tdesktop/Telegram/SourceFiles/media/view/media_view_pip_opengl.cpp

808 lines
22 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop application for the Telegram messaging service.
For license and copyright information please follow this link:
https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
*/
#include "media/view/media_view_pip_opengl.h"
#include "ui/gl/gl_shader.h"
#include "ui/gl/gl_primitives.h"
#include "ui/widgets/shadow.h"
#include "media/streaming/media_streaming_common.h"
#include "base/platform/base_platform_info.h"
#include "styles/style_media_view.h"
#include "styles/style_calls.h" // st::callShadow.
namespace Media::View {
namespace {
using namespace Ui::GL;
constexpr auto kRadialLoadingOffset = 4;
constexpr auto kPlaybackOffset = kRadialLoadingOffset + 4;
constexpr auto kVolumeControllerOffset = kPlaybackOffset + 4;
constexpr auto kControlsOffset = kVolumeControllerOffset + 4;
constexpr auto kControlValues = 4 * 4 + 2 * 4;
[[nodiscard]] ShaderPart FragmentAddControlOver() {
return {
.header = R"(
varying vec2 o_texcoord;
uniform float o_opacity;
)",
.body = R"(
vec4 over = texture2D(s_texture, o_texcoord);
result = result * (1. - o_opacity)
+ vec4(over.b, over.g, over.r, over.a) * o_opacity;
)",
};
}
[[nodiscard]] ShaderPart FragmentApplyFade() {
return {
.header = R"(
uniform vec4 fadeColor; // Premultiplied.
)",
.body = R"(
result = result * (1. - fadeColor.a) + fadeColor;
)",
};
}
ShaderPart FragmentSampleShadow() {
return {
.header = R"(
uniform sampler2D h_texture;
uniform vec2 h_size;
uniform vec4 h_extend;
uniform vec4 h_components;
)",
.body = R"(
vec4 extended = vec4( // Left-Bottom-Width-Height rectangle.
roundRect.xy - h_extend.xw,
roundRect.zw + h_extend.xw + h_extend.zy);
vec2 inside = (gl_FragCoord.xy - extended.xy);
vec2 insideOtherCorner = (inside + h_size - extended.zw);
vec4 outsideCorners = step(
vec4(h_components.xy, inside),
vec4(inside, extended.zw - h_components.xy));
vec4 insideCorners = vec4(1.) - outsideCorners;
vec2 linear = outsideCorners.xy * outsideCorners.zw;
vec2 h_size_half = 0.5 * h_size;
vec2 bottomleft = inside * insideCorners.x * insideCorners.y;
vec2 bottomright = vec2(insideOtherCorner.x, inside.y)
* insideCorners.z
* insideCorners.y;
vec2 topright = insideOtherCorner * insideCorners.z * insideCorners.w;
vec2 topleft = vec2(inside.x, insideOtherCorner.y)
* insideCorners.x
* insideCorners.w;
vec2 left = vec2(inside.x, h_size_half.y)
* step(inside.x, h_components.z)
* linear.y;
vec2 bottom = vec2(h_size_half.x, inside.y)
* step(inside.y, h_components.w)
* linear.x;
vec2 right = vec2(insideOtherCorner.x, h_size_half.y)
* step(h_size.x - h_components.z, insideOtherCorner.x)
* linear.y;
vec2 top = vec2(h_size_half.x, insideOtherCorner.y)
* step(h_size.y - h_components.w, insideOtherCorner.y)
* linear.x;
vec2 uv = bottomleft
+ bottomright
+ topleft
+ topright
+ left
+ bottom
+ right
+ top;
result = texture2D(h_texture, uv / h_size);
)",
};
}
ShaderPart FragmentRoundToShadow() {
const auto shadow = FragmentSampleShadow();
return {
.header = R"(
uniform vec4 roundRect;
uniform float roundRadius;
)" + shadow.header + R"(
float roundedCorner() {
vec2 rectHalf = roundRect.zw / 2.;
vec2 rectCenter = roundRect.xy + rectHalf;
vec2 fromRectCenter = abs(gl_FragCoord.xy - rectCenter);
vec2 vectorRadius = vec2(roundRadius + 0.5, roundRadius + 0.5);
vec2 fromCenterWithRadius = fromRectCenter + vectorRadius;
vec2 fromRoundingCenter = max(fromCenterWithRadius, rectHalf)
- rectHalf;
float rounded = length(fromRoundingCenter) - roundRadius;
return 1. - smoothstep(0., 1., rounded);
