tdesktop/Telegram/SourceFiles/mtproto/rsa_public_key.cpp
2018-06-06 15:16:21 +03:00

272 lines
7.1 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop application for the Telegram messaging service.
For license and copyright information please follow this link:
https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
*/
#include "mtproto/rsa_public_key.h"
#include "base/openssl_help.h"
extern "C" {
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/bio.h>
#include <openssl/err.h>
} // extern "C"
namespace MTP {
namespace internal {
namespace {
#if OPENSSL_VERSION_NUMBER < 0x10100000L || (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2070000fL)
// This is a key setter for compatibility with OpenSSL 1.0
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) {
if ((r->n == nullptr && n == nullptr) || (r->e == nullptr && e == nullptr)) {
return 0;
}
if (n != nullptr) {
BN_free(r->n);
r->n = n;
}
if (e != nullptr) {
BN_free(r->e);
r->e = e;
}
if (d != nullptr) {
BN_free(r->d);
r->d = d;
}
return 1;
}
// This is a key getter for compatibility with OpenSSL 1.0
void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) {
if (n != nullptr) {
*n = r->n;
}
if (e != nullptr) {
*e = r->e;
}
if (d != nullptr) {
*d = r->d;
}
}
#endif
enum class Format {
RSAPublicKey,
RSA_PUBKEY,
Unknown,
};
Format GuessFormat(bytes::const_span key) {
const auto array = QByteArray::fromRawData(
reinterpret_cast<const char*>(key.data()),
key.size());
if (array.indexOf("BEGIN RSA PUBLIC KEY") >= 0) {
return Format::RSAPublicKey;
} else if (array.indexOf("BEGIN PUBLIC KEY") >= 0) {
return Format::RSA_PUBKEY;
}
return Format::Unknown;
}
RSA *CreateRaw(bytes::const_span key) {
const auto format = GuessFormat(key);
const auto bio = BIO_new_mem_buf(
const_cast<gsl::byte*>(key.data()),
key.size());
switch (format) {
case Format::RSAPublicKey:
return PEM_read_bio_RSAPublicKey(bio, nullptr, nullptr, nullptr);
case Format::RSA_PUBKEY:
return PEM_read_bio_RSA_PUBKEY(bio, nullptr, nullptr, nullptr);
}
Unexpected("format in RSAPublicKey::Private::Create.");
}
} // namespace
class RSAPublicKey::Private {
public:
Private(bytes::const_span key)
: _rsa(CreateRaw(key)) {
if (_rsa) {
computeFingerprint();
}
}
Private(bytes::const_span nBytes, bytes::const_span eBytes)
: _rsa(RSA_new()) {
if (_rsa) {
auto n = openssl::BigNum(nBytes).takeRaw();
auto e = openssl::BigNum(eBytes).takeRaw();
auto valid = (n != nullptr) && (e != nullptr);
// We still pass both values to RSA_set0_key() so that even
// if only one of them is valid RSA would take ownership of it.
if (!RSA_set0_key(_rsa, n, e, nullptr) || !valid) {
RSA_free(base::take(_rsa));
} else {
computeFingerprint();
}
}
}
bytes::vector getN() const {
Expects(isValid());
const BIGNUM *n;
RSA_get0_key(_rsa, &n, nullptr, nullptr);
return toBytes(n);
}
bytes::vector getE() const {
Expects(isValid());
const BIGNUM *e;
RSA_get0_key(_rsa, nullptr, &e, nullptr);
return toBytes(e);
}
uint64 getFingerPrint() const {
return _fingerprint;
}
bool isValid() const {
return _rsa != nullptr;
}
bytes::vector encrypt(bytes::const_span data) const {
Expects(isValid());
constexpr auto kEncryptSize = 256;
auto result = bytes::vector(kEncryptSize, gsl::byte {});
auto res = RSA_public_encrypt(kEncryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
if (res < 0 || res > kEncryptSize) {
ERR_load_crypto_strings();
LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(getFingerPrint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
return {};
} else if (auto zeroBytes = kEncryptSize - res) {
auto resultBytes = gsl::make_span(result);
bytes::move(resultBytes.subspan(zeroBytes, res), resultBytes.subspan(0, res));
bytes::set_with_const(resultBytes.subspan(0, zeroBytes), gsl::byte {});
}
return result;
}
bytes::vector decrypt(bytes::const_span data) const {
Expects(isValid());
constexpr auto kDecryptSize = 256;
auto result = bytes::vector(kDecryptSize, gsl::byte {});
auto res = RSA_public_decrypt(kDecryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
if (res < 0 || res > kDecryptSize) {
ERR_load_crypto_strings();
LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(getFingerPrint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
return {};
} else if (auto zeroBytes = kDecryptSize - res) {
auto resultBytes = gsl::make_span(result);
bytes::move(resultBytes.subspan(zeroBytes - res, res), resultBytes.subspan(0, res));
bytes::set_with_const(resultBytes.subspan(0, zeroBytes - res), gsl::byte {});
}
return result;
}
bytes::vector encryptOAEPpadding(bytes::const_span data) const {
Expects(isValid());
const auto resultSize = RSA_size(_rsa);
auto result = bytes::vector(resultSize, gsl::byte{});
const auto encryptedSize = RSA_public_encrypt(
data.size(),
reinterpret_cast<const unsigned char*>(data.data()),
reinterpret_cast<unsigned char*>(result.data()),
_rsa,
RSA_PKCS1_OAEP_PADDING);
if (encryptedSize != resultSize) {
ERR_load_crypto_strings();
LOG(("RSA Error: RSA_public_encrypt failed, "
"key fp: %1, result: %2, error: %3"
).arg(getFingerPrint()
).arg(encryptedSize
).arg(ERR_error_string(ERR_get_error(), 0)
));
return {};
}
return result;
}
~Private() {
RSA_free(_rsa);
}
private:
void computeFingerprint() {
Expects(isValid());
const BIGNUM *n, *e;
mtpBuffer string;
RSA_get0_key(_rsa, &n, &e, nullptr);
MTP_bytes(toBytes(n)).write(string);
MTP_bytes(toBytes(e)).write(string);
uchar sha1Buffer[20];
_fingerprint = *(uint64*)(hashSha1(&string[0], string.size() * sizeof(mtpPrime), sha1Buffer) + 3);
}
static bytes::vector toBytes(const BIGNUM *number) {
auto size = BN_num_bytes(number);
auto result = bytes::vector(size, gsl::byte {});
BN_bn2bin(number, reinterpret_cast<unsigned char*>(result.data()));
return result;
}
RSA *_rsa = nullptr;
uint64 _fingerprint = 0;
};
RSAPublicKey::RSAPublicKey(bytes::const_span key)
: _private(std::make_shared<Private>(key)) {
}
RSAPublicKey::RSAPublicKey(
bytes::const_span nBytes,
bytes::const_span eBytes)
: _private(std::make_shared<Private>(nBytes, eBytes)) {
}
bool RSAPublicKey::isValid() const {
return _private && _private->isValid();
}
uint64 RSAPublicKey::getFingerPrint() const {
Expects(isValid());
return _private->getFingerPrint();
}
bytes::vector RSAPublicKey::getN() const {
Expects(isValid());
return _private->getN();
}
bytes::vector RSAPublicKey::getE() const {
Expects(isValid());
return _private->getE();
}
bytes::vector RSAPublicKey::encrypt(bytes::const_span data) const {
Expects(isValid());
return _private->encrypt(data);
}
bytes::vector RSAPublicKey::decrypt(bytes::const_span data) const {
Expects(isValid());
return _private->decrypt(data);
}
bytes::vector RSAPublicKey::encryptOAEPpadding(
bytes::const_span data) const {
return _private->encryptOAEPpadding(data);
}
} // namespace internal
} // namespace MTP