tdesktop/Telegram/SourceFiles/base/openssl_help.h

567 lines
13 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop application for the Telegram messaging service.
For license and copyright information please follow this link:
https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
*/
#pragma once
#include "base/bytes.h"
#include "base/algorithm.h"
#include "base/basic_types.h"
extern "C" {
#include <openssl/bn.h>
#include <openssl/sha.h>
#include <openssl/rand.h>
#include <openssl/aes.h>
#include <openssl/modes.h>
#include <openssl/crypto.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
} // extern "C"
#ifdef small
#undef small
#endif // small
namespace openssl {
class Context {
public:
Context() : _data(BN_CTX_new()) {
}
Context(const Context &other) = delete;
Context(Context &&other) : _data(base::take(other._data)) {
}
Context &operator=(const Context &other) = delete;
Context &operator=(Context &&other) {
_data = base::take(other._data);
return *this;
}
~Context() {
if (_data) {
BN_CTX_free(_data);
}
}
BN_CTX *raw() const {
return _data;
}
private:
BN_CTX *_data = nullptr;
};
class BigNum {
public:
BigNum() = default;
BigNum(const BigNum &other)
: _data((other.failed() || other.isZero())
? nullptr
: BN_dup(other.raw()))
, _failed(other._failed) {
}
BigNum(BigNum &&other)
: _data(std::exchange(other._data, nullptr))
, _failed(std::exchange(other._failed, false)) {
}
BigNum &operator=(const BigNum &other) {
if (other.failed()) {
_failed = true;
} else if (other.isZero()) {
clear();
_failed = false;
} else if (!_data) {
_data = BN_dup(other.raw());
_failed = false;
} else {
_failed = !BN_copy(raw(), other.raw());
}
return *this;
}
BigNum &operator=(BigNum &&other) {
std::swap(_data, other._data);
std::swap(_failed, other._failed);
return *this;
}
~BigNum() {
clear();
}
explicit BigNum(unsigned int word) : BigNum() {
setWord(word);
}
explicit BigNum(bytes::const_span bytes) : BigNum() {
setBytes(bytes);
}
BigNum &setWord(unsigned int word) {
if (!word) {
clear();
_failed = false;
} else {
_failed = !BN_set_word(raw(), word);
}
return *this;
}
BigNum &setBytes(bytes::const_span bytes) {
if (bytes.empty()) {
clear();
_failed = false;
} else {
_failed = !BN_bin2bn(
reinterpret_cast<const unsigned char*>(bytes.data()),
bytes.size(),
raw());
}
return *this;
}
BigNum &setAdd(const BigNum &a, const BigNum &b) {
if (a.failed() || b.failed()) {
_failed = true;
} else {
_failed = !BN_add(raw(), a.raw(), b.raw());
}
return *this;
}
BigNum &setSub(const BigNum &a, const BigNum &b) {
if (a.failed() || b.failed()) {
_failed = true;
} else {
_failed = !BN_sub(raw(), a.raw(), b.raw());
}
return *this;
}
BigNum &setMul(
const BigNum &a,
const BigNum &b,
const Context &context = Context()) {
if (a.failed() || b.failed()) {
_failed = true;
} else {
_failed = !BN_mul(raw(), a.raw(), b.raw(), context.raw());
}
return *this;
}
BigNum &setModAdd(
const BigNum &a,
const BigNum &b,
const BigNum &m,
const Context &context = Context()) {
if (a.failed() || b.failed() || m.failed()) {
_failed = true;
} else if (a.isNegative() || b.isNegative() || m.isNegative()) {
_failed = true;
} else if (!BN_mod_add(raw(), a.raw(), b.raw(), m.raw(), context.raw())) {
_failed = true;
} else if (isNegative()) {
_failed = true;
} else {
_failed = false;
}
return *this;
}
BigNum &setModSub(
const BigNum &a,
const BigNum &b,
const BigNum &m,
const Context &context = Context()) {
if (a.failed() || b.failed() || m.failed()) {
_failed = true;
} else if (a.isNegative() || b.isNegative() || m.isNegative()) {
_failed = true;
} else if (!BN_mod_sub(raw(), a.raw(), b.raw(), m.raw(), context.raw())) {
_failed = true;
} else if (isNegative()) {
_failed = true;
} else {
_failed = false;
}
return *this;
}
BigNum &setModMul(
const BigNum &a,
const BigNum &b,
const BigNum &m,
const Context &context = Context()) {
if (a.failed() || b.failed() || m.failed()) {
_failed = true;
} else if (a.isNegative() || b.isNegative() || m.isNegative()) {
_failed = true;
