tdesktop/Telegram/SourceFiles/ui/animation.h
2017-01-11 23:02:13 +04:00

676 lines
18 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop version of Telegram messaging app, see https://telegram.org
Telegram Desktop is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
It is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
In addition, as a special exception, the copyright holders give permission
to link the code of portions of this program with the OpenSSL library.
Full license: https://github.com/telegramdesktop/tdesktop/blob/master/LICENSE
Copyright (c) 2014-2017 John Preston, https://desktop.telegram.org
*/
#pragma once
#include "core/basic_types.h"
#include <QtCore/QTimer>
#include <QtGui/QColor>
namespace Media {
namespace Clip {
class Reader;
class ReaderPointer {
public:
ReaderPointer(std_::nullptr_t = nullptr) {
}
explicit ReaderPointer(Reader *pointer) : _pointer(pointer) {
}
ReaderPointer(const ReaderPointer &other) = delete;
ReaderPointer &operator=(const ReaderPointer &other) = delete;
ReaderPointer(ReaderPointer &&other) : _pointer(base::take(other._pointer)) {
}
ReaderPointer &operator=(ReaderPointer &&other) {
swap(other);
return *this;
}
void swap(ReaderPointer &other) {
qSwap(_pointer, other._pointer);
}
Reader *get() const {
return valid() ? _pointer : nullptr;
}
Reader *operator->() const {
return get();
}
void setBad() {
reset();
_pointer = BadPointer;
}
void reset() {
ReaderPointer temp;
swap(temp);
}
bool isBad() const {
return (_pointer == BadPointer);
}
bool valid() const {
return _pointer && !isBad();
}
explicit operator bool() const {
return valid();
}
~ReaderPointer();
private:
Reader *_pointer = nullptr;
static Reader *const BadPointer;
};
class Manager;
enum Notification {
NotificationReinit,
NotificationRepaint,
};
} // namespace Clip
} // namespace Media
namespace anim {
using transition = base::lambda_copy<float64(float64 delta, float64 dt)>;
extern transition linear;
extern transition sineInOut;
extern transition halfSine;
extern transition easeOutBack;
extern transition easeInCirc;
extern transition easeOutCirc;
extern transition easeInCubic;
extern transition easeOutCubic;
extern transition easeInQuint;
extern transition easeOutQuint;
inline transition bumpy(float64 bump) {
auto dt0 = (bump - sqrt(bump * (bump - 1.)));
auto k = (1 / (2 * dt0 - 1));
return [bump, dt0, k](float64 delta, float64 dt) {
return delta * (bump - k * (dt - dt0) * (dt - dt0));
};
}
// Basic animated value.
class value {
public:
using ValueType = float64;
value() = default;
value(float64 from) : _cur(from), _from(from) {
}
value(float64 from, float64 to) : _cur(from), _from(from), _delta(to - from) {
}
void start(float64 to) {
_from = _cur;
_delta = to - _from;
}
void restart() {
_delta = _from + _delta - _cur;
_from = _cur;
}
float64 from() const {
return _from;
}
float64 current() const {
return _cur;
}
float64 to() const {
return _from + _delta;
}
void add(float64 delta) {
_from += delta;
_cur += delta;
}
value &update(float64 dt, const transition &func) {
_cur = _from + func(_delta, dt);
return *this;
}
void finish() {
_cur = _from + _delta;
_from = _cur;
_delta = 0;
}
private:
float64 _cur = 0.;
float64 _from = 0.;
float64 _delta = 0.;
};
void startManager();
void stopManager();
void registerClipManager(Media::Clip::Manager *manager);
FORCE_INLINE int interpolate(int a, int b, float64 b_ratio) {
return qRound(a + float64(b - a) * b_ratio);
}
#ifdef ARCH_CPU_32_BITS
#define SHIFTED_USE_32BIT
#endif // ARCH_CPU_32_BITS
#ifdef SHIFTED_USE_32BIT
using ShiftedMultiplier = uint32;
struct Shifted {
Shifted() = default;
Shifted(uint32 low, uint32 high) : low(low), high(high) {
}
uint32 low = 0;
uint32 high = 0;
};
FORCE_INLINE Shifted operator+(Shifted a, Shifted b) {
return Shifted(a.low + b.low, a.high + b.high);