}
vec4 shadow() {
vec4 result;
)" + shadow.body + R"(
return result;
}
)",
.body = R"(
float round = roundedCorner();
result = result * round + shadow() * (1. - round);
)",
};
}
} // namespace
Pip::RendererGL::RendererGL(not_null<Pip*> owner)
: _owner(owner) {
style::PaletteChanged(
) | rpl::start_with_next([=] {
_radialImage.invalidate();
_playbackImage.invalidate();
_volumeControllerImage.invalidate();
invalidateControls();
}, _lifetime);
}
void Pip::RendererGL::init(
not_null<QOpenGLWidget*> widget,
QOpenGLFunctions &f) {
constexpr auto kQuads = 8;
constexpr auto kQuadVertices = kQuads * 4;
constexpr auto kQuadValues = kQuadVertices * 4;
constexpr auto kControlsValues = kControlsCount * kControlValues;
constexpr auto kValues = kQuadValues + kControlsValues;
_contentBuffer.emplace();
_contentBuffer->setUsagePattern(QOpenGLBuffer::DynamicDraw);
_contentBuffer->create();
_contentBuffer->bind();
_contentBuffer->allocate(kValues * sizeof(GLfloat));
_textures.ensureCreated(f);
_argb32Program.emplace();
_texturedVertexShader = LinkProgram(
&*_argb32Program,
VertexShader({
VertexPassTextureCoord(),
}),
FragmentShader({
FragmentSampleARGB32Texture(),
FragmentApplyFade(),
FragmentRoundToShadow(),
})).vertex;
_yuv420Program.emplace();
LinkProgram(
&*_yuv420Program,
_texturedVertexShader,
FragmentShader({
FragmentSampleYUV420Texture(),
FragmentApplyFade(),
FragmentRoundToShadow(),
}));
_nv12Program.emplace();
LinkProgram(
&*_nv12Program,
_texturedVertexShader,
FragmentShader({
FragmentSampleNV12Texture(),
FragmentApplyFade(),
FragmentRoundToShadow(),
}));
_imageProgram.emplace();
LinkProgram(
&*_imageProgram,
VertexShader({
VertexViewportTransform(),
VertexPassTextureCoord(),
}),
FragmentShader({
FragmentSampleARGB32Texture(),
}));
_controlsProgram.emplace();
LinkProgram(
&*_controlsProgram,
VertexShader({
VertexViewportTransform(),
VertexPassTextureCoord(),
VertexPassTextureCoord('o'),
}),
FragmentShader({
FragmentSampleARGB32Texture(),
FragmentAddControlOver(),
FragmentGlobalOpacity(),
}));
createShadowTexture();
}
void Pip::RendererGL::deinit(
not_null<QOpenGLWidget*> widget,
QOpenGLFunctions *f) {
_textures.destroy(f);
_imageProgram = std::nullopt;
_texturedVertexShader = nullptr;
_argb32Program = std::nullopt;
_yuv420Program = std::nullopt;
_nv12Program = std::nullopt;
_controlsProgram = std::nullopt;
_contentBuffer = std::nullopt;
}
void Pip::RendererGL::createShadowTexture() {
const auto &shadow = st::callShadow;
const auto size = 2 * st::callShadow.topLeft.size()
+ QSize(st::roundRadiusLarge, st::roundRadiusLarge);
auto image = QImage(
size * cIntRetinaFactor(),
QImage::Format_ARGB32_Premultiplied);
image.setDevicePixelRatio(cRetinaFactor());
image.fill(Qt::transparent);
{
auto p = QPainter(&image);
Ui::Shadow::paint(
p,
QRect(QPoint(), size).marginsRemoved(shadow.extend),
size.width(),
shadow);
}
_shadowImage.setImage(std::move(image));
}
void Pip::RendererGL::paint(
not_null<QOpenGLWidget*> widget,
QOpenGLFunctions &f) {
const auto factor = widget->devicePixelRatio();
if (_factor != factor) {
_factor = factor;
_controlsImage.invalidate();
}
_blendingEnabled = false;
_viewport = widget->size();
_uniformViewport = QVector2D(
_viewport.width() * _factor,
_viewport.height() * _factor);
_f = &f;
_owner->paint(this);
_f = nullptr;
}
std::optional<QColor> Pip::RendererGL::clearColor() {
return QColor(0, 0, 0, 0);
}
void Pip::RendererGL::paintTransformedVideoFrame(
ContentGeometry geometry) {
const auto data = _owner->videoFrameWithInfo();
if (data.format == Streaming::FrameFormat::None) {
return;
}
