tdesktop/Telegram/ThirdParty/scudo/primary64.h

1544 lines
60 KiB
C++

//===-- primary64.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_PRIMARY64_H_
#define SCUDO_PRIMARY64_H_
#include "bytemap.h"
#include "common.h"
#include "list.h"
#include "local_cache.h"
#include "mem_map.h"
#include "memtag.h"
#include "options.h"
#include "release.h"
#include "stats.h"
#include "string_utils.h"
#include "thread_annotations.h"
namespace scudo {
// SizeClassAllocator64 is an allocator tuned for 64-bit address space.
//
// It starts by reserving NumClasses * 2^RegionSizeLog bytes, equally divided in
// Regions, specific to each size class. Note that the base of that mapping is
// random (based to the platform specific map() capabilities). If
// PrimaryEnableRandomOffset is set, each Region actually starts at a random
// offset from its base.
//
// Regions are mapped incrementally on demand to fulfill allocation requests,
// those mappings being split into equally sized Blocks based on the size class
// they belong to. The Blocks created are shuffled to prevent predictable
// address patterns (the predictability increases with the size of the Blocks).
//
// The 1st Region (for size class 0) holds the TransferBatches. This is a
// structure used to transfer arrays of available pointers from the class size
// freelist to the thread specific freelist, and back.
//
// The memory used by this allocator is never unmapped, but can be partially
// released if the platform allows for it.
template <typename Config> class SizeClassAllocator64 {
public:
typedef typename Config::Primary::CompactPtrT CompactPtrT;
typedef typename Config::Primary::SizeClassMap SizeClassMap;
static const uptr CompactPtrScale = Config::Primary::CompactPtrScale;
static const uptr GroupSizeLog = Config::Primary::GroupSizeLog;
static const uptr GroupScale = GroupSizeLog - CompactPtrScale;
typedef SizeClassAllocator64<Config> ThisT;
typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
typedef typename CacheT::TransferBatch TransferBatch;
typedef typename CacheT::BatchGroup BatchGroup;
static uptr getSizeByClassId(uptr ClassId) {
return (ClassId == SizeClassMap::BatchClassId)
? roundUp(sizeof(TransferBatch), 1U << CompactPtrScale)
: SizeClassMap::getSizeByClassId(ClassId);
}
static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
const uptr PageSize = getPageSizeCached();
const uptr GroupSize = (1U << GroupSizeLog);
const uptr PagesInGroup = GroupSize / PageSize;
const uptr MinSizeClass = getSizeByClassId(1);
// When trying to release pages back to memory, visiting smaller size
// classes is expensive. Therefore, we only try to release smaller size
// classes when the amount of free blocks goes over a certain threshold (See
// the comment in releaseToOSMaybe() for more details). For example, for
// size class 32, we only do the release when the size of free blocks is
// greater than 97% of pages in a group. However, this may introduce another
// issue that if the number of free blocks is bouncing between 97% ~ 100%.
// Which means we may try many page releases but only release very few of
// them (less than 3% in a group). Even though we have
// `&ReleaseToOsIntervalMs` which slightly reduce the frequency of these
// calls but it will be better to have another guard to mitigate this issue.
//
// Here we add another constraint on the minimum size requirement. The
// constraint is determined by the size of in-use blocks in the minimal size
// class. Take size class 32 as an example,
//
// +- one memory group -+
// +----------------------+------+
// | 97% of free blocks | |
// +----------------------+------+
// \ /
// 3% in-use blocks
//
// * The release size threshold is 97%.
//
// The 3% size in a group is about 7 pages. For two consecutive
// releaseToOSMaybe(), we require the difference between `PushedBlocks`
// should be greater than 7 pages. This mitigates the page releasing
// thrashing which is caused by memory usage bouncing around the threshold.
// The smallest size class takes longest time to do the page release so we
// use its size of in-use blocks as a heuristic.
SmallerBlockReleasePageDelta =
PagesInGroup * (1 + MinSizeClass / 16U) / 100;
// Reserve the space required for the Primary.
CHECK(ReservedMemory.create(/*Addr=*/0U, PrimarySize,
"scudo:primary_reserve"));
PrimaryBase = ReservedMemory.getBase();
DCHECK_NE(PrimaryBase, 0U);
u32 Seed;
const u64 Time = getMonotonicTimeFast();
if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
Seed = static_cast<u32>(Time ^ (PrimaryBase >> 12));
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
// The actual start of a region is offset by a random number of pages
// when PrimaryEnableRandomOffset is set.
Region->RegionBeg =
(PrimaryBase + (I << Config::Primary::RegionSizeLog)) +
(Config::Primary::EnableRandomOffset
? ((getRandomModN(&Seed, 16) + 1) * PageSize)
: 0);
Region->RandState = getRandomU32(&Seed);
// Releasing small blocks is expensive, set a higher threshold to avoid
// frequent page releases.
if (isSmallBlock(getSizeByClassId(I)))
Region->TryReleaseThreshold = PageSize * SmallerBlockReleasePageDelta;
else
Region->TryReleaseThreshold = PageSize;
Region->ReleaseInfo.LastReleaseAtNs = Time;
Region->MemMapInfo.MemMap = ReservedMemory.dispatch(
PrimaryBase + (I << Config::Primary::RegionSizeLog), RegionSize);
CHECK(Region->MemMapInfo.MemMap.isAllocated());
}
shuffle(RegionInfoArray, NumClasses, &Seed);
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
}
void unmapTestOnly() NO_THREAD_SAFETY_ANALYSIS {
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
*Region = {};
}
if (PrimaryBase)
ReservedMemory.release();
PrimaryBase = 0U;
}
// When all blocks are freed, it has to be the same size as `AllocatedUser`.
void verifyAllBlocksAreReleasedTestOnly() {
// `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
uptr BatchClassUsedInFreeLists = 0;
for (uptr I = 0; I < NumClasses; I++) {
// We have to count BatchClassUsedInFreeLists in other regions first.
if (I == SizeClassMap::BatchClassId)
continue;
RegionInfo *Region = getRegionInfo(I);
ScopedLock ML(Region->MMLock);
ScopedLock FL(Region->FLLock);
const uptr BlockSize = getSizeByClassId(I);
uptr TotalBlocks = 0;
for (BatchGroup &BG : Region->FreeListInfo.BlockList) {
// `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
BatchClassUsedInFreeLists += BG.Batches.size() + 1;
for (const auto &It : BG.Batches)
TotalBlocks += It.getCount();
}
DCHECK_EQ(TotalBlocks, Region->MemMapInfo.AllocatedUser / BlockSize);
DCHECK_EQ(Region->FreeListInfo.PushedBlocks,
Region->FreeListInfo.PoppedBlocks);
}
RegionInfo *Region = getRegionInfo(SizeClassMap::BatchClassId);
ScopedLock ML(Region->MMLock);
ScopedLock FL(Region->FLLock);
const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
uptr TotalBlocks = 0;
for (BatchGroup &BG : Region->FreeListInfo.BlockList) {
if (LIKELY(!BG.Batches.empty())) {
for (const auto &It : BG.Batches)
TotalBlocks += It.getCount();
} else {
// `BatchGroup` with empty freelist doesn't have `TransferBatch` record
// itself.