}
FORCE_INLINE Shifted operator*(Shifted shifted, ShiftedMultiplier multiplier) {
return Shifted(shifted.low * multiplier, shifted.high * multiplier);
}
FORCE_INLINE Shifted operator*(ShiftedMultiplier multiplier, Shifted shifted) {
return Shifted(shifted.low * multiplier, shifted.high * multiplier);
}
FORCE_INLINE Shifted shifted(uint32 components) {
return Shifted(
(components & 0x000000FFU) | ((components & 0x0000FF00U) << 8),
((components & 0x00FF0000U) >> 16) | ((components & 0xFF000000U) >> 8));
}
FORCE_INLINE uint32 unshifted(Shifted components) {
return ((components.low & 0x0000FF00U) >> 8)
| ((components.low & 0xFF000000U) >> 16)
| ((components.high & 0x0000FF00U) << 8)
| (components.high & 0xFF000000U);
}
FORCE_INLINE Shifted reshifted(Shifted components) {
return Shifted((components.low >> 8) & 0x00FF00FFU, (components.high >> 8) & 0x00FF00FFU);
}
FORCE_INLINE Shifted shifted(QColor color) {
// Make it premultiplied.
auto alpha = static_cast<uint32>((color.alpha() & 0xFF) + 1);
auto components = Shifted(static_cast<uint32>(color.blue() & 0xFF) | (static_cast<uint32>(color.green() & 0xFF) << 16),
static_cast<uint32>(color.red() & 0xFF) | (static_cast<uint32>(255) << 16));
return reshifted(components * alpha);
}
FORCE_INLINE uint32 getPremultiplied(QColor color) {
// Make it premultiplied.
auto alpha = static_cast<uint32>((color.alpha() & 0xFF) + 1);
auto components = Shifted(static_cast<uint32>(color.blue() & 0xFF) | (static_cast<uint32>(color.green() & 0xFF) << 16),
static_cast<uint32>(color.red() & 0xFF) | (static_cast<uint32>(255) << 16));
return unshifted(components * alpha);
}
FORCE_INLINE uint32 getAlpha(Shifted components) {
return (components.high & 0x00FF0000U) >> 16;
}
FORCE_INLINE Shifted non_premultiplied(QColor color) {
return Shifted(static_cast<uint32>(color.blue() & 0xFF) | (static_cast<uint32>(color.green() & 0xFF) << 16),
static_cast<uint32>(color.red() & 0xFF) | (static_cast<uint32>(color.alpha() & 0xFF) << 16));
}
FORCE_INLINE QColor color(QColor a, QColor b, float64 b_ratio) {
auto bOpacity = snap(interpolate(0, 255, b_ratio), 0, 255) + 1;
auto aOpacity = (256 - bOpacity);
auto components = (non_premultiplied(a) * aOpacity + non_premultiplied(b) * bOpacity);
return {
static_cast<int>((components.high >> 8) & 0xFF),
static_cast<int>((components.low >> 24) & 0xFF),
static_cast<int>((components.low >> 8) & 0xFF),
static_cast<int>((components.high >> 24) & 0xFF),
};
}
#else // SHIFTED_USE_32BIT
using ShiftedMultiplier = uint64;
struct Shifted {
Shifted() = default;
Shifted(uint32 value) : value(value) {
}
Shifted(uint64 value) : value(value) {
}
uint64 value = 0;
};
FORCE_INLINE Shifted operator+(Shifted a, Shifted b) {
return Shifted(a.value + b.value);
}
FORCE_INLINE Shifted operator*(Shifted shifted, ShiftedMultiplier multiplier) {
return Shifted(shifted.value * multiplier);
}
FORCE_INLINE Shifted operator*(ShiftedMultiplier multiplier, Shifted shifted) {
return Shifted(shifted.value * multiplier);
}
FORCE_INLINE Shifted shifted(uint32 components) {
auto wide = static_cast<uint64>(components);
return (wide & 0x00000000000000FFULL)
| ((wide & 0x000000000000FF00ULL) << 8)
| ((wide & 0x0000000000FF0000ULL) << 16)
| ((wide & 0x00000000FF000000ULL) << 24);
}
FORCE_INLINE uint32 unshifted(Shifted components) {
return static_cast<uint32>((components.value & 0x000000000000FF00ULL) >> 8)
| static_cast<uint32>((components.value & 0x00000000FF000000ULL) >> 16)
| static_cast<uint32>((components.value & 0x0000FF0000000000ULL) >> 24)
| static_cast<uint32>((components.value & 0xFF00000000000000ULL) >> 32);
}
FORCE_INLINE Shifted reshifted(Shifted components) {
return (components.value >> 8) & 0x00FF00FF00FF00FFULL;
}
FORCE_INLINE Shifted shifted(QColor color) {
// Make it premultiplied.
