tdesktop/Telegram/SourceFiles/lottie/lottie_cache.cpp

600 lines
14 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop application for the Telegram messaging service.
For license and copyright information please follow this link:
https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
*/
#include "lottie/lottie_cache.h"
#include "lottie/lottie_frame_renderer.h"
#include "ffmpeg/ffmpeg_utility.h"
#include "base/bytes.h"
#include <QDataStream>
#include <lz4.h>
#include <lz4hc.h>
#include <range/v3/numeric/accumulate.hpp>
namespace Lottie {
namespace {
constexpr auto kAlignStorage = 16;
// Must not exceed max database allowed entry size.
constexpr auto kMaxCacheSize = 10 * 1024 * 1024;
void Xor(EncodedStorage &to, const EncodedStorage &from) {
Expects(to.size() == from.size());
using Block = std::conditional_t<
sizeof(void*) == sizeof(uint64),
uint64,
uint32>;
constexpr auto kBlockSize = sizeof(Block);
const auto amount = from.size();
const auto fromBytes = reinterpret_cast<const uchar*>(from.data());
const auto toBytes = reinterpret_cast<uchar*>(to.data());
const auto blocks = amount / kBlockSize;
const auto fromBlocks = reinterpret_cast<const Block*>(fromBytes);
const auto toBlocks = reinterpret_cast<Block*>(toBytes);
for (auto i = 0; i != blocks; ++i) {
toBlocks[i] ^= fromBlocks[i];
}
const auto left = amount - (blocks * kBlockSize);
for (auto i = amount - left; i != amount; ++i) {
toBytes[i] ^= fromBytes[i];
}
}
bool UncompressToRaw(EncodedStorage &to, bytes::const_span from) {
if (from.empty() || from.size() > to.size()) {
return false;
} else if (from.size() == to.size()) {
memcpy(to.data(), from.data(), from.size());
return true;
}
const auto result = LZ4_decompress_safe(
reinterpret_cast<const char*>(from.data()),
to.data(),
from.size(),
to.size());
return (result == to.size());
}
void CompressFromRaw(QByteArray &to, const EncodedStorage &from) {
const auto size = from.size();
const auto max = sizeof(qint32) + LZ4_compressBound(size);
to.reserve(max);
to.resize(max);
const auto compressed = LZ4_compress_default(
from.data(),
to.data() + sizeof(qint32),
size,
to.size() - sizeof(qint32));
Assert(compressed > 0);
if (compressed >= size + sizeof(qint32)) {
to.resize(size + sizeof(qint32));
memcpy(to.data() + sizeof(qint32), from.data(), size);
} else {
to.resize(compressed + sizeof(qint32));
}
const auto length = qint32(to.size() - sizeof(qint32));
bytes::copy(
bytes::make_detached_span(to),
bytes::object_as_span(&length));
}
void CompressAndSwapFrame(
QByteArray &to,
QByteArray *additional,
EncodedStorage &frame,
EncodedStorage &previous) {
CompressFromRaw(to, frame);
std::swap(frame, previous);
if (!additional) {
return;
}
// Check if XOR-d delta compresses better.
Xor(frame, previous);
CompressFromRaw(*additional, frame);
if (additional->size() >= to.size()) {
return;
}
std::swap(to, *additional);
// Negative length means we XOR-d with the previous frame.