geometry.rotation = (geometry.rotation + geometry.videoRotation) % 360;
if (data.format == Streaming::FrameFormat::ARGB32) {
Assert(!data.image.isNull());
paintTransformedStaticContent(data.image, geometry);
return;
}
Assert(!data.yuv->size.isEmpty());
const auto program = (data.format == Streaming::FrameFormat::NV12)
? &*_nv12Program
: &*_yuv420Program;
program->bind();
const auto nv12 = (data.format == Streaming::FrameFormat::NV12);
const auto yuv = data.yuv;
const auto nv12changed = (_chromaNV12 != nv12);
const auto upload = (_trackFrameIndex != data.index);
_trackFrameIndex = data.index;
_f->glActiveTexture(GL_TEXTURE0);
_textures.bind(*_f, 1);
if (upload) {
_f->glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
uploadTexture(
GL_ALPHA,
GL_ALPHA,
yuv->size,
_lumaSize,
yuv->y.stride,
yuv->y.data);
_lumaSize = yuv->size;
}
_f->glActiveTexture(GL_TEXTURE1);
_textures.bind(*_f, 2);
if (upload) {
uploadTexture(
nv12 ? GL_RG : GL_ALPHA,
nv12 ? GL_RG : GL_ALPHA,
yuv->chromaSize,
nv12changed ? QSize() : _chromaSize,
yuv->u.stride / (nv12 ? 2 : 1),
yuv->u.data);
if (nv12) {
_chromaSize = yuv->chromaSize;
_f->glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
}
_chromaNV12 = nv12;
}
if (!nv12) {
_f->glActiveTexture(GL_TEXTURE2);
_textures.bind(*_f, 3);
if (upload) {
uploadTexture(
GL_ALPHA,
GL_ALPHA,
yuv->chromaSize,
_chromaSize,
yuv->v.stride,
yuv->v.data);
_chromaSize = yuv->chromaSize;
_f->glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
}
}
program->setUniformValue("y_texture", GLint(0));
if (nv12) {
program->setUniformValue("uv_texture", GLint(1));
} else {
program->setUniformValue("u_texture", GLint(1));
program->setUniformValue("v_texture", GLint(2));
}
paintTransformedContent(program, geometry);
}
void Pip::RendererGL::paintTransformedStaticContent(
const QImage &image,
ContentGeometry geometry) {
_argb32Program->bind();
_f->glActiveTexture(GL_TEXTURE0);
_textures.bind(*_f, 0);
const auto cacheKey = image.cacheKey();
const auto upload = (_cacheKey != cacheKey);
if (upload) {
_cacheKey = cacheKey;
const auto stride = image.bytesPerLine() / 4;
const auto data = image.constBits();
uploadTexture(
Ui::GL::kFormatRGBA,
Ui::GL::kFormatRGBA,
image.size(),
_rgbaSize,
stride,
data);
_rgbaSize = image.size();
}
_argb32Program->setUniformValue("s_texture", GLint(0));
paintTransformedContent(&*_argb32Program, geometry);
}
void Pip::RendererGL::paintTransformedContent(
not_null<QOpenGLShaderProgram*> program,
ContentGeometry geometry) {
std::array<std::array<GLfloat, 2>, 4> rect = { {
{ { -1.f, 1.f } },
{ { 1.f, 1.f } },
{ { 1.f, -1.f } },
{ { -1.f, -1.f } },
} };
if (const auto shift = (geometry.rotation / 90); shift != 0) {
std::rotate(begin(rect), begin(rect) + shift, end(rect));
}
const auto xscale = 1.f / geometry.inner.width();
const auto yscale = 1.f / geometry.inner.height();
const GLfloat coords[] = {
rect[0][0], rect[0][1],
-geometry.inner.x() * xscale,
-geometry.inner.y() * yscale,
rect[1][0], rect[1][1],
(geometry.outer.width() - geometry.inner.x()) * xscale,
-geometry.inner.y() * yscale,
rect[2][0], rect[2][1],
(geometry.outer.width() - geometry.inner.x()) * xscale,
(geometry.outer.height() - geometry.inner.y()) * yscale,
rect[3][0], rect[3][1],
-geometry.inner.x() * xscale,
(geometry.outer.height() - geometry.inner.y()) * yscale,
};
_contentBuffer->write(0, coords, sizeof(coords));
const auto rgbaFrame = _chromaSize.isEmpty();
_f->glActiveTexture(rgbaFrame ? GL_TEXTURE1 : GL_TEXTURE3);
_shadowImage.bind(*_f);
const auto globalFactor = cIntRetinaFactor();
const auto fadeAlpha = st::radialBg->c.alphaF() * geometry.fade;