auto alpha = static_cast<uint64>((color.alpha() & 0xFF) + 1);
auto components = static_cast<uint64>(color.blue() & 0xFF)
| (static_cast<uint64>(color.green() & 0xFF) << 16)
| (static_cast<uint64>(color.red() & 0xFF) << 32)
| (static_cast<uint64>(255) << 48);
return reshifted(components * alpha);
}
FORCE_INLINE uint32 getPremultiplied(QColor color) {
// Make it premultiplied.
auto alpha = static_cast<uint64>((color.alpha() & 0xFF) + 1);
auto components = static_cast<uint64>(color.blue() & 0xFF)
| (static_cast<uint64>(color.green() & 0xFF) << 16)
| (static_cast<uint64>(color.red() & 0xFF) << 32)
| (static_cast<uint64>(255) << 48);
return unshifted(components * alpha);
}
FORCE_INLINE uint32 getAlpha(Shifted components) {
return (components.value & 0x00FF000000000000ULL) >> 48;
}
FORCE_INLINE Shifted non_premultiplied(QColor color) {
return static_cast<uint64>(color.blue() & 0xFF)
| (static_cast<uint64>(color.green() & 0xFF) << 16)
| (static_cast<uint64>(color.red() & 0xFF) << 32)
| (static_cast<uint64>(color.alpha() & 0xFF) << 48);
}
FORCE_INLINE QColor color(QColor a, QColor b, float64 b_ratio) {
auto bOpacity = snap(interpolate(0, 255, b_ratio), 0, 255) + 1;
auto aOpacity = (256 - bOpacity);
auto components = (non_premultiplied(a) * aOpacity + non_premultiplied(b) * bOpacity);
return {
static_cast<int>((components.value >> 40) & 0xFF),
static_cast<int>((components.value >> 24) & 0xFF),
static_cast<int>((components.value >> 8) & 0xFF),
static_cast<int>((components.value >> 56) & 0xFF),
};
}
#endif // SHIFTED_USE_32BIT
FORCE_INLINE QColor color(style::color a, QColor b, float64 b_ratio) {
return color(a->c, b, b_ratio);
}
FORCE_INLINE QColor color(QColor a, style::color b, float64 b_ratio) {
return color(a, b->c, b_ratio);
}
FORCE_INLINE QColor color(style::color a, style::color b, float64 b_ratio) {
return color(a->c, b->c, b_ratio);
}
FORCE_INLINE QPen pen(QColor a, QColor b, float64 b_ratio) {
return color(a, b, b_ratio);
}
FORCE_INLINE QPen pen(style::color a, QColor b, float64 b_ratio) {
return (b_ratio > 0) ? pen(a->c, b, b_ratio) : a;
}
FORCE_INLINE QPen pen(QColor a, style::color b, float64 b_ratio) {
return (b_ratio < 1) ? pen(a, b->c, b_ratio) : b;
}
FORCE_INLINE QPen pen(style::color a, style::color b, float64 b_ratio) {
return (b_ratio > 0) ? ((b_ratio < 1) ? pen(a->c, b->c, b_ratio) : b) : a;
}
FORCE_INLINE QBrush brush(QColor a, QColor b, float64 b_ratio) {
return color(a, b, b_ratio);
}
FORCE_INLINE QBrush brush(style::color a, QColor b, float64 b_ratio) {
return (b_ratio > 0) ? brush(a->c, b, b_ratio) : a;
}
FORCE_INLINE QBrush brush(QColor a, style::color b, float64 b_ratio) {
return (b_ratio < 1) ? brush(a, b->c, b_ratio) : b;
}
FORCE_INLINE QBrush brush(style::color a, style::color b, float64 b_ratio) {
return (b_ratio > 0) ? ((b_ratio < 1) ? brush(a->c, b->c, b_ratio) : b) : a;
}
};
class BasicAnimation;
class AnimationImplementation {
public:
virtual void start() {}
virtual void step(BasicAnimation *a, TimeMs ms, bool timer) = 0;
virtual ~AnimationImplementation() {}
};
class AnimationCallbacks {
public:
AnimationCallbacks(AnimationImplementation *implementation) : _implementation(implementation) {}
AnimationCallbacks(const AnimationCallbacks &other) = delete;
