBeg;
|
|
|
|
PageReleaseContext Context(BlockSize, /*NumberOfRegions=*/1U,
|
|
ReleaseRangeSize, ReleaseOffset);
|
|
// We may not be able to do the page release in a rare case that we may
|
|
// fail on PageMap allocation.
|
|
if (UNLIKELY(!Context.ensurePageMapAllocated()))
|
|
return Context;
|
|
|
|
for (BatchGroup &BG : GroupsToRelease) {
|
|
const uptr BatchGroupBase =
|
|
decompactGroupBase(CompactPtrBase, BG.CompactPtrGroupBase);
|
|
const uptr BatchGroupEnd = BatchGroupBase + GroupSize;
|
|
const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd
|
|
? GroupSize
|
|
: AllocatedUserEnd - BatchGroupBase;
|
|
const uptr BatchGroupUsedEnd = BatchGroupBase + AllocatedGroupSize;
|
|
const bool MayContainLastBlockInRegion =
|
|
BatchGroupUsedEnd == AllocatedUserEnd;
|
|
const bool BlockAlignedWithUsedEnd =
|
|
(BatchGroupUsedEnd - Region->RegionBeg) % BlockSize == 0;
|
|
|
|
uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
|
|
if (!BlockAlignedWithUsedEnd)
|
|
++MaxContainedBlocks;
|
|
|
|
const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
|
|
BG.Batches.front()->getCount();
|
|
|
|
if (NumBlocks == MaxContainedBlocks) {
|
|
for (const auto &It : BG.Batches) {
|
|
if (&It != BG.Batches.front())
|
|
DCHECK_EQ(It.getCount(), BG.MaxCachedPerBatch);
|
|
for (u16 I = 0; I < It.getCount(); ++I)
|
|
DCHECK_EQ(compactPtrGroup(It.get(I)), BG.CompactPtrGroupBase);
|
|
}
|
|
|
|
Context.markRangeAsAllCounted(BatchGroupBase, BatchGroupUsedEnd,
|
|
Region->RegionBeg, /*RegionIndex=*/0,
|
|
Region->MemMapInfo.AllocatedUser);
|
|
} else {
|
|
DCHECK_LT(NumBlocks, MaxContainedBlocks);
|
|
// Note that we don't always visit blocks in each BatchGroup so that we
|
|
// may miss the chance of releasing certain pages that cross
|
|
// BatchGroups.
|
|
Context.markFreeBlocksInRegion(
|
|
BG.Batches, DecompactPtr, Region->RegionBeg, /*RegionIndex=*/0,
|
|
Region->MemMapInfo.AllocatedUser, MayContainLastBlockInRegion);
|
|
}
|
|
}
|
|
|
|
DCHECK(Context.hasBlockMarked());
|
|
|
|
return Context;
|
|
}
|
|
|
|
void mergeGroupsToReleaseBack(RegionInfo *Region,
|
|
SinglyLinkedList<BatchGroup> &GroupsToRelease)
|
|
REQUIRES(Region->MMLock, Region->FLLock) {
|
|
// After merging two freelists, we may have redundant `BatchGroup`s that
|
|
// need to be recycled. The number of unused `BatchGroup`s is expected to be
|
|
// small. Pick a constant which is inferred from real programs.
|
|
constexpr uptr MaxUnusedSize = 8;
|
|
CompactPtrT Blocks[MaxUnusedSize];
|
|
u32 Idx = 0;
|
|
RegionInfo *BatchClassRegion = getRegionInfo(SizeClassMap::BatchClassId);
|
|
// We can't call pushBatchClassBlocks() to recycle the unused `BatchGroup`s
|
|
// when we are manipulating the freelist of `BatchClassRegion`. Instead, we
|
|
// should just push it back to the freelist when we merge two `BatchGroup`s.
|
|
// This logic hasn't been implemented because we haven't supported releasing
|
|
// pages in `BatchClassRegion`.
|
|
DCHECK_NE(BatchClassRegion, Region);
|
|
|
|
// Merge GroupsToRelease back to the Region::FreeListInfo.BlockList. Note
|
|
// that both `Region->FreeListInfo.BlockList` and `GroupsToRelease` are
|
|
// sorted.
|
|
for (BatchGroup *BG = Region->FreeListInfo.BlockList.front(),
|
|
*Prev = nullptr;
|
|
;) {
|
|
if (BG == nullptr || GroupsToRelease.empty()) {
|
|
if (!GroupsToRelease.empty())
|
|
Region->FreeListInfo.BlockList.append_back(&GroupsToRelease);
|
|
break;
|
|
}
|
|
|
|
DCHECK(!BG->Batches.empty());
|
|
|
|
if (BG->CompactPtrGroupBase <
|
|
GroupsToRelease.front()->CompactPtrGroupBase) {
|
|
Prev = BG;
|
|
BG = BG->Next;
|
|
continue;
|
|
}
|
|
|
|
BatchGroup *Cur = GroupsToRelease.front();
|
|
TransferBatch *UnusedTransferBatch = nullptr;
|
|
GroupsToRelease.pop_front();
|
|
|
|
if (BG->CompactPtrGroupBase == Cur->CompactPtrGroupBase) {
|
|
BG->PushedBlocks += Cur->PushedBlocks;
|
|
// We have updated `BatchGroup::BytesInBGAtLastCheckpoint` while
|
|
// collecting the `GroupsToRelease`.