const auto roundRect = transformRect(RoundingRect(geometry));
program->setUniformValue("roundRect", Uniform(roundRect));
program->setUniformValue("h_texture", GLint(rgbaFrame ? 1 : 3));
program->setUniformValue("h_size", QSizeF(_shadowImage.image().size()));
program->setUniformValue("h_extend", QVector4D(
st::callShadow.extend.left() * globalFactor,
st::callShadow.extend.top() * globalFactor,
st::callShadow.extend.right() * globalFactor,
st::callShadow.extend.bottom() * globalFactor));
program->setUniformValue("h_components", QVector4D(
float(st::callShadow.topLeft.width() * globalFactor),
float(st::callShadow.topLeft.height() * globalFactor),
float(st::callShadow.left.width() * globalFactor),
float(st::callShadow.top.height() * globalFactor)));
program->setUniformValue(
"roundRadius",
GLfloat(st::roundRadiusLarge * _factor));
program->setUniformValue("fadeColor", QVector4D(
float(st::radialBg->c.redF() * fadeAlpha),
float(st::radialBg->c.greenF() * fadeAlpha),
float(st::radialBg->c.blueF() * fadeAlpha),
float(fadeAlpha)));
FillTexturedRectangle(*_f, &*program);
}
void Pip::RendererGL::uploadTexture(
GLint internalformat,
GLint format,
QSize size,
QSize hasSize,
int stride,
const void *data) const {
_f->glPixelStorei(GL_UNPACK_ROW_LENGTH, stride);
if (hasSize != size) {
_f->glTexImage2D(
GL_TEXTURE_2D,
0,
internalformat,
size.width(),
size.height(),
0,
format,
GL_UNSIGNED_BYTE,
data);
} else {
_f->glTexSubImage2D(
GL_TEXTURE_2D,
0,
0,
0,
size.width(),
size.height(),
format,
GL_UNSIGNED_BYTE,
data);
}
_f->glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
}
void Pip::RendererGL::paintRadialLoading(
QRect inner,
float64 controlsShown) {
paintUsingRaster(_radialImage, inner, [&](Painter &&p) {
// Raster renderer paints content, then radial loading, then fade.
// Here we paint fade together with the content, so we should emulate
// radial loading being under the fade.
//
// The loading background is the same color as the fade (radialBg),
// so nothing should be done with it. But the fade should be added
// to the radial loading line color (radialFg).
const auto newInner = QRect(QPoint(), inner.size());
const auto fg = st::radialFg->c;
const auto fade = st::radialBg->c;
const auto fadeAlpha = controlsShown * fade.alphaF();
const auto fgAlpha = 1. - fadeAlpha;
const auto color = (fadeAlpha == 0.) ? fg : QColor(
int(base::SafeRound(fg.red() * fgAlpha + fade.red() * fadeAlpha)),
int(base::SafeRound(fg.green() * fgAlpha + fade.green() * fadeAlpha)),
int(base::SafeRound(fg.blue() * fgAlpha + fade.blue() * fadeAlpha)),
fg.alpha());
_owner->paintRadialLoadingContent(p, newInner, color);
}, kRadialLoadingOffset, true);
}
void Pip::RendererGL::paintPlayback(QRect outer, float64 shown) {
paintUsingRaster(_playbackImage, outer, [&](Painter &&p) {
const auto newOuter = QRect(QPoint(), outer.size());
_owner->paintPlaybackContent(p, newOuter, shown);
}, kPlaybackOffset, true);
}
void Pip::RendererGL::paintVolumeController(QRect outer, float64 shown) {
paintUsingRaster(_volumeControllerImage, outer, [&](Painter &&p) {
const auto newOuter = QRect(QPoint(), outer.size());
_owner->paintVolumeControllerContent(p, newOuter, shown);
}, kVolumeControllerOffset, true);
}
void Pip::RendererGL::paintButtonsStart() {
validateControls();
_f->glActiveTexture(GL_TEXTURE0);
_controlsImage.bind(*_f);
toggleBlending(true);
}
void Pip::RendererGL::paintButton(
const Button &button,
int outerWidth,
float64 shown,
float64 over,
const style::icon &icon,
const style::icon &iconOver) {
const auto tryIndex = [&](int stateIndex) -> std::optional<Control> {