++TotalBlocks;
}
}
DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
Region->MemMapInfo.AllocatedUser / BlockSize);
DCHECK_GE(Region->FreeListInfo.PoppedBlocks,
Region->FreeListInfo.PushedBlocks);
const uptr BlocksInUse =
Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks;
DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
}
TransferBatch *popBatch(CacheT *C, uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
RegionInfo *Region = getRegionInfo(ClassId);
{
ScopedLock L(Region->FLLock);
TransferBatch *B = popBatchImpl(C, ClassId, Region);
if (LIKELY(B))
return B;
}
bool PrintStats = false;
TransferBatch *B = nullptr;
while (true) {
// When two threads compete for `Region->MMLock`, we only want one of them
// does the populateFreeListAndPopBatch(). To avoid both of them doing
// that, always check the freelist before mapping new pages.
//
// TODO(chiahungduan): Use a condition variable so that we don't need to
// hold `Region->MMLock` here.
ScopedLock ML(Region->MMLock);
{
ScopedLock FL(Region->FLLock);
B = popBatchImpl(C, ClassId, Region);
if (LIKELY(B))
return B;
}
const bool RegionIsExhausted = Region->Exhausted;
if (!RegionIsExhausted)
B = populateFreeListAndPopBatch(C, ClassId, Region);
PrintStats = !RegionIsExhausted && Region->Exhausted;
break;
}
// Note that `getStats()` requires locking each region so we can't call it
// while locking the Region->Mutex in the above.
if (UNLIKELY(PrintStats)) {
ScopedString Str;
getStats(&Str);
Str.append(
"Scudo OOM: The process has exhausted %zuM for size class %zu.\n",
RegionSize >> 20, getSizeByClassId(ClassId));
Str.output();
// Theoretically, BatchClass shouldn't be used up. Abort immediately when
// it happens.
if (ClassId == SizeClassMap::BatchClassId)
reportOutOfBatchClass();
}
return B;
}
// Push the array of free blocks to the designated batch group.
void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
DCHECK_LT(ClassId, NumClasses);
DCHECK_GT(Size, 0);
RegionInfo *Region = getRegionInfo(ClassId);
if (ClassId == SizeClassMap::BatchClassId) {
ScopedLock L(Region->FLLock);
pushBatchClassBlocks(Region, Array, Size);
return;
}
// TODO(chiahungduan): Consider not doing grouping if the group size is not
// greater than the block size with a certain scale.
// Sort the blocks so that blocks belonging to the same group can be pushed
// together.
bool SameGroup = true;
for (u32 I = 1; I < Size; ++I) {
if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I]))
SameGroup = false;
CompactPtrT Cur = Array[I];
u32 J = I;
while (J > 0 && compactPtrGroup(Cur) < compactPtrGroup(Array[J - 1])) {
Array[J] = Array[J - 1];
--J;
}
Array[J] = Cur;
}
{
ScopedLock L(Region->FLLock);
pushBlocksImpl(C, ClassId, Region, Array, Size, SameGroup);
}
}
void disable() NO_THREAD_SAFETY_ANALYSIS {
// The BatchClassId must be locked last since other classes can use it.
for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
continue;
getRegionInfo(static_cast<uptr>(I))->MMLock.lock();
getRegionInfo(static_cast<uptr>(I))->FLLock.lock();
}
getRegionInfo(SizeClassMap::BatchClassId)->MMLock.lock();
getRegionInfo(SizeClassMap::BatchClassId)->FLLock.lock();
}
void enable() NO_THREAD_SAFETY_ANALYSIS {
getRegionInfo(SizeClassMap::BatchClassId)->FLLock.unlock();
getRegionInfo(SizeClassMap::BatchClassId)->MMLock.unlock();
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
getRegionInfo(I)->FLLock.unlock();
getRegionInfo(I)->MMLock.unlock();
}
}
template <typename F> void iterateOverBlocks(F Callback) {
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
RegionInfo *Region = getRegionInfo(I);
// TODO: The call of `iterateOverBlocks` requires disabling
// SizeClassAllocator64. We may consider locking each region on demand
// only.
Region->FLLock.assertHeld();
Region->MMLock.assertHeld();
const uptr BlockSize = getSizeByClassId(I);
const uptr From = Region->RegionBeg;
const uptr To = From + Region->MemMapInfo.AllocatedUser;
for (uptr Block = From; Block < To; Block += BlockSize)
Callback(Block);
}
}
void getStats(ScopedString *Str) {
// TODO(kostyak): get the RSS per region.
uptr TotalMapped = 0;
uptr PoppedBlocks = 0;
uptr PushedBlocks = 0;
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
{
ScopedLock L(Region->MMLock);
TotalMapped += Region->MemMapInfo.MappedUser;
}
{
ScopedLock L(Region->FLLock);
PoppedBlocks += Region->FreeListInfo.PoppedBlocks;
PushedBlocks += Region->FreeListInfo.PushedBlocks;
}
}
Str->append("Stats: SizeClassAllocator64: %zuM mapped (%uM rss) in %zu "
"allocations; remains %zu\n",
TotalMapped >> 20, 0U, PoppedBlocks,
PoppedBlocks - PushedBlocks);
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
ScopedLock L1(Region->MMLock);
ScopedLock L2(Region->FLLock);
getStats(Str, I, Region);
}
}
bool setOption(Option O, sptr Value) {
if (O == Option::ReleaseInterval) {
const s32 Interval = Max(Min(static_cast<s32>(Value),
Config::Primary::MaxReleaseToOsIntervalMs),
Config::Primary::MinReleaseToOsIntervalMs);
atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
return true;
}
// Not supported by the Primary, but not an error either.
return true;
}
uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
RegionInfo *Region = getRegionInfo(ClassId);
// Note that the tryLock() may fail spuriously, given that it should rarely
// happen and page releasing is fine to skip, we don't take certain
// approaches to ensure one page release is done.
if (Region->MMLock.tryLock()) {
uptr BytesReleased = releaseToOSMaybe(Region, ClassId, ReleaseType);
Region->MMLock.unlock();
return BytesReleased;
}
return 0;
}
uptr releaseToOS(ReleaseToOS ReleaseType) {
uptr TotalReleasedBytes = 0;
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
RegionInfo *Region = getRegionInfo(I);
ScopedLock L(Region->MMLock);
TotalReleasedBytes += releaseToOSMaybe(Region, I, ReleaseType);
}
return TotalReleasedBytes;
}
const char *getRegionInfoArrayAddress() const {
return reinterpret_cast<const char *>(RegionInfoArray);
}
static uptr getRegionInfoArraySize() { return sizeof(RegionInfoArray); }
uptr getCompactPtrBaseByClassId(uptr ClassId) {
return getRegionInfo(ClassId)->RegionBeg;
}
CompactPtrT compactPtr(uptr ClassId, uptr Ptr) {
DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
return compactPtrInternal(getCompactPtrBaseByClassId(ClassId), Ptr);
}
void *decompactPtr(uptr ClassId, CompactPtrT CompactPtr) {
DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
return reinterpret_cast<void *>(
decompactPtrInternal(getCompactPtrBaseByClassId(ClassId), CompactPtr));
}
static BlockInfo findNearestBlock(const char *RegionInfoData,
uptr Ptr) NO_THREAD_SAFETY_ANALYSIS {
const RegionInfo *RegionInfoArray =
reinterpret_cast<const RegionInfo *>(RegionInfoData);
uptr ClassId;
uptr MinDistance = -1UL;
for (uptr I = 0; I != NumClasses; ++I) {
if (I == SizeClassMap::BatchClassId)
continue;
uptr Begin = RegionInfoArray[I].RegionBeg;
// TODO(chiahungduan): In fact, We need to lock the RegionInfo::MMLock.