const auto negativeLength = -qint32(to.size() - sizeof(qint32));
bytes::copy(
bytes::make_detached_span(to),
bytes::object_as_span(&negativeLength));
}
void DecodeYUV2RGB(
QImage &to,
const EncodedStorage &from,
FFmpeg::SwscalePointer &context) {
context = FFmpeg::MakeSwscalePointer(
to.size(),
AV_PIX_FMT_YUV420P,
to.size(),
AV_PIX_FMT_BGRA,
&context);
Assert(context != nullptr);
// AV_NUM_DATA_POINTERS defined in AVFrame struct
const uint8_t *src[AV_NUM_DATA_POINTERS] = {
from.yData(),
from.uData(),
from.vData(),
nullptr
};
int srcLineSize[AV_NUM_DATA_POINTERS] = {
from.yBytesPerLine(),
from.uBytesPerLine(),
from.vBytesPerLine(),
0
};
uint8_t *dst[AV_NUM_DATA_POINTERS] = { to.bits(), nullptr };
int dstLineSize[AV_NUM_DATA_POINTERS] = { to.bytesPerLine(), 0 };
const auto lines = sws_scale(
context.get(),
src,
srcLineSize,
0,
to.height(),
dst,
dstLineSize);
Ensures(lines == to.height());
}
void DecodeAlpha(QImage &to, const EncodedStorage &from) {
auto bytes = to.bits();
auto alpha = from.aData();
const auto perLine = to.bytesPerLine();
const auto width = to.width();
const auto height = to.height();
for (auto i = 0; i != height; ++i) {
auto ints = reinterpret_cast<uint32*>(bytes);
const auto till = ints + width;
while (ints != till) {
const auto value = uint32(*alpha++);
*ints = (*ints & 0x00FFFFFFU)
| ((value & 0xF0U) << 24)
| ((value & 0xF0U) << 20);
++ints;
*ints = (*ints & 0x00FFFFFFU)
| (value << 28)
| ((value & 0x0FU) << 24);
++ints;
}
bytes += perLine;
}
}
void Decode(
QImage &to,
const EncodedStorage &from,
const QSize &fromSize,
FFmpeg::SwscalePointer &context) {
if (!FFmpeg::GoodStorageForFrame(to, fromSize)) {
to = FFmpeg::CreateFrameStorage(fromSize);
}
DecodeYUV2RGB(to, from, context);
DecodeAlpha(to, from);
FFmpeg::PremultiplyInplace(to);
}
void EncodeRGB2YUV(
EncodedStorage &to,
const QImage &from,
FFmpeg::SwscalePointer &context) {
context = FFmpeg::MakeSwscalePointer(
from.size(),
AV_PIX_FMT_BGRA,
from.size(),
AV_PIX_FMT_YUV420P,
&context);
Assert(context != nullptr);
// AV_NUM_DATA_POINTERS defined in AVFrame struct
const uint8_t *src[AV_NUM_DATA_POINTERS] = { from.bits(), nullptr };
int srcLineSize[AV_NUM_DATA_POINTERS] = { from.bytesPerLine(), 0 };
uint8_t *dst[AV_NUM_DATA_POINTERS] = {
to.yData(),
to.uData(),
to.vData(),
nullptr
};
int dstLineSize[AV_NUM_DATA_POINTERS] = {
to.yBytesPerLine(),
to.uBytesPerLine(),
to.vBytesPerLine(),
0
};
const auto lines = sws_scale(
context.get(),
src,
srcLineSize,
0,
from.height(),
dst,
dstLineSize);
Ensures(lines == from.height());
}
void EncodeAlpha(EncodedStorage &to, const QImage &from) {
auto bytes = from.bits();
auto alpha = to.aData();
const auto perLine = from.bytesPerLine();
const auto width = from.width();
const auto height = from.height();
for (auto i = 0; i != height; ++i) {
auto ints = reinterpret_cast<const uint32*>(bytes);
const auto till = ints + width;
for (; ints != till; ints += 2) {
*alpha++ = (((*ints) >> 24) & 0xF0U) | ((*(ints + 1)) >> 28);
}
bytes += perLine;
}
}
void Encode(
EncodedStorage &to,
const QImage &from,
QImage &cache,
FFmpeg::SwscalePointer &context) {
FFmpeg::UnPremultiply(cache, from);
EncodeRGB2YUV(to, cache, context);
EncodeAlpha(to, cache);
}
} // namespace
void EncodedStorage::allocate(int width, int height) {
Expects((width % 2) == 0 && (height % 2) == 0);
if (_width != width || _height != height) {
_width = width;
_height = height;
reallocate();
}
}
void EncodedStorage::reallocate() {
const auto total = _width * _height * 2;
_data = QByteArray(total + kAlignStorage - 1, Qt::Uninitialized);