} else if (!BN_mod_mul(raw(), a.raw(), b.raw(), m.raw(), context.raw())) {
_failed = true;
} else if (isNegative()) {
_failed = true;
} else {
_failed = false;
}
return *this;
}
BigNum &setModInverse(
const BigNum &a,
const BigNum &m,
const Context &context = Context()) {
if (a.failed() || m.failed()) {
_failed = true;
} else if (a.isNegative() || m.isNegative()) {
_failed = true;
} else if (!BN_mod_inverse(raw(), a.raw(), m.raw(), context.raw())) {
_failed = true;
} else if (isNegative()) {
_failed = true;
} else {
_failed = false;
}
return *this;
}
BigNum &setModExp(
const BigNum &base,
const BigNum &power,
const BigNum &m,
const Context &context = Context()) {
if (base.failed() || power.failed() || m.failed()) {
_failed = true;
} else if (base.isNegative() || power.isNegative() || m.isNegative()) {
_failed = true;
} else if (!BN_mod_exp(raw(), base.raw(), power.raw(), m.raw(), context.raw())) {
_failed = true;
} else if (isNegative()) {
_failed = true;
} else {
_failed = false;
}
return *this;
}
[[nodiscard]] bool isZero() const {
return !failed() && (!_data || BN_is_zero(raw()));
}
[[nodiscard]] bool isOne() const {
return !failed() && _data && BN_is_one(raw());
}
[[nodiscard]] bool isNegative() const {
return !failed() && _data && BN_is_negative(raw());
}
[[nodiscard]] bool isPrime(const Context &context = Context()) const {
if (failed() || !_data) {
return false;
}
constexpr auto kMillerRabinIterationCount = 30;
const auto result = BN_is_prime_ex(
raw(),
kMillerRabinIterationCount,
context.raw(),
nullptr);
if (result == 1) {
return true;
} else if (result != 0) {
_failed = true;
}
return false;
}
BigNum &subWord(unsigned int word) {
if (failed()) {
return *this;
} else if (!BN_sub_word(raw(), word)) {
_failed = true;
}
return *this;
}
BigNum &divWord(BN_ULONG word, BN_ULONG *mod = nullptr) {
Expects(word != 0);
const auto result = failed()
? (BN_ULONG)-1
: BN_div_word(raw(), word);
if (result == (BN_ULONG)-1) {
_failed = true;
}
if (mod) {
*mod = result;
}
return *this;
}
[[nodiscard]] BN_ULONG countModWord(BN_ULONG word) const {
Expects(word != 0);
return failed() ? (BN_ULONG)-1 : BN_mod_word(raw(), word);
}
[[nodiscard]] int bitsSize() const {
return failed() ? 0 : BN_num_bits(raw());
}
[[nodiscard]] int bytesSize() const {
return failed() ? 0 : BN_num_bytes(raw());
}
[[nodiscard]] bytes::vector getBytes() const {
if (failed()) {
return {};
}
auto length = BN_num_bytes(raw());
auto result = bytes::vector(length);
auto resultSize = BN_bn2bin(
raw(),
reinterpret_cast<unsigned char*>(result.data()));
Assert(resultSize == length);
return result;
}
[[nodiscard]] BIGNUM *raw() {
if (!_data) _data = BN_new();
return _data;
}
[[nodiscard]] const BIGNUM *raw() const {
if (!_data) _data = BN_new();
return _data;
}
[[nodiscard]] BIGNUM *takeRaw() {
return _failed
? nullptr
: _data
? std::exchange(_data, nullptr)
: BN_new();
}
[[nodiscard]] bool failed() const {
return _failed;
}
[[nodiscard]] static BigNum Add(const BigNum &a, const BigNum &b) {
return BigNum().setAdd(a, b);
}
[[nodiscard]] static BigNum Sub(const BigNum &a, const BigNum &b) {
return BigNum().setSub(a, b);
}
[[nodiscard]] static BigNum Mul(
const BigNum &a,
const BigNum &b,
const Context &context = Context()) {
return BigNum().setMul(a, b, context);
}
[[nodiscard]] static BigNum ModAdd(
const BigNum &a,
const BigNum &b,
const BigNum &mod,
const Context &context = Context()) {
return BigNum().setModAdd(a, b, mod, context);
}
[[nodiscard]] static BigNum ModSub(
const BigNum &a,
const BigNum &b,
const BigNum &mod,
const Context &context = Context()) {
return BigNum().setModSub(a, b, mod, context);
}
[[nodiscard]] static BigNum ModMul(
const BigNum &a,
const BigNum &b,
const BigNum &mod,
const Context &context = Context()) {
return BigNum().setModMul(a, b, mod, context);
}
[[nodiscard]] static BigNum ModInverse(
const BigNum &a,
const BigNum &mod,
const Context &context = Context()) {
return BigNum().setModInverse(a, mod, context);
}
[[nodiscard]] static BigNum ModExp(
const BigNum &base,
const BigNum &power,
const BigNum &mod,
const Context &context = Context()) {
return BigNum().setModExp(base, power, mod, context);
}
[[nodiscard]] static BigNum Failed() {
auto result = BigNum();
result._failed = true;
return result;
}
private:
void clear() {
BN_clear_free(std::exchange(_data, nullptr));
}
mutable BIGNUM *_data = nullptr;
mutable bool _failed = false;
};
namespace details {
template <typename Context, typename Method, typename Arg>
inline void ShaUpdate(Context context, Method method, Arg &&arg) {
const auto span = bytes::make_span(arg);
method(context, span.data(), span.size());
}
template <typename Context, typename Method, typename Arg, typename ...Args>
inline void ShaUpdate(Context context, Method method, Arg &&arg, Args &&...args) {
const auto span = bytes::make_span(arg);
method(context, span.data(), span.size());
ShaUpdate(context, method, args...);
}
template <size_type Size, typename Method>
inline bytes::vector Sha(Method method, bytes::const_span data) {
auto result = bytes::vector(Size);
method(
reinterpret_cast<const unsigned char*>(data.data()),
data.size(),
reinterpret_cast<unsigned char*>(result.data()));
return result;
}
template <
size_type Size,
typename Context,
typename Init,
typename Update,
typename Finalize,
typename ...Args,
typename = std::enable_if_t<(sizeof...(Args) > 1)>>
bytes::vector Sha(
Context context,
Init init,
Update update,
Finalize finalize,
Args &&...args) {
auto result = bytes::vector(Size);
init(&context);
ShaUpdate(&context, update, args...);
finalize(reinterpret_cast<unsigned char*>(result.data()), &context);
return result;
}
template <
size_type Size,
typename Evp>
bytes::vector Pbkdf2(
bytes::const_span password,
bytes::const_span salt,
int iterations,
Evp evp) {
auto result = bytes::vector(Size);
PKCS5_PBKDF2_HMAC(
reinterpret_cast<const char*>(password.data()),
password.size(),
reinterpret_cast<const unsigned char*>(salt.data()),
salt.size(),
iterations,
evp,
result.size(),
reinterpret_cast<unsigned char*>(result.data()));
return result;
}
} // namespace details
constexpr auto kSha1Size = size_type(SHA_DIGEST_LENGTH);
constexpr auto kSha256Size = size_type(SHA256_DIGEST_LENGTH);
constexpr auto kSha512Size = size_type(SHA512_DIGEST_LENGTH);
inline bytes::vector Sha1(bytes::const_span data) {
return details::Sha<kSha1Size>(SHA1, data);
}
template <
typename ...Args,
typename = std::enable_if_t<(sizeof...(Args) > 1)>>
inline bytes::vector Sha1(Args &&...args) {
return details::Sha<kSha1Size>(
SHA_CTX(),
SHA1_Init,
SHA1_Update,
SHA1_Final,
args...);
}
inline bytes::vector Sha256(bytes::const_span data) {
return details::Sha<kSha256Size>(SHA256, data);
}
template <
typename ...Args,
typename = std::enable_if_t<(sizeof...(Args) > 1)>>
inline bytes::vector Sha256(Args &&...args) {
return details::Sha<kSha256Size>(
SHA256_CTX(),
SHA256_Init,
SHA256_Update,
SHA256_Final,
args...);
}
inline bytes::vector Sha512(bytes::const_span data) {
return details::Sha<kSha512Size>(SHA512, data);
}
template <
typename ...Args,
typename = std::enable_if_t<(sizeof...(Args) > 1)>>
inline bytes::vector Sha512(Args &&...args) {
return details::Sha<kSha512Size>(
SHA512_CTX(),
SHA512_Init,
SHA512_Update,
SHA512_Final,
args...);
}
inline void AddRandomSeed(bytes::const_span data) {
RAND_seed(data.data(), data.size());
}
inline bytes::vector Pbkdf2Sha512(
bytes::const_span password,
bytes::const_span salt,
int iterations) {
return details::Pbkdf2<kSha512Size>(
password,
salt,
iterations,
EVP_sha512());
}
inline bytes::vector HmacSha256(
bytes::const_span key,
bytes::const_span data) {
auto result = bytes::vector(kSha256Size);
auto length = (unsigned int)kSha256Size;
HMAC(
EVP_sha256(),
key.data(),
key.size(),
reinterpret_cast<const unsigned char*>(data.data()),
data.size(),
reinterpret_cast<unsigned char*>(result.data()),
&length);
return result;
}
} // namespace openssl
namespace bytes {
inline void set_random(span destination) {
RAND_bytes(
reinterpret_cast<unsigned char*>(destination.data()),
destination.size());
}
} // namespace bytes