// However, the RegionInfoData is passed with const qualifier and lock the
// mutex requires modifying RegionInfoData, which means we need to remove
// the const qualifier. This may lead to another undefined behavior (The
// first one is accessing `AllocatedUser` without locking. It's better to
// pass `RegionInfoData` as `void *` then we can lock the mutex properly.
uptr End = Begin + RegionInfoArray[I].MemMapInfo.AllocatedUser;
if (Begin > End || End - Begin < SizeClassMap::getSizeByClassId(I))
continue;
uptr RegionDistance;
if (Begin <= Ptr) {
if (Ptr < End)
RegionDistance = 0;
else
RegionDistance = Ptr - End;
} else {
RegionDistance = Begin - Ptr;
}
if (RegionDistance < MinDistance) {
MinDistance = RegionDistance;
ClassId = I;
}
}
BlockInfo B = {};
if (MinDistance <= 8192) {
B.RegionBegin = RegionInfoArray[ClassId].RegionBeg;
B.RegionEnd =
B.RegionBegin + RegionInfoArray[ClassId].MemMapInfo.AllocatedUser;
B.BlockSize = SizeClassMap::getSizeByClassId(ClassId);
B.BlockBegin =
B.RegionBegin + uptr(sptr(Ptr - B.RegionBegin) / sptr(B.BlockSize) *
sptr(B.BlockSize));
while (B.BlockBegin < B.RegionBegin)
B.BlockBegin += B.BlockSize;
while (B.RegionEnd < B.BlockBegin + B.BlockSize)
B.BlockBegin -= B.BlockSize;
}
return B;
}
AtomicOptions Options;
private:
static const uptr RegionSize = 1UL << Config::Primary::RegionSizeLog;
static const uptr NumClasses = SizeClassMap::NumClasses;
static const uptr PrimarySize = RegionSize * NumClasses;
static const uptr MapSizeIncrement = Config::Primary::MapSizeIncrement;
// Fill at most this number of batches from the newly map'd memory.
static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
struct ReleaseToOsInfo {
uptr BytesInFreeListAtLastCheckpoint;
uptr RangesReleased;
uptr LastReleasedBytes;
u64 LastReleaseAtNs;
};
struct BlocksInfo {
SinglyLinkedList<BatchGroup> BlockList = {};
uptr PoppedBlocks = 0;
uptr PushedBlocks = 0;
};
struct PagesInfo {
MemMapT MemMap = {};
// Bytes mapped for user memory.
uptr MappedUser = 0;
// Bytes allocated for user memory.
uptr AllocatedUser = 0;
};
struct UnpaddedRegionInfo {
// Mutex for operations on freelist
HybridMutex FLLock;
// Mutex for memmap operations
HybridMutex MMLock ACQUIRED_BEFORE(FLLock);
// `RegionBeg` is initialized before thread creation and won't be changed.
uptr RegionBeg = 0;
u32 RandState GUARDED_BY(MMLock) = 0;
BlocksInfo FreeListInfo GUARDED_BY(FLLock);
PagesInfo MemMapInfo GUARDED_BY(MMLock);
// The minimum size of pushed blocks to trigger page release.
uptr TryReleaseThreshold GUARDED_BY(MMLock) = 0;
ReleaseToOsInfo ReleaseInfo GUARDED_BY(MMLock) = {};
bool Exhausted GUARDED_BY(MMLock) = false;
};
struct RegionInfo : UnpaddedRegionInfo {
char Padding[SCUDO_CACHE_LINE_SIZE -
(sizeof(UnpaddedRegionInfo) % SCUDO_CACHE_LINE_SIZE)] = {};
};
static_assert(sizeof(RegionInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
RegionInfo *getRegionInfo(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
return &RegionInfoArray[ClassId];
}
uptr getRegionBaseByClassId(uptr ClassId) {
return roundDown(getRegionInfo(ClassId)->RegionBeg - PrimaryBase,
RegionSize) +
PrimaryBase;
}
static CompactPtrT compactPtrInternal(uptr Base, uptr Ptr) {
return static_cast<CompactPtrT>((Ptr - Base) >> CompactPtrScale);
}
static uptr decompactPtrInternal(uptr Base, CompactPtrT CompactPtr) {
return Base + (static_cast<uptr>(CompactPtr) << CompactPtrScale);
}
static uptr compactPtrGroup(CompactPtrT CompactPtr) {
const uptr Mask = (static_cast<uptr>(1) << GroupScale) - 1;
return static_cast<uptr>(CompactPtr) & ~Mask;
}
static uptr decompactGroupBase(uptr Base, uptr CompactPtrGroupBase) {
DCHECK_EQ(CompactPtrGroupBase % (static_cast<uptr>(1) << (GroupScale)), 0U);
return Base + (CompactPtrGroupBase << CompactPtrScale);
}
ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
const uptr PageSize = getPageSizeCached();
return BlockSize < PageSize / 16U;
}
ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
const uptr PageSize = getPageSizeCached();
return BlockSize > PageSize;
}
void pushBatchClassBlocks(RegionInfo *Region, CompactPtrT *Array, u32 Size)
REQUIRES(Region->FLLock) {
DCHECK_EQ(Region, getRegionInfo(SizeClassMap::BatchClassId));
// Free blocks are recorded by TransferBatch in freelist for all
// size-classes. In addition, TransferBatch is allocated from BatchClassId.
// In order not to use additional block to record the free blocks in
// BatchClassId, they are self-contained. I.e., A TransferBatch records the
// block address of itself. See the figure below:
//
// TransferBatch at 0xABCD
// +----------------------------+
// | Free blocks' addr |
// | +------+------+------+ |
// | |0xABCD|... |... | |
// | +------+------+------+ |
// +----------------------------+
//
// When we allocate all the free blocks in the TransferBatch, the block used
// by TransferBatch is also free for use. We don't need to recycle the
// TransferBatch. Note that the correctness is maintained by the invariant,
//
// The unit of each popBatch() request is entire TransferBatch. Return
// part of the blocks in a TransferBatch is invalid.
//
// This ensures that TransferBatch won't leak the address itself while it's
// still holding other valid data.
//
// Besides, BatchGroup is also allocated from BatchClassId and has its
// address recorded in the TransferBatch too. To maintain the correctness,
//
// The address of BatchGroup is always recorded in the last TransferBatch
// in the freelist (also imply that the freelist should only be
// updated with push_front). Once the last TransferBatch is popped,
// the block used by BatchGroup is also free for use.