|
|
BG->BytesInBGAtLastCheckpoint = Cur->BytesInBGAtLastCheckpoint;
|
|
const uptr MaxCachedPerBatch = BG->MaxCachedPerBatch;
|
|
|
|
// Note that the first TransferBatches in both `Batches` may not be
|
|
// full and only the first TransferBatch can have non-full blocks. Thus
|
|
// we have to merge them before appending one to another.
|
|
if (Cur->Batches.front()->getCount() == MaxCachedPerBatch) {
|
|
BG->Batches.append_back(&Cur->Batches);
|
|
} else {
|
|
TransferBatch *NonFullBatch = Cur->Batches.front();
|
|
Cur->Batches.pop_front();
|
|
const u16 NonFullBatchCount = NonFullBatch->getCount();
|
|
// The remaining Batches in `Cur` are full.
|
|
BG->Batches.append_back(&Cur->Batches);
|
|
|
|
if (BG->Batches.front()->getCount() == MaxCachedPerBatch) {
|
|
// Only 1 non-full TransferBatch, push it to the front.
|
|
BG->Batches.push_front(NonFullBatch);
|
|
} else {
|
|
const u16 NumBlocksToMove = static_cast<u16>(
|
|
Min(static_cast<u16>(MaxCachedPerBatch -
|
|
BG->Batches.front()->getCount()),
|
|
NonFullBatchCount));
|
|
BG->Batches.front()->appendFromTransferBatch(NonFullBatch,
|
|
NumBlocksToMove);
|
|
if (NonFullBatch->isEmpty())
|
|
UnusedTransferBatch = NonFullBatch;
|
|
else
|
|
BG->Batches.push_front(NonFullBatch);
|
|
}
|
|
}
|
|
|
|
const u32 NeededSlots = UnusedTransferBatch == nullptr ? 1U : 2U;
|
|
if (UNLIKELY(Idx + NeededSlots > MaxUnusedSize)) {
|
|
ScopedLock L(BatchClassRegion->FLLock);
|
|
pushBatchClassBlocks(BatchClassRegion, Blocks, Idx);
|
|
Idx = 0;
|
|
}
|
|
Blocks[Idx++] =
|
|
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(Cur));
|
|
if (UnusedTransferBatch) {
|
|
Blocks[Idx++] =
|
|
compactPtr(SizeClassMap::BatchClassId,
|
|
reinterpret_cast<uptr>(UnusedTransferBatch));
|
|
}
|
|
Prev = BG;
|
|
BG = BG->Next;
|
|
continue;
|
|
}
|
|
|
|
// At here, the `BG` is the first BatchGroup with CompactPtrGroupBase
|
|
// larger than the first element in `GroupsToRelease`. We need to insert
|
|
// `GroupsToRelease::front()` (which is `Cur` below) before `BG`.
|
|
//
|
|
// 1. If `Prev` is nullptr, we simply push `Cur` to the front of
|
|
// FreeListInfo.BlockList.
|
|
// 2. Otherwise, use `insert()` which inserts an element next to `Prev`.
|
|
//
|
|
// Afterwards, we don't need to advance `BG` because the order between
|
|
// `BG` and the new `GroupsToRelease::front()` hasn't been checked.
|
|
if (Prev == nullptr)
|
|
Region->FreeListInfo.BlockList.push_front(Cur);
|
|
else
|
|
Region->FreeListInfo.BlockList.insert(Prev, Cur);
|
|
DCHECK_EQ(Cur->Next, BG);
|
|
Prev = Cur;
|
|
}
|
|
|
|
if (Idx != 0) {
|
|
ScopedLock L(BatchClassRegion->FLLock);
|
|
pushBatchClassBlocks(BatchClassRegion, Blocks, Idx);
|
|
}
|
|
|
|
if (SCUDO_DEBUG) {
|
|
BatchGroup *Prev = Region->FreeListInfo.BlockList.front();
|
|
for (BatchGroup *Cur = Prev->Next; Cur != nullptr;
|
|
Prev = Cur, Cur = Cur->Next) {
|
|
CHECK_LT(Prev->CompactPtrGroupBase, Cur->CompactPtrGroupBase);
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: `PrimaryBase` can be obtained from ReservedMemory. This needs to be
|
|
// deprecated.
|
|
uptr PrimaryBase = 0;
|
|
ReservedMemoryT ReservedMemory = {};
|
|
// The minimum size of pushed blocks that we will try to release the pages in
|
|
// that size class.
|
|
uptr SmallerBlockReleasePageDelta = 0;
|
|
atomic_s32 ReleaseToOsIntervalMs = {};
|
|
alignas(SCUDO_CACHE_LINE_SIZE) RegionInfo RegionInfoArray[NumClasses];
|
|
};
|
|
|
|
} // namespace scudo
|
|
|
|
#endif // SCUDO_PRIMARY64_H_
|