AnimationCallbacks &operator=(const AnimationCallbacks &other) = delete;
AnimationCallbacks(AnimationCallbacks &&other) : _implementation(other._implementation) {
other._implementation = nullptr;
}
AnimationCallbacks &operator=(AnimationCallbacks &&other) {
std::swap(_implementation, other._implementation);
return *this;
}
void start() { _implementation->start(); }
void step(BasicAnimation *a, TimeMs ms, bool timer) { _implementation->step(a, ms, timer); }
~AnimationCallbacks() { delete base::take(_implementation); }
private:
AnimationImplementation *_implementation;
};
class BasicAnimation {
public:
BasicAnimation(AnimationCallbacks &&callbacks)
: _callbacks(std_::move(callbacks))
, _animating(false) {
}
void start();
void stop();
void step(TimeMs ms, bool timer = false) {
_callbacks.step(this, ms, timer);
}
void step() {
step(getms(), false);
}
bool animating() const {
return _animating;
}
~BasicAnimation() {
if (_animating) stop();
}
private:
AnimationCallbacks _callbacks;
bool _animating;
};
template <typename Type>
class AnimationCallbacksRelative : public AnimationImplementation {
public:
typedef void (Type::*Method)(float64, bool);
AnimationCallbacksRelative(Type *obj, Method method) : _obj(obj), _method(method) {
}
void start() {
_started = getms();
}
void step(BasicAnimation *a, TimeMs ms, bool timer) {
(_obj->*_method)(qMax(ms - _started, TimeMs(0)), timer);
}
private:
TimeMs _started = 0;
Type *_obj = nullptr;
Method _method = nullptr;
};
template <typename Type>
AnimationCallbacks animation(Type *obj, typename AnimationCallbacksRelative<Type>::Method method) {
return AnimationCallbacks(new AnimationCallbacksRelative<Type>(obj, method));
}
template <typename Type>
class AnimationCallbacksAbsolute : public AnimationImplementation {
public:
typedef void (Type::*Method)(TimeMs, bool);
AnimationCallbacksAbsolute(Type *obj, Method method) : _obj(obj), _method(method) {
}
void step(BasicAnimation *a, TimeMs ms, bool timer) {
(_obj->*_method)(ms, timer);
}
private:
Type *_obj = nullptr;
Method _method = nullptr;
};
template <typename Type>
AnimationCallbacks animation(Type *obj, typename AnimationCallbacksAbsolute<Type>::Method method) {
return AnimationCallbacks(new AnimationCallbacksAbsolute<Type>(obj, method));
}
template <typename Type, typename Param>
class AnimationCallbacksRelativeWithParam : public AnimationImplementation {
public:
typedef void (Type::*Method)(Param, float64, bool);
AnimationCallbacksRelativeWithParam(Param param, Type *obj, Method method) : _param(param), _obj(obj), _method(method) {
}
void start() {
_started = getms();
}
void step(BasicAnimation *a, TimeMs ms, bool timer) {
(_obj->*_method)(_param, qMax(ms - _started, TimeMs(0)), timer);
}
private:
TimeMs _started = 0;
Param _param;
Type *_obj = nullptr;
Method _method = nullptr;
};
template <typename Type, typename Param>
AnimationCallbacks animation(Param param, Type *obj, typename AnimationCallbacksRelativeWithParam<Type, Param>::Method method) {
return AnimationCallbacks(new AnimationCallbacksRelativeWithParam<Type, Param>(param, obj, method));
}
template <typename Type, typename Param>
class AnimationCallbacksAbsoluteWithParam : public AnimationImplementation {