//
// With this approach, the blocks used by BatchGroup and TransferBatch are
// reusable and don't need additional space for them.
Region->FreeListInfo.PushedBlocks += Size;
BatchGroup *BG = Region->FreeListInfo.BlockList.front();
if (BG == nullptr) {
// Construct `BatchGroup` on the last element.
BG = reinterpret_cast<BatchGroup *>(
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
--Size;
BG->Batches.clear();
// BatchClass hasn't enabled memory group. Use `0` to indicate there's no
// memory group here.
BG->CompactPtrGroupBase = 0;
// `BG` is also the block of BatchClassId. Note that this is different
// from `CreateGroup` in `pushBlocksImpl`
BG->PushedBlocks = 1;
BG->BytesInBGAtLastCheckpoint = 0;
BG->MaxCachedPerBatch = TransferBatch::getMaxCached(
getSizeByClassId(SizeClassMap::BatchClassId));
Region->FreeListInfo.BlockList.push_front(BG);
}
if (UNLIKELY(Size == 0))
return;
// This happens under 2 cases.
// 1. just allocated a new `BatchGroup`.
// 2. Only 1 block is pushed when the freelist is empty.
if (BG->Batches.empty()) {
// Construct the `TransferBatch` on the last element.
TransferBatch *TB = reinterpret_cast<TransferBatch *>(
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
TB->clear();
// As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
// recorded in the TransferBatch.
TB->add(Array[Size - 1]);
TB->add(
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
--Size;
DCHECK_EQ(BG->PushedBlocks, 1U);
// `TB` is also the block of BatchClassId.
BG->PushedBlocks += 1;
BG->Batches.push_front(TB);
}
TransferBatch *CurBatch = BG->Batches.front();
DCHECK_NE(CurBatch, nullptr);
for (u32 I = 0; I < Size;) {
u16 UnusedSlots =
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
if (UnusedSlots == 0) {
CurBatch = reinterpret_cast<TransferBatch *>(
decompactPtr(SizeClassMap::BatchClassId, Array[I]));
CurBatch->clear();
// Self-contained
CurBatch->add(Array[I]);
++I;
// TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
// BatchClassId.
BG->Batches.push_front(CurBatch);
UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
}
// `UnusedSlots` is u16 so the result will be also fit in u16.
const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
CurBatch->appendFromArray(&Array[I], AppendSize);
I += AppendSize;
}
BG->PushedBlocks += Size;
}
// Push the blocks to their batch group. The layout will be like,
//
// FreeListInfo.BlockList - > BG -> BG -> BG
// | | |
// v v v
// TB TB TB
// |
// v
// TB
//
// Each BlockGroup(BG) will associate with unique group id and the free blocks
// are managed by a list of TransferBatch(TB). To reduce the time of inserting
// blocks, BGs are sorted and the input `Array` are supposed to be sorted so
// that we can get better performance of maintaining sorted property.
// Use `SameGroup=true` to indicate that all blocks in the array are from the
// same group then we will skip checking the group id of each block.
void pushBlocksImpl(CacheT *C, uptr ClassId, RegionInfo *Region,
CompactPtrT *Array, u32 Size, bool SameGroup = false)
REQUIRES(Region->FLLock) {
DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
DCHECK_GT(Size, 0U);
auto CreateGroup = [&](uptr CompactPtrGroupBase) {
BatchGroup *BG = C->createGroup();
BG->Batches.clear();
TransferBatch *TB = C->createBatch(ClassId, nullptr);
TB->clear();
BG->CompactPtrGroupBase = CompactPtrGroupBase;
BG->Batches.push_front(TB);
BG->PushedBlocks = 0;
BG->BytesInBGAtLastCheckpoint = 0;
BG->MaxCachedPerBatch =
TransferBatch::getMaxCached(getSizeByClassId(ClassId));
return BG;
};
auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) {
SinglyLinkedList<TransferBatch> &Batches = BG->Batches;
TransferBatch *CurBatch = Batches.front();
DCHECK_NE(CurBatch, nullptr);
for (u32 I = 0; I < Size;) {
DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
u16 UnusedSlots =
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
if (UnusedSlots == 0) {
CurBatch = C->createBatch(
ClassId,
reinterpret_cast<void *>(decompactPtr(ClassId, Array[I])));
CurBatch->clear();
Batches.push_front(CurBatch);
UnusedSlots = BG->MaxCachedPerBatch;
}
// `UnusedSlots` is u16 so the result will be also fit in u16.
u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
CurBatch->appendFromArray(&Array[I], AppendSize);
I += AppendSize;
}
BG->PushedBlocks += Size;
};
Region->FreeListInfo.PushedBlocks += Size;
BatchGroup *Cur = Region->FreeListInfo.BlockList.front();
if (ClassId == SizeClassMap::BatchClassId) {
if (Cur == nullptr) {
// Don't need to classify BatchClassId.
Cur = CreateGroup(/*CompactPtrGroupBase=*/0);
Region->FreeListInfo.BlockList.push_front(Cur);
}
InsertBlocks(Cur, Array, Size);
return;
}
// In the following, `Cur` always points to the BatchGroup for blocks that
// will be pushed next. `Prev` is the element right before `Cur`.
BatchGroup *Prev = nullptr;
while (Cur != nullptr &&
compactPtrGroup(Array[0]) > Cur->CompactPtrGroupBase) {
Prev = Cur;
Cur = Cur->Next;
}
if (Cur == nullptr ||
compactPtrGroup(Array[0]) != Cur->CompactPtrGroupBase) {
Cur = CreateGroup(compactPtrGroup(Array[0]));
if (Prev == nullptr)
Region->FreeListInfo.BlockList.push_front(Cur);
else
Region->FreeListInfo.BlockList.insert(Prev, Cur);
}
// All the blocks are from the same group, just push without checking group
// id.
if (SameGroup) {
for (u32 I = 0; I < Size; ++I)
DCHECK_EQ(compactPtrGroup(Array[I]), Cur->CompactPtrGroupBase);
InsertBlocks(Cur, Array, Size);
return;
}
// The blocks are sorted by group id. Determine the segment of group and
// push them to their group together.
u32 Count = 1;
for (u32 I = 1; I < Size; ++I) {
if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) {
DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->CompactPtrGroupBase);
InsertBlocks(Cur, Array + I - Count, Count);
while (Cur != nullptr &&
compactPtrGroup(Array[I]) > Cur->CompactPtrGroupBase) {
Prev = Cur;
Cur = Cur->Next;
}
if (Cur == nullptr ||
compactPtrGroup(Array[I]) != Cur->CompactPtrGroupBase) {
Cur = CreateGroup(compactPtrGroup(Array[I]));
DCHECK_NE(Prev, nullptr);
Region->FreeListInfo.BlockList.insert(Prev, Cur);
}
Count = 1;
} else {
++Count;
}
}
InsertBlocks(Cur, Array + Size - Count, Count);
}
// Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest
// group id will be considered first.
//
// The region mutex needs to be held while calling this method.