}
int EncodedStorage::width() const {
return _width;
}
int EncodedStorage::height() const {
return _height;
}
int EncodedStorage::size() const {
return _width * _height * 2;
}
char *EncodedStorage::data() {
const auto result = reinterpret_cast<quintptr>(_data.data());
return reinterpret_cast<char*>(kAlignStorage
* ((result + kAlignStorage - 1) / kAlignStorage));
}
const char *EncodedStorage::data() const {
const auto result = reinterpret_cast<quintptr>(_data.data());
return reinterpret_cast<const char*>(kAlignStorage
* ((result + kAlignStorage - 1) / kAlignStorage));
}
uint8_t *EncodedStorage::yData() {
return reinterpret_cast<uint8_t*>(data());
}
const uint8_t *EncodedStorage::yData() const {
return reinterpret_cast<const uint8_t*>(data());
}
int EncodedStorage::yBytesPerLine() const {
return _width;
}
uint8_t *EncodedStorage::uData() {
return yData() + (_width * _height);
}
const uint8_t *EncodedStorage::uData() const {
return yData() + (_width * _height);
}
int EncodedStorage::uBytesPerLine() const {
return _width / 2;
}
uint8_t *EncodedStorage::vData() {
return uData() + (_width * _height / 4);
}
const uint8_t *EncodedStorage::vData() const {
return uData() + (_width * _height / 4);
}
int EncodedStorage::vBytesPerLine() const {
return _width / 2;
}
uint8_t *EncodedStorage::aData() {
return uData() + (_width * _height) / 2;
}
const uint8_t *EncodedStorage::aData() const {
return uData() + (_width * _height) / 2;
}
int EncodedStorage::aBytesPerLine() const {
return _width / 2;
}
Cache::Cache(
const QByteArray &data,
const FrameRequest &request,
FnMut<void(QByteArray &&cached)> put)
: _data(data)
, _put(std::move(put)) {
if (!readHeader(request)) {
_framesReady = 0;
_data = QByteArray();
}
}
void Cache::init(
QSize original,
int frameRate,
int framesCount,
const FrameRequest &request) {
_size = request.size(original);
_original = original;
_frameRate = frameRate;
_framesCount = framesCount;
_framesReady = 0;
prepareBuffers();
}
int Cache::frameRate() const {
return _frameRate;
}
int Cache::framesReady() const {
return _framesReady;
}
int Cache::framesCount() const {
return _framesCount;
}
QSize Cache::originalSize() const {
return _original;
}
bool Cache::readHeader(const FrameRequest &request) {
if (_data.isEmpty()) {
return false;
}
QDataStream stream(&_data, QIODevice::ReadOnly);
auto encoder = qint32(0);
stream >> encoder;
if (static_cast<Encoder>(encoder) != Encoder::YUV420A4_LZ4) {
return false;
}
auto size = QSize();
auto original = QSize();
auto frameRate = qint32(0);
auto framesCount = qint32(0);
auto framesReady = qint32(0);
stream
>> size
>> original
>> frameRate
>> framesCount
>> framesReady;
if (stream.status() != QDataStream::Ok
|| original.isEmpty()
|| (original.width() > kMaxSize)
|| (original.height() > kMaxSize)
|| (frameRate <= 0)
|| (frameRate > kMaxFrameRate)
|| (framesCount <= 0)
|| (framesCount > kMaxFramesCount)
|| (framesReady <= 0)
|| (framesReady > framesCount)
|| request.size(original) != size) {
return false;
}
_encoder = static_cast<Encoder>(encoder);
_size = size;
_original = original;
_frameRate = frameRate;
_framesCount = framesCount;
_framesReady = framesReady;
prepareBuffers();
return renderFrame(_firstFrame, request, 0);
}
QImage Cache::takeFirstFrame() {
return std::move(_firstFrame);
}
bool Cache::renderFrame(
QImage &to,
const FrameRequest &request,
int index) {
Expects(index >= _framesReady
|| index == _offsetFrameIndex
|| index == 0);
if (index >= _framesReady) {
return false;
} else if (request.size(_original) != _size) {
return false;