public:
typedef void (Type::*Method)(Param, TimeMs, bool);
AnimationCallbacksAbsoluteWithParam(Param param, Type *obj, Method method) : _param(param), _obj(obj), _method(method) {
}
void step(BasicAnimation *a, TimeMs ms, bool timer) {
(_obj->*_method)(_param, ms, timer);
}
private:
Param _param;
Type *_obj = nullptr;
Method _method = nullptr;
};
template <typename Type, typename Param>
AnimationCallbacks animation(Param param, Type *obj, typename AnimationCallbacksAbsoluteWithParam<Type, Param>::Method method) {
return AnimationCallbacks(new AnimationCallbacksAbsoluteWithParam<Type, Param>(param, obj, method));
}
class Animation {
public:
void step(TimeMs ms) {
if (_data) {
_data->a_animation.step(ms);
if (_data && !_data->a_animation.animating()) {
_data.reset();
}
}
}
bool animating() const {
if (_data) {
if (_data->a_animation.animating()) {
return true;
}
_data.reset();
}
return false;
}
bool animating(TimeMs ms) {
step(ms);
return animating();
}
float64 current() const {
t_assert(_data != nullptr);
return _data->value.current();
}
float64 current(float64 def) const {
return animating() ? current() : def;
}
float64 current(TimeMs ms, float64 def) {
return animating(ms) ? current() : def;
}
static constexpr auto kLongAnimationDuration = 1000;
template <typename Lambda>
void start(Lambda &&updateCallback, float64 from, float64 to, float64 duration, const anim::transition &transition = anim::linear) {
auto isLong = (duration >= kLongAnimationDuration);
if (_data) {
if (!isLong) {
_data->pause.restart();
}
} else {
_data = std_::make_unique<Data>(from, std_::forward<Lambda>(updateCallback));
}
if (isLong) {
_data->pause.release();
}
_data->value.start(to);
_data->duration = duration;
_data->transition = transition;
_data->a_animation.start();
}
void finish() {
if (_data) {
_data->value.finish();
_data->a_animation.stop();
_data.reset();
}
}
private:
struct Data {
template <typename Lambda, typename = std_::enable_if_t<std_::is_rvalue_reference<Lambda&&>::value>>
Data(float64 from, Lambda &&updateCallback)
: value(from, from)
, a_animation(animation(this, &Data::step))
, updateCallback(std_::move(updateCallback)) {
}
Data(float64 from, const base::lambda_copy<void()> &updateCallback)
: value(from, from)
, a_animation(animation(this, &Data::step))
, updateCallback(base::lambda_copy<void()>(updateCallback)) {
}
void step(float64 ms, bool timer) {
auto dt = (ms >= duration) ? 1. : (ms / duration);
if (dt >= 1) {
value.finish();
a_animation.stop();
pause.release();
} else {
value.update(dt, transition);
}
updateCallback();
}
anim::value value;
BasicAnimation a_animation;
base::lambda<void()> updateCallback;
float64 duration = 0.;
anim::transition transition = anim::linear;
MTP::PauseHolder pause;
};
mutable std_::unique_ptr<Data> _data;
};
class AnimationManager : public QObject {
Q_OBJECT
public:
AnimationManager();
void start(BasicAnimation *obj);
void stop(BasicAnimation *obj);
public slots:
void timeout();
void clipCallback(Media::Clip::Reader *reader, qint32 threadIndex, qint32 notification);
private:
using AnimatingObjects = OrderedSet<BasicAnimation*>;
AnimatingObjects _objects, _starting, _stopping;
QTimer _timer;
bool _iterating;
};