TransferBatch *popBatchImpl(CacheT *C, uptr ClassId, RegionInfo *Region)
REQUIRES(Region->FLLock) {
if (Region->FreeListInfo.BlockList.empty())
return nullptr;
SinglyLinkedList<TransferBatch> &Batches =
Region->FreeListInfo.BlockList.front()->Batches;
if (Batches.empty()) {
DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
BatchGroup *BG = Region->FreeListInfo.BlockList.front();
Region->FreeListInfo.BlockList.pop_front();
// Block used by `BatchGroup` is from BatchClassId. Turn the block into
// `TransferBatch` with single block.
TransferBatch *TB = reinterpret_cast<TransferBatch *>(BG);
TB->clear();
TB->add(
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB)));
Region->FreeListInfo.PoppedBlocks += 1;
return TB;
}
TransferBatch *B = Batches.front();
Batches.pop_front();
DCHECK_NE(B, nullptr);
DCHECK_GT(B->getCount(), 0U);
if (Batches.empty()) {
BatchGroup *BG = Region->FreeListInfo.BlockList.front();
Region->FreeListInfo.BlockList.pop_front();
// We don't keep BatchGroup with zero blocks to avoid empty-checking while
// allocating. Note that block used by constructing BatchGroup is recorded
// as free blocks in the last element of BatchGroup::Batches. Which means,
// once we pop the last TransferBatch, the block is implicitly
// deallocated.
if (ClassId != SizeClassMap::BatchClassId)
C->deallocate(SizeClassMap::BatchClassId, BG);
}
Region->FreeListInfo.PoppedBlocks += B->getCount();
return B;
}
// Refill the freelist and return one batch.
NOINLINE TransferBatch *populateFreeListAndPopBatch(CacheT *C, uptr ClassId,
RegionInfo *Region)
REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
const uptr Size = getSizeByClassId(ClassId);
const u16 MaxCount = TransferBatch::getMaxCached(Size);
const uptr RegionBeg = Region->RegionBeg;
const uptr MappedUser = Region->MemMapInfo.MappedUser;
const uptr TotalUserBytes =
Region->MemMapInfo.AllocatedUser + MaxCount * Size;
// Map more space for blocks, if necessary.
if (TotalUserBytes > MappedUser) {
// Do the mmap for the user memory.
const uptr MapSize =
roundUp(TotalUserBytes - MappedUser, MapSizeIncrement);
const uptr RegionBase = RegionBeg - getRegionBaseByClassId(ClassId);
if (UNLIKELY(RegionBase + MappedUser + MapSize > RegionSize)) {
Region->Exhausted = true;
return nullptr;
}
if (UNLIKELY(!Region->MemMapInfo.MemMap.remap(
RegionBeg + MappedUser, MapSize, "scudo:primary",
MAP_ALLOWNOMEM | MAP_RESIZABLE |
(useMemoryTagging<Config>(Options.load()) ? MAP_MEMTAG
: 0)))) {
return nullptr;
}
Region->MemMapInfo.MappedUser += MapSize;
C->getStats().add(StatMapped, MapSize);
}
const u32 NumberOfBlocks =
Min(MaxNumBatches * MaxCount,
static_cast<u32>((Region->MemMapInfo.MappedUser -
Region->MemMapInfo.AllocatedUser) /
Size));
DCHECK_GT(NumberOfBlocks, 0);
constexpr u32 ShuffleArraySize =
MaxNumBatches * TransferBatch::MaxNumCached;
CompactPtrT ShuffleArray[ShuffleArraySize];
DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
uptr P = RegionBeg + Region->MemMapInfo.AllocatedUser;
for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
ShuffleArray[I] = compactPtrInternal(CompactPtrBase, P);
ScopedLock L(Region->FLLock);
if (ClassId != SizeClassMap::BatchClassId) {
u32 N = 1;
uptr CurGroup = compactPtrGroup(ShuffleArray[0]);
for (u32 I = 1; I < NumberOfBlocks; I++) {
if (UNLIKELY(compactPtrGroup(ShuffleArray[I]) != CurGroup)) {
shuffle(ShuffleArray + I - N, N, &Region->RandState);
pushBlocksImpl(C, ClassId, Region, ShuffleArray + I - N, N,
/*SameGroup=*/true);
N = 1;
CurGroup = compactPtrGroup(ShuffleArray[I]);
} else {
++N;
}
}
shuffle(ShuffleArray + NumberOfBlocks - N, N, &Region->RandState);
pushBlocksImpl(C, ClassId, Region, &ShuffleArray[NumberOfBlocks - N], N,
/*SameGroup=*/true);
} else {
pushBatchClassBlocks(Region, ShuffleArray, NumberOfBlocks);
}
TransferBatch *B = popBatchImpl(C, ClassId, Region);
DCHECK_NE(B, nullptr);
// Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
// the requests from `PushBlocks` and `PopBatch` which are external
// interfaces. `populateFreeListAndPopBatch` is the internal interface so we
// should set the values back to avoid incorrectly setting the stats.
Region->FreeListInfo.PushedBlocks -= NumberOfBlocks;
const uptr AllocatedUser = Size * NumberOfBlocks;
C->getStats().add(StatFree, AllocatedUser);
Region->MemMapInfo.AllocatedUser += AllocatedUser;
return B;
}
void getStats(ScopedString *Str, uptr ClassId, RegionInfo *Region)
REQUIRES(Region->MMLock, Region->FLLock) {
if (Region->MemMapInfo.MappedUser == 0)
return;
const uptr BlockSize = getSizeByClassId(ClassId);
const uptr InUse =
Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks;
const uptr BytesInFreeList =
Region->MemMapInfo.AllocatedUser - InUse * BlockSize;
uptr RegionPushedBytesDelta = 0;
if (BytesInFreeList >=
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
RegionPushedBytesDelta =
BytesInFreeList - Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
}
const uptr TotalChunks = Region->MemMapInfo.AllocatedUser / BlockSize;
Str->append(
"%s %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
"inuse: %6zu total: %6zu releases: %6zu last "
"released: %6zuK latest pushed bytes: %6zuK region: 0x%zx (0x%zx)\n",
Region->Exhausted ? "F" : " ", ClassId, getSizeByClassId(ClassId),
Region->MemMapInfo.MappedUser >> 10, Region->FreeListInfo.PoppedBlocks,
Region->FreeListInfo.PushedBlocks, InUse, TotalChunks,
Region->ReleaseInfo.RangesReleased,
Region->ReleaseInfo.LastReleasedBytes >> 10,
RegionPushedBytesDelta >> 10, Region->RegionBeg,
getRegionBaseByClassId(ClassId));
}
NOINLINE uptr releaseToOSMaybe(RegionInfo *Region, uptr ClassId,
ReleaseToOS ReleaseType = ReleaseToOS::Normal)
REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
ScopedLock L(Region->FLLock);
const uptr BlockSize = getSizeByClassId(ClassId);
const uptr BytesInFreeList =
Region->MemMapInfo.AllocatedUser - (Region->FreeListInfo.PoppedBlocks -
Region->FreeListInfo.PushedBlocks) *
BlockSize;
if (UNLIKELY(BytesInFreeList == 0))
return false;
const uptr AllocatedUserEnd =
Region->MemMapInfo.AllocatedUser + Region->RegionBeg;
const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
// ====================================================================== //
// 1. Check if we have enough free blocks and if it's worth doing a page
// release.