const auto result = ControlMeta(button.state, stateIndex);
return (result.icon == &icon && result.iconOver == &iconOver)
? std::make_optional(result)
: std::nullopt;
};
const auto meta = tryIndex(0)
? *tryIndex(0)
: tryIndex(1)
? *tryIndex(1)
: *tryIndex(2);
Assert(meta.icon == &icon && meta.iconOver == &iconOver);
const auto offset = kControlsOffset + (meta.index * kControlValues) / 4;
const auto iconRect = _controlsImage.texturedRect(
button.icon,
_controlsTextures[meta.index * 2 + 0]);
const auto iconOverRect = _controlsImage.texturedRect(
button.icon,
_controlsTextures[meta.index * 2 + 1]);
const auto iconGeometry = transformRect(iconRect.geometry);
const GLfloat coords[] = {
iconGeometry.left(), iconGeometry.top(),
iconRect.texture.left(), iconRect.texture.bottom(),
iconGeometry.right(), iconGeometry.top(),
iconRect.texture.right(), iconRect.texture.bottom(),
iconGeometry.right(), iconGeometry.bottom(),
iconRect.texture.right(), iconRect.texture.top(),
iconGeometry.left(), iconGeometry.bottom(),
iconRect.texture.left(), iconRect.texture.top(),
iconOverRect.texture.left(), iconOverRect.texture.bottom(),
iconOverRect.texture.right(), iconOverRect.texture.bottom(),
iconOverRect.texture.right(), iconOverRect.texture.top(),
iconOverRect.texture.left(), iconOverRect.texture.top(),
};
_contentBuffer->write(
offset * 4 * sizeof(GLfloat),
coords,
sizeof(coords));
_controlsProgram->bind();
_controlsProgram->setUniformValue("o_opacity", GLfloat(over));
_controlsProgram->setUniformValue("g_opacity", GLfloat(shown));
_controlsProgram->setUniformValue("viewport", _uniformViewport);
GLint overTexcoord = _controlsProgram->attributeLocation("o_texcoordIn");
_f->glVertexAttribPointer(
overTexcoord,
2,
GL_FLOAT,
GL_FALSE,
2 * sizeof(GLfloat),
reinterpret_cast<const void*>((offset + 4) * 4 * sizeof(GLfloat)));
_f->glEnableVertexAttribArray(overTexcoord);
FillTexturedRectangle(*_f, &*_controlsProgram, offset);
_f->glDisableVertexAttribArray(overTexcoord);
}
auto Pip::RendererGL::ControlMeta(OverState control, int index)
-> Control {
Expects(index >= 0);
switch (control) {
case OverState::Close: Assert(index < 1); return {
0,
&st::pipCloseIcon,
&st::pipCloseIconOver,
};
case OverState::Enlarge: Assert(index < 1); return {
1,
&st::pipEnlargeIcon,
&st::pipEnlargeIconOver,
};
case OverState::VolumeToggle: Assert(index < 3); return {
(2 + index),
(index == 0
? &st::pipVolumeIcon0
: (index == 1)
? &st::pipVolumeIcon1
: &st::pipVolumeIcon2),
(index == 0
? &st::pipVolumeIcon0Over
: (index == 1)
? &st::pipVolumeIcon1Over
: &st::pipVolumeIcon2Over),
};
case OverState::Other: Assert(index < 2); return {
(5 + index),
(index ? &st::pipPauseIcon : &st::pipPlayIcon),
(index ? &st::pipPauseIconOver : &st::pipPlayIconOver),
};
}
Unexpected("Control value in Pip::RendererGL::ControlIndex.");
}
void Pip::RendererGL::validateControls() {
if (!_controlsImage.image().isNull()) {
return;
}
const auto metas = {
ControlMeta(OverState::Close),
ControlMeta(OverState::Enlarge),
ControlMeta(OverState::VolumeToggle),
ControlMeta(OverState::VolumeToggle, 1),
ControlMeta(OverState::VolumeToggle, 2),
ControlMeta(OverState::Other),
ControlMeta(OverState::Other, 1),
};
auto maxWidth = 0;
auto fullHeight = 0;
for (const auto &meta : metas) {
Assert(meta.icon->size() == meta.iconOver->size());
maxWidth = std::max(meta.icon->width(), maxWidth);
fullHeight += 2 * meta.icon->height();
}
auto image = QImage(
QSize(maxWidth, fullHeight) * _factor,
QImage::Format_ARGB32_Premultiplied);
image.fill(Qt::transparent);
image.setDevicePixelRatio(_factor);
{
auto p = QPainter(&image);
auto index = 0;
auto height = 0;
const auto paint = [&](not_null<const style::icon*> icon) {
icon->paint(p, 0, height, maxWidth);
_controlsTextures[index++] = QRect(
QPoint(0, height) * _factor,
icon->size() * _factor);
height += icon->height();
};
for (const auto &meta : metas) {
paint(meta.icon);
paint(meta.iconOver);
}
}
_controlsImage.setImage(std::move(image));
}
void Pip::RendererGL::invalidateControls() {
_controlsImage.invalidate();
ranges::fill(_controlsTextures, QRect());
}
void Pip::RendererGL::paintUsingRaster(
Ui::GL::Image &image,
QRect rect,
Fn<void(Painter&&)> method,
int bufferOffset,
bool transparent) {
auto raster = image.takeImage();
const auto size = rect.size() * _factor;
if (raster.width() < size.width() || raster.height() < size.height()) {
raster = QImage(size, QImage::Format_ARGB32_Premultiplied);
raster.setDevicePixelRatio(_factor);
if (!transparent
&& (raster.width() > size.width()
|| raster.height() > size.height())) {
raster.fill(Qt::transparent);
}
} else if (raster.devicePixelRatio() != _factor) {
raster.setDevicePixelRatio(_factor);
}
if (transparent) {
raster.fill(Qt::transparent);
}
method(Painter(&raster));
_f->glActiveTexture(GL_TEXTURE0);
image.setImage(std::move(raster), size);
image.bind(*_f);
const auto textured = image.texturedRect(rect, QRect(QPoint(), size));
const auto geometry = transformRect(textured.geometry);
const GLfloat coords[] = {
geometry.left(), geometry.top(),
textured.texture.left(), textured.texture.bottom(),
geometry.right(), geometry.top(),
textured.texture.right(), textured.texture.bottom(),
geometry.right(), geometry.bottom(),
textured.texture.right(), textured.texture.top(),
geometry.left(), geometry.bottom(),
textured.texture.left(), textured.texture.top(),
};
_contentBuffer->write(
bufferOffset * 4 * sizeof(GLfloat),
coords,
sizeof(coords));
_imageProgram->bind();
_imageProgram->setUniformValue("viewport", _uniformViewport);
_imageProgram->setUniformValue("s_texture", GLint(0));
_imageProgram->setUniformValue("g_opacity", GLfloat(1));
toggleBlending(transparent);
FillTexturedRectangle(*_f, &*_imageProgram, bufferOffset);
}
void Pip::RendererGL::toggleBlending(bool enabled) {
if (_blendingEnabled == enabled) {
return;
} else if (enabled) {
_f->glEnable(GL_BLEND);
_f->glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
_f->glDisable(GL_BLEND);
}
_blendingEnabled = enabled;
}
QRect Pip::RendererGL::RoundingRect(ContentGeometry geometry) {
const auto inner = geometry.inner;
const auto attached = geometry.attached;
const auto added = std::max({
st::roundRadiusLarge,
inner.x(),
inner.y(),
geometry.outer.width() - inner.x() - inner.width(),
geometry.outer.height() - inner.y() - inner.height(),
st::callShadow.topLeft.width(),
st::callShadow.topLeft.height(),
st::callShadow.topRight.width(),
st::callShadow.topRight.height(),
st::callShadow.bottomRight.width(),
st::callShadow.bottomRight.height(),
st::callShadow.bottomLeft.width(),
st::callShadow.bottomLeft.height(),
});
return geometry.inner.marginsAdded({
(attached & RectPart::Left) ? added : 0,
(attached & RectPart::Top) ? added : 0,
(attached & RectPart::Right) ? added : 0,
(attached & RectPart::Bottom) ? added : 0,
});
}
Rect Pip::RendererGL::transformRect(const Rect &raster) const {
return TransformRect(raster, _viewport, _factor);
}
Rect Pip::RendererGL::transformRect(const QRectF &raster) const {
return TransformRect(raster, _viewport, _factor);
}
Rect Pip::RendererGL::transformRect(const QRect &raster) const {
return TransformRect(Rect(raster), _viewport, _factor);
}
} // namespace Media::View