tdesktop/Telegram/SourceFiles/mtproto/rsa_public_key.cpp

164 lines
5.2 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop version of Telegram messaging app, see https://telegram.org
Telegram Desktop is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
It is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
In addition, as a special exception, the copyright holders give permission
to link the code of portions of this program with the OpenSSL library.
Full license: https://github.com/telegramdesktop/tdesktop/blob/master/LICENSE
Copyright (c) 2014-2017 John Preston, https://desktop.telegram.org
*/
#include "mtproto/rsa_public_key.h"
#include "base/openssl_help.h"
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/bio.h>
#include <openssl/err.h>
using std::string;
namespace MTP {
namespace internal {
class RSAPublicKey::Private {
public:
Private(base::const_byte_span key) : _rsa(PEM_read_bio_RSAPublicKey(BIO_new_mem_buf(const_cast<gsl::byte*>(key.data()), key.size()), 0, 0, 0)) {
if (_rsa) {
computeFingerprint();
}
}
Private(base::const_byte_span nBytes, base::const_byte_span eBytes) : _rsa(RSA_new()) {
if (_rsa) {
_rsa->n = BN_dup(openssl::BigNum(nBytes).raw());
_rsa->e = BN_dup(openssl::BigNum(eBytes).raw());
if (!_rsa->n || !_rsa->e) {
RSA_free(base::take(_rsa));
} else {
computeFingerprint();
}
}
}
base::byte_vector getN() const {
Expects(isValid());
return toBytes(_rsa->n);
}
base::byte_vector getE() const {
Expects(isValid());
return toBytes(_rsa->e);
}
uint64 getFingerPrint() const {
return _fingerprint;
}
bool isValid() const {
return _rsa != nullptr;
}
base::byte_vector encrypt(base::const_byte_span data) const {
Expects(isValid());
constexpr auto kEncryptSize = 256;
auto result = base::byte_vector(kEncryptSize, gsl::byte {});
auto res = RSA_public_encrypt(kEncryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
if (res < 0 || res > kEncryptSize) {
ERR_load_crypto_strings();
LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(getFingerPrint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
return base::byte_vector();
} else if (auto zeroBytes = kEncryptSize - res) {
auto resultBytes = gsl::make_span(result);
base::move_bytes(resultBytes.subspan(zeroBytes, res), resultBytes.subspan(0, res));
base::set_bytes(resultBytes.subspan(0, zeroBytes), gsl::byte {});
}
return result;
}
base::byte_vector decrypt(base::const_byte_span data) const {
Expects(isValid());
constexpr auto kDecryptSize = 256;
auto result = base::byte_vector(kDecryptSize, gsl::byte {});
auto res = RSA_public_decrypt(kDecryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
if (res < 0 || res > kDecryptSize) {
ERR_load_crypto_strings();
LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(getFingerPrint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
return base::byte_vector();
} else if (auto zeroBytes = kDecryptSize - res) {
auto resultBytes = gsl::make_span(result);
base::move_bytes(resultBytes.subspan(zeroBytes - res, res), resultBytes.subspan(0, res));
base::set_bytes(resultBytes.subspan(0, zeroBytes - res), gsl::byte {});
}
return result;
}
~Private() {
RSA_free