} else if (index == 0) {
_offset = headerSize();
_offsetFrameIndex = 0;
}
const auto [ok, xored] = readCompressedFrame();
if (!ok || (xored && index == 0)) {
_framesReady = 0;
_data = QByteArray();
return false;
} else if (index + 1 == _framesReady && _data.size() > _offset) {
_data.resize(_offset);
}
if (xored) {
Xor(_previous, _uncompressed);
} else {
std::swap(_uncompressed, _previous);
}
Decode(to, _previous, _size, _decodeContext);
return true;
}
void Cache::appendFrame(
const QImage &frame,
const FrameRequest &request,
int index) {
if (request.size(_original) != _size) {
_framesReady = 0;
_data = QByteArray();
}
if (index != _framesReady) {
return;
}
if (index == 0) {
_size = request.size(_original);
_encode = EncodeFields();
_encode.compressedFrames.reserve(_framesCount);
prepareBuffers();
}
Assert(frame.size() == _size);
Encode(_uncompressed, frame, _encode.cache, _encode.context);
CompressAndSwapFrame(
_encode.compressBuffer,
(index != 0) ? &_encode.xorCompressBuffer : nullptr,
_uncompressed,
_previous);
const auto compressed = _encode.compressBuffer;
const auto nowSize = (_data.isEmpty() ? headerSize() : _data.size())
+ _encode.totalSize;
const auto totalSize = nowSize + compressed.size();
if (nowSize <= kMaxCacheSize && totalSize > kMaxCacheSize) {
// Write to cache while we still can.
finalizeEncoding();
}
_encode.totalSize += compressed.size();
_encode.compressedFrames.push_back(compressed);
_encode.compressedFrames.back().detach();
if (++_framesReady == _framesCount) {
finalizeEncoding();
}
}
void Cache::finalizeEncoding() {
if (_encode.compressedFrames.empty()) {
return;
}
const auto size = (_data.isEmpty() ? headerSize() : _data.size())
+ _encode.totalSize;
if (_data.isEmpty()) {
_data.reserve(size);
writeHeader();
} else {
updateFramesReadyCount();
}
const auto offset = _data.size();
_data.resize(size);
auto to = _data.data() + offset;
for (const auto &block : _encode.compressedFrames) {
const auto amount = qint32(block.size());
memcpy(to, block.data(), amount);
to += amount;
}
if (_data.size() <= kMaxCacheSize) {
_put(QByteArray(_data));
}
_encode = EncodeFields();
}
int Cache::headerSize() const {
return 8 * sizeof(qint32);
}
void Cache::writeHeader() {
Expects(_data.isEmpty());
QDataStream stream(&_data, QIODevice::WriteOnly);
stream
<< static_cast<qint32>(_encoder)
<< _size
<< _original
<< qint32(_frameRate)
<< qint32(_framesCount)
<< qint32(_framesReady);
}
void Cache::updateFramesReadyCount() {
Expects(_data.size() >= headerSize());
const auto serialized = qint32(_framesReady);
const auto offset = headerSize() - sizeof(qint32);
bytes::copy(
bytes::make_detached_span(_data).subspan(offset),
bytes::object_as_span(&serialized));
}
void Cache::prepareBuffers() {
// 12 bit per pixel in YUV420P.
const auto bytesPerLine = _size.width();
_uncompressed.allocate(bytesPerLine, _size.height());
_previous.allocate(bytesPerLine, _size.height());
}
Cache::ReadResult Cache::readCompressedFrame() {
auto length = qint32(0);
const auto part = bytes::make_span(_data).subspan(_offset);
if (part.size() < sizeof(length)) {
return { false };
}
bytes::copy(
bytes::object_as_span(&length),
part.subspan(0, sizeof(length)));
const auto bytes = part.subspan(sizeof(length));
const auto xored = (length < 0);
if (xored) {
length = -length;
}
_offset += sizeof(length) + length;
++_offsetFrameIndex;
const auto ok = (length <= bytes.size())
? UncompressToRaw(_uncompressed, bytes.subspan(0, length))
: false;
return { ok, xored };
}
Cache::~Cache() {
finalizeEncoding();
}
} // namespace Lottie