// ====================================================================== //
if (ReleaseType != ReleaseToOS::ForceAll &&
!hasChanceToReleasePages(Region, BlockSize, BytesInFreeList,
ReleaseType)) {
return 0;
}
// ====================================================================== //
// 2. Determine which groups can release the pages. Use a heuristic to
// gather groups that are candidates for doing a release.
// ====================================================================== //
SinglyLinkedList<BatchGroup> GroupsToRelease;
if (ReleaseType == ReleaseToOS::ForceAll) {
GroupsToRelease = Region->FreeListInfo.BlockList;
Region->FreeListInfo.BlockList.clear();
} else {
GroupsToRelease = collectGroupsToRelease(
Region, BlockSize, AllocatedUserEnd, CompactPtrBase);
}
if (GroupsToRelease.empty())
return 0;
// Ideally, we should use a class like `ScopedUnlock`. However, this form of
// unlocking is not supported by the thread-safety analysis. See
// https://clang.llvm.org/docs/ThreadSafetyAnalysis.html#no-alias-analysis
// for more details.
// Put it as local class so that we can mark the ctor/dtor with proper
// annotations associated to the target lock. Note that accessing the
// function variable in local class only works in thread-safety annotations.
// TODO: Implement general `ScopedUnlock` when it's supported.
class FLLockScopedUnlock {
public:
FLLockScopedUnlock(RegionInfo *Region) RELEASE(Region->FLLock)
: R(Region) {
R->FLLock.assertHeld();
R->FLLock.unlock();
}
~FLLockScopedUnlock() ACQUIRE(Region->FLLock) { R->FLLock.lock(); }
private:
RegionInfo *R;
};
// Note that we have extracted the `GroupsToRelease` from region freelist.
// It's safe to let pushBlocks()/popBatches() access the remaining region
// freelist. In the steps 3 and 4, we will temporarily release the FLLock
// and lock it again before step 5.
uptr ReleasedBytes = 0;
{
FLLockScopedUnlock UL(Region);
// ==================================================================== //
// 3. Mark the free blocks in `GroupsToRelease` in the
// `PageReleaseContext`. Then we can tell which pages are in-use by
// querying `PageReleaseContext`.
// ==================================================================== //
PageReleaseContext Context = markFreeBlocks(
Region, BlockSize, AllocatedUserEnd, CompactPtrBase, GroupsToRelease);
if (UNLIKELY(!Context.hasBlockMarked())) {
ScopedLock L(Region->FLLock);
mergeGroupsToReleaseBack(Region, GroupsToRelease);
return 0;
}
// ==================================================================== //
// 4. Release the unused physical pages back to the OS.
// ==================================================================== //
RegionReleaseRecorder<MemMapT> Recorder(&Region->MemMapInfo.MemMap,
Region->RegionBeg,
Context.getReleaseOffset());
auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; };
releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
if (Recorder.getReleasedRangesCount() > 0) {
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
Region->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
Region->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
}
Region->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
ReleasedBytes = Recorder.getReleasedBytes();
}
// ====================================================================== //
// 5. Merge the `GroupsToRelease` back to the freelist.
// ====================================================================== //
mergeGroupsToReleaseBack(Region, GroupsToRelease);
return ReleasedBytes;
}
bool hasChanceToReleasePages(RegionInfo *Region, uptr BlockSize,
uptr BytesInFreeList, ReleaseToOS ReleaseType)
REQUIRES(Region->MMLock, Region->FLLock) {
DCHECK_GE(Region->FreeListInfo.PoppedBlocks,
Region->FreeListInfo.PushedBlocks);
const uptr PageSize = getPageSizeCached();
// Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
// so that we won't underestimate the releasable pages. For example, the
// following is the region usage,
//
// BytesInFreeListAtLastCheckpoint AllocatedUser
// v v
// |--------------------------------------->
// ^ ^
// BytesInFreeList ReleaseThreshold
//
// In general, if we have collected enough bytes and the amount of free
// bytes meets the ReleaseThreshold, we will try to do page release. If we
// don't update `BytesInFreeListAtLastCheckpoint` when the current
// `BytesInFreeList` is smaller, we may take longer time to wait for enough
// freed blocks because we miss the bytes between
// (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
if (BytesInFreeList <=
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
}
const uptr RegionPushedBytesDelta =
BytesInFreeList - Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
if (RegionPushedBytesDelta < PageSize)
return false;
// Releasing smaller blocks is expensive, so we want to make sure that a
// significant amount of bytes are free, and that there has been a good
// amount of batches pushed to the freelist before attempting to release.
if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal)
if (RegionPushedBytesDelta < Region->TryReleaseThreshold)
return false;
if (ReleaseType == ReleaseToOS::Normal) {
const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
if (IntervalMs < 0)
return false;
// The constant 8 here is selected from profiling some apps and the number
// of unreleased pages in the large size classes is around 16 pages or
// more. Choose half of it as a heuristic and which also avoids page
// release every time for every pushBlocks() attempt by large blocks.
const bool ByPassReleaseInterval =
isLargeBlock(BlockSize) && RegionPushedBytesDelta > 8 * PageSize;
if (!ByPassReleaseInterval) {
if (Region->ReleaseInfo.LastReleaseAtNs +
static_cast<u64>(IntervalMs) * 1000000 >
getMonotonicTimeFast()) {
// Memory was returned recently.
return false;
}
}
} // if (ReleaseType == ReleaseToOS::Normal)
return true;
}
SinglyLinkedList<BatchGroup>
collectGroupsToRelease(RegionInfo *Region, const uptr BlockSize,
const uptr AllocatedUserEnd, const uptr CompactPtrBase)
REQUIRES(Region->MMLock, Region->FLLock) {
const uptr GroupSize = (1U << GroupSizeLog);
const uptr PageSize = getPageSizeCached();
SinglyLinkedList<BatchGroup> GroupsToRelease;
// We are examining each group and will take the minimum distance to the
// release threshold as the next Region::TryReleaseThreshold(). Note that if
// the size of free blocks has reached the release threshold, the distance
// to the next release will be PageSize * SmallerBlockReleasePageDelta. See
// the comment on `SmallerBlockReleasePageDelta` for more details.
uptr MinDistToThreshold = GroupSize;
for (BatchGroup *BG = Region->FreeListInfo.BlockList.front(),
*Prev = nullptr;
BG != nullptr;) {
// Group boundary is always GroupSize-aligned from CompactPtr base. The
// layout of memory groups is like,
//
// (CompactPtrBase)
// #1 CompactPtrGroupBase #2 CompactPtrGroupBase ...
// | | |
// v v v
// +-----------------------+-----------------------+
// \ / \ /
// --- GroupSize --- --- GroupSize ---
//
// After decompacting the CompactPtrGroupBase, we expect the alignment
// property is held as well.
const uptr BatchGroupBase =
decompactGroupBase(CompactPtrBase, BG->CompactPtrGroupBase);
DCHECK_LE(Region->RegionBeg, BatchGroupBase);
DCHECK_GE(AllocatedUserEnd, BatchGroupBase);
DCHECK_EQ((Region->RegionBeg - BatchGroupBase) % GroupSize, 0U);
// TransferBatches are pushed in front of BG.Batches. The first one may
// not have all caches used.
const uptr NumBlocks = (BG->Batches.size() - 1) * BG->MaxCachedPerBatch +
BG->Batches.front()->getCount();
const uptr BytesInBG = NumBlocks * BlockSize;
if (BytesInBG <= BG->BytesInBGAtLastCheckpoint) {
BG->BytesInBGAtLastCheckpoint = BytesInBG;
Prev = BG;
BG = BG->Next;
continue;
}
const uptr PushedBytesDelta = BG->BytesInBGAtLastCheckpoint - BytesInBG;
// Given the randomness property, we try to release the pages only if the
// bytes used by free blocks exceed certain proportion of group size. Note
// that this heuristic only applies when all the spaces in a BatchGroup
// are allocated.
if (isSmallBlock(BlockSize)) {
const uptr BatchGroupEnd = BatchGroupBase + GroupSize;
const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd
? GroupSize
: AllocatedUserEnd - BatchGroupBase;
const uptr ReleaseThreshold =
(AllocatedGroupSize * (100 - 1U - BlockSize / 16U)) / 100U;
const bool HighDensity = BytesInBG >= ReleaseThreshold;
const bool MayHaveReleasedAll = NumBlocks >= (GroupSize / BlockSize);
// If all blocks in the group are released, we will do range marking
// which is fast. Otherwise, we will wait until we have accumulated
// a certain amount of free memory.
const bool ReachReleaseDelta =
MayHaveReleasedAll
? true
: PushedBytesDelta >= PageSize * SmallerBlockReleasePageDelta;
if (!HighDensity) {
DCHECK_LE(BytesInBG, ReleaseThreshold);
// The following is the usage of a memroy group,
//
// BytesInBG ReleaseThreshold
// / \ v
// +---+---------------------------+-----+
// | | | | |
// +---+---------------------------+-----+
// \ / ^
// PushedBytesDelta GroupEnd
MinDistToThreshold =
Min(MinDistToThreshold,
ReleaseThreshold - BytesInBG + PushedBytesDelta);
} else {
// If it reaches high density at this round, the next time we will try
// to release is based on SmallerBlockReleasePageDelta
MinDistToThreshold =
Min(MinDistToThreshold, PageSize * SmallerBlockReleasePageDelta);
}
if (!HighDensity || !ReachReleaseDelta) {
Prev = BG;
BG = BG->Next;
continue;
}
}
// If `BG` is the first BatchGroup in the list, we only need to advance
// `BG` and call FreeListInfo.BlockList::pop_front(). No update is needed
// for `Prev`.
//
// (BG) (BG->Next)
// Prev Cur BG
// | | |
// v v v
// nil +--+ +--+
// |X | -> | | -> ...
// +--+ +--+
//
// Otherwise, `Prev` will be used to extract the `Cur` from the
// `FreeListInfo.BlockList`.
//
// (BG) (BG->Next)
// Prev Cur BG
// | | |
// v v v
// +--+ +--+ +--+
// | | -> |X | -> | | -> ...
// +--+ +--+ +--+
//
// After FreeListInfo.BlockList::extract(),
//
// Prev Cur BG
// | | |
// v v v
// +--+ +--+ +--+
// | |-+ |X | +->| | -> ...
// +--+ | +--+ | +--+
// +--------+
//
// Note that we need to advance before pushing this BatchGroup to
// GroupsToRelease because it's a destructive operation.
BatchGroup *Cur = BG;
BG = BG->Next;
// Ideally, we may want to update this only after successful release.
// However, for smaller blocks, each block marking is a costly operation.
// Therefore, we update it earlier.
// TODO: Consider updating this after releasing pages if `ReleaseRecorder`
// can tell the released bytes in each group.
Cur->BytesInBGAtLastCheckpoint = BytesInBG;
if (Prev != nullptr)
Region->FreeListInfo.BlockList.extract(Prev, Cur);
else
Region->FreeListInfo.BlockList.pop_front();
GroupsToRelease.push_back(Cur);
}
// Only small blocks have the adaptive `TryReleaseThreshold`.
if (isSmallBlock(BlockSize)) {
// If the MinDistToThreshold is not updated, that means each memory group
// may have only pushed less than a page size. In that case, just set it
// back to normal.
if (MinDistToThreshold == GroupSize)
MinDistToThreshold = PageSize * SmallerBlockReleasePageDelta;
Region->TryReleaseThreshold = MinDistToThreshold;
}
return GroupsToRelease;
}
PageReleaseContext
markFreeBlocks(RegionInfo *Region, const uptr BlockSize,
const uptr AllocatedUserEnd, const uptr CompactPtrBase,
SinglyLinkedList<BatchGroup> &GroupsToRelease)
REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
const uptr GroupSize = (1U << GroupSizeLog);
auto DecompactPtr = [CompactPtrBase](CompactPtrT CompactPtr) {
return decompactPtrInternal(CompactPtrBase, CompactPtr);
};
const uptr ReleaseBase = decompactGroupBase(
CompactPtrBase, GroupsToRelease.front()->CompactPtrGroupBase);
const uptr LastGroupEnd =
Min(decompactGroupBase(CompactPtrBase,
GroupsToRelease.back()->CompactPtrGroupBase) +
GroupSize,
AllocatedUserEnd);
// The last block may straddle the group boundary. Rounding up to BlockSize
// to get the exact range.
const uptr ReleaseEnd =
roundUpSlow(LastGroupEnd - Region->RegionBeg, BlockSize) +
Region->RegionBeg;
const uptr ReleaseRangeSize = ReleaseEnd - ReleaseBase;
const uptr ReleaseOffset = ReleaseBase - Region->RegionBeg;
PageReleaseContext Context(BlockSize, /*NumberOfRegions=*/1U,
ReleaseRangeSize, ReleaseOffset);
// We may not be able to do the page release in a rare case that we may
// fail on PageMap allocation.
if (UNLIKELY(!Context.ensurePageMapAllocated()))
return Context;
for (BatchGroup &BG : GroupsToRelease) {
const uptr BatchGroupBase =
decompactGroupBase(CompactPtrBase, BG.CompactPtrGroupBase);
const uptr BatchGroupEnd = BatchGroupBase + GroupSize;
const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd
? GroupSize
: AllocatedUserEnd - BatchGroupBase;
const uptr BatchGroupUsedEnd = BatchGroupBase + AllocatedGroupSize;
const bool MayContainLastBlockInRegion =
BatchGroupUsedEnd == AllocatedUserEnd;
const bool BlockAlignedWithUsedEnd =
(BatchGroupUsedEnd - Region->RegionBeg) % BlockSize == 0;
uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
if (!BlockAlignedWithUsedEnd)
++MaxContainedBlocks;
const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
BG.Batches.front()->getCount();
if (NumBlocks == MaxContainedBlocks) {
for (const auto &It : BG.Batches) {
if (&It != BG.Batches.front())
DCHECK_EQ(It.getCount(), BG.MaxCachedPerBatch);
for (u16 I = 0; I < It.getCount(); ++I)
DCHECK_EQ(compactPtrGroup(It.get(I)), BG.CompactPtrGroupBase);
}
Context.markRangeAsAllCounted(BatchGroupBase, BatchGroupUsedEnd,
Region->RegionBeg, /*RegionIndex=*/0,
Region->MemMapInfo.AllocatedUser);
} else {
DCHECK_LT(NumBlocks, MaxContainedBlocks);
// Note that we don't always visit blocks in each BatchGroup so that we
// may miss the chance of releasing certain pages that cross
// BatchGroups.
Context.markFreeBlocksInRegion(
BG.Batches, DecompactPtr, Region->RegionBeg, /*RegionIndex=*/0,
Region->MemMapInfo.AllocatedUser, MayContainLastBlockInRegion);
}
}
DCHECK(Context.hasBlockMarked());
return Context;
}
void mergeGroupsToReleaseBack(RegionInfo *Region,
SinglyLinkedList<BatchGroup> &GroupsToRelease)
REQUIRES(Region->MMLock, Region->FLLock) {
// After merging two freelists, we may have redundant `BatchGroup`s that
// need to be recycled. The number of unused `BatchGroup`s is expected to be
// small. Pick a constant which is inferred from real programs.
constexpr uptr MaxUnusedSize = 8;
CompactPtrT Blocks[MaxUnusedSize];
u32 Idx = 0;
RegionInfo *BatchClassRegion = getRegionInfo(SizeClassMap::BatchClassId);
// We can't call pushBatchClassBlocks() to recycle the unused `BatchGroup`s
// when we are manipulating the freelist of `BatchClassRegion`. Instead, we
// should just push it back to the freelist when we merge two `BatchGroup`s.
// This logic hasn't been implemented because we haven't supported releasing
// pages in `BatchClassRegion`.
DCHECK_NE(BatchClassRegion, Region);
// Merge GroupsToRelease back to the Region::FreeListInfo.BlockList. Note
// that both `Region->FreeListInfo.BlockList` and `GroupsToRelease` are
// sorted.
for (BatchGroup *BG = Region->FreeListInfo.BlockList.front(),
*Prev = nullptr;
;) {
if (BG == nullptr || GroupsToRelease.empty()) {
if (!GroupsToRelease.empty())
Region->FreeListInfo.BlockList.append_back(&GroupsToRelease);
break;
}
DCHECK(!BG->Batches.empty());
if (BG->CompactPtrGroupBase <
GroupsToRelease.front()->CompactPtrGroupBase) {
Prev = BG;
BG = BG->Next;
continue;
}
BatchGroup *Cur = GroupsToRelease.front();
TransferBatch *UnusedTransferBatch = nullptr;
GroupsToRelease.pop_front();
if (BG->CompactPtrGroupBase == Cur->CompactPtrGroupBase) {
BG->PushedBlocks += Cur->PushedBlocks;
// We have updated `BatchGroup::BytesInBGAtLastCheckpoint` while
// collecting the `GroupsToRelease`.
BG->BytesInBGAtLastCheckpoint = Cur->BytesInBGAtLastCheckpoint;
const uptr MaxCachedPerBatch = BG->MaxCachedPerBatch;
// Note that the first TransferBatches in both `Batches` may not be
// full and only the first TransferBatch can have non-full blocks. Thus
// we have to merge them before appending one to another.
if (Cur->Batches.front()->getCount() == MaxCachedPerBatch) {
BG->Batches.append_back(&Cur->Batches);
} else {
TransferBatch *NonFullBatch = Cur->Batches.front();
Cur->Batches.pop_front();
const u16 NonFullBatchCount = NonFullBatch->getCount();
// The remaining Batches in `Cur` are full.
BG->Batches.append_back(&Cur->Batches);
if (BG->Batches.front()->getCount() == MaxCachedPerBatch) {
// Only 1 non-full TransferBatch, push it to the front.
BG->Batches.push_front(NonFullBatch);
} else {
const u16 NumBlocksToMove = static_cast<u16>(
Min(static_cast<u16>(MaxCachedPerBatch -
BG->Batches.front()->getCount()),
NonFullBatchCount));
BG->Batches.front()->appendFromTransferBatch(NonFullBatch,
NumBlocksToMove);
if (NonFullBatch->isEmpty())
UnusedTransferBatch = NonFullBatch;
else
BG->Batches.push_front(NonFullBatch);
}
}
const u32 NeededSlots = UnusedTransferBatch == nullptr ? 1U : 2U;
if (UNLIKELY(Idx + NeededSlots > MaxUnusedSize)) {
ScopedLock L(BatchClassRegion->FLLock);
pushBatchClassBlocks(BatchClassRegion, Blocks, Idx);
Idx = 0;
}
Blocks[Idx++] =
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(Cur));
if (UnusedTransferBatch) {
Blocks[Idx++] =
compactPtr(SizeClassMap::BatchClassId,
reinterpret_cast<uptr>(UnusedTransferBatch));
}
Prev = BG;
BG = BG->Next;
continue;
}
// At here, the `BG` is the first BatchGroup with CompactPtrGroupBase
// larger than the first element in `GroupsToRelease`. We need to insert
// `GroupsToRelease::front()` (which is `Cur` below) before `BG`.
//
// 1. If `Prev` is nullptr, we simply push `Cur` to the front of
// FreeListInfo.BlockList.
// 2. Otherwise, use `insert()` which inserts an element next to `Prev`.
//
// Afterwards, we don't need to advance `BG` because the order between
// `BG` and the new `GroupsToRelease::front()` hasn't been checked.
if (Prev == nullptr)
Region->FreeListInfo.BlockList.push_front(Cur);
else
Region->FreeListInfo.BlockList.insert(Prev, Cur);
DCHECK_EQ(Cur->Next, BG);
Prev = Cur;
}
if (Idx != 0) {
ScopedLock L(BatchClassRegion->FLLock);
pushBatchClassBlocks(BatchClassRegion, Blocks, Idx);
}
if (SCUDO_DEBUG) {
BatchGroup *Prev = Region->FreeListInfo.BlockList.front();
for (BatchGroup *Cur = Prev->Next; Cur != nullptr;
Prev = Cur, Cur = Cur->Next) {
CHECK_LT(Prev->CompactPtrGroupBase, Cur->CompactPtrGroupBase);
}
}
}
// TODO: `PrimaryBase` can be obtained from ReservedMemory. This needs to be
// deprecated.
uptr PrimaryBase = 0;
ReservedMemoryT ReservedMemory = {};
// The minimum size of pushed blocks that we will try to release the pages in
// that size class.
uptr SmallerBlockReleasePageDelta = 0;
atomic_s32 ReleaseToOsIntervalMs = {};
alignas(SCUDO_CACHE_LINE_SIZE) RegionInfo RegionInfoArray[NumClasses];
};
} // namespace scudo
#endif // SCUDO_PRIMARY64_H_