tdesktop/Telegram/SourceFiles/mtproto/details/mtproto_rsa_public_key.cpp

267 lines
7.3 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop application for the Telegram messaging service.
For license and copyright information please follow this link:
https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
*/
#include "mtproto/details/mtproto_rsa_public_key.h"
#include "base/openssl_help.h"
namespace MTP::details {
namespace {
enum class Format {
RSAPublicKey,
RSA_PUBKEY,
Unknown,
};
struct BIODeleter {
void operator()(BIO *value) {
BIO_free(value);
}
};
Format GuessFormat(bytes::const_span key) {
const auto array = QByteArray::fromRawData(
reinterpret_cast<const char*>(key.data()),
key.size());
if (array.indexOf("BEGIN RSA PUBLIC KEY") >= 0) {
return Format::RSAPublicKey;
} else if (array.indexOf("BEGIN PUBLIC KEY") >= 0) {
return Format::RSA_PUBKEY;
}
return Format::Unknown;
}
RSA *CreateRaw(bytes::const_span key) {
const auto format = GuessFormat(key);
const auto bio = std::unique_ptr<BIO, BIODeleter>{
BIO_new_mem_buf(
const_cast<gsl::byte*>(key.data()),
key.size()),
};
switch (format) {
case Format::RSAPublicKey:
return PEM_read_bio_RSAPublicKey(bio.get(), nullptr, nullptr, nullptr);
case Format::RSA_PUBKEY:
return PEM_read_bio_RSA_PUBKEY(bio.get(), nullptr, nullptr, nullptr);
}
Unexpected("format in RSAPublicKey::Private::Create.");
}
} // namespace
class RSAPublicKey::Private {
public:
explicit Private(bytes::const_span key);
Private(bytes::const_span nBytes, bytes::const_span eBytes);
~Private();
[[nodiscard]] bool valid() const;
[[nodiscard]] uint64 fingerprint() const;
[[nodiscard]] bytes::vector getN() const;
[[nodiscard]] bytes::vector getE() const;
[[nodiscard]] bytes::vector encrypt(bytes::const_span data) const;
[[nodiscard]] bytes::vector decrypt(bytes::const_span data) const;
[[nodiscard]] bytes::vector encryptOAEPpadding(
bytes::const_span data) const;
private:
void computeFingerprint();
[[nodiscard]] static bytes::vector ToBytes(const BIGNUM *number);
RSA *_rsa = nullptr;
uint64 _fingerprint = 0;
};
RSAPublicKey::Private::Private(bytes::const_span key)
: _rsa(CreateRaw(key)) {
if (_rsa) {
computeFingerprint();
}
}
RSAPublicKey::Private::Private(bytes::const_span nBytes, bytes::const_span eBytes)
: _rsa(RSA_new()) {
if (_rsa) {
const auto n = openssl::BigNum(nBytes).takeRaw();
const auto e = openssl::BigNum(eBytes).takeRaw();
const auto valid = (n != nullptr) && (e != nullptr);
// We still pass both values to RSA_set0_key() so that even
// if only one of them is valid RSA would take ownership of it.
if (!RSA_set0_key(_rsa, n, e, nullptr) || !valid) {
RSA_free(base::take(_rsa));
} else {
computeFingerprint();
}
}
}
bool RSAPublicKey::Private::valid() const {
return _rsa != nullptr;
}
uint64 RSAPublicKey::Private::fingerprint() const {
return _fingerprint;
}
bytes::vector RSAPublicKey::Private::getN() const {
Expects(valid());
const BIGNUM *n;
RSA_get0_key(_rsa, &n, nullptr, nullptr);
return ToBytes(n);
}
bytes::vector RSAPublicKey::Private::getE() const {
Expects(valid());
const BIGNUM *e;
RSA_get0_key(_rsa, nullptr, &e, nullptr);
return ToBytes(e);
}
bytes::vector RSAPublicKey::Private::encrypt(bytes::const_span data) const {
Expects(valid());
constexpr auto kEncryptSize = 256;
auto result = bytes::vector(kEncryptSize, gsl::byte{});
auto res = RSA_public_encrypt(kEncryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
if (res < 0 || res > kEncryptSize) {
OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CRYPTO_STRINGS, nullptr);
LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(fingerprint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
return {};
} else if (auto zeroBytes = kEncryptSize - res) {
auto resultBytes = gsl::make_span(result);
bytes::move(resultBytes.subspan(zeroBytes, res), resultBytes.subspan(0, res));
bytes::set_with_const(resultBytes.subspan(0, zeroBytes), gsl::byte{});
}
return result;
}
bytes::vector RSAPublicKey::Private::decrypt(bytes::const_span data) const {
Expects(valid());
constexpr auto kDecryptSize = 256;
auto result = bytes::vector(kDecryptSize, gsl::byte{});
auto res = RSA_public_decrypt(kDecryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
if (res < 0 || res > kDecryptSize) {
OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CRYPTO_STRINGS, nullptr);
LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(fingerprint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
return {};
} else if (auto zeroBytes = kDecryptSize - res) {
auto resultBytes = gsl::make_span(result);
bytes::move(resultBytes.subspan(zeroBytes - res, res), resultBytes.subspan(0, res));
bytes::set_with_const(resultBytes.subspan(0, zeroBytes - res), gsl::byte{});
}
return result;
}
bytes::vector RSAPublicKey::Private::encryptOAEPpadding(bytes::const_span data) const {
Expects(valid());
const auto resultSize = RSA_size(_rsa);
auto result = bytes::vector(resultSize, gsl::byte{});
const auto encryptedSize = RSA_public_encrypt(
data.size(),
reinterpret_cast<const unsigned char*>(data.data()),
reinterpret_cast<unsigned char*>(result.data()),
_rsa,
RSA_PKCS1_OAEP_PADDING);
if (encryptedSize != resultSize) {
OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CRYPTO_STRINGS, nullptr);
LOG(("RSA Error: RSA_public_encrypt failed, "
"key fp: %1, result: %2, error: %3"
).arg(fingerprint()
).arg(encryptedSize
).arg(ERR_error_string(ERR_get_error(), 0)
));
return {};
}
return result;
}
RSAPublicKey::Private::~Private() {
RSA_free(_rsa);
}
void RSAPublicKey::Private::computeFingerprint() {
Expects(valid());
const BIGNUM *n, *e;
mtpBuffer string;
RSA_get0_key(_rsa, &n, &e, nullptr);
MTP_bytes(ToBytes(n)).write(string);
MTP_bytes(ToBytes(e)).write(string);
bytes::array<20> sha1Buffer;
openssl::Sha1To(sha1Buffer, bytes::make_span(string));
_fingerprint = *(uint64*)(sha1Buffer.data() + 12);
}
bytes::vector RSAPublicKey::Private::ToBytes(const BIGNUM *number) {
auto size = BN_num_bytes(number);
auto result = bytes::vector(size, gsl::byte{});
BN_bn2bin(number, reinterpret_cast<unsigned char*>(result.data()));
return result;
}
RSAPublicKey::RSAPublicKey(bytes::const_span key)
: _private(std::make_shared<Private>(key)) {
}
RSAPublicKey::RSAPublicKey(
bytes::const_span nBytes,
bytes::const_span eBytes)
: _private(std::make_shared<Private>(nBytes, eBytes)) {
}
bool RSAPublicKey::empty() const {
return !_private;
}
bool RSAPublicKey::valid() const {
return !empty() && _private->valid();
}
uint64 RSAPublicKey::fingerprint() const {
Expects(valid());
return _private->fingerprint();
}
bytes::vector RSAPublicKey::getN() const {
Expects(valid());
return _private->getN();
}
bytes::vector RSAPublicKey::getE() const {
Expects(valid());
return _private->getE();
}
bytes::vector RSAPublicKey::encrypt(bytes::const_span data) const {
Expects(valid());
return _private->encrypt(data);
}
bytes::vector RSAPublicKey::decrypt(bytes::const_span data) const {
Expects(valid());
return _private->decrypt(data);
}
bytes::vector RSAPublicKey::encryptOAEPpadding(
bytes::const_span data) const {
return _private->encryptOAEPpadding(data);
}
} // namespace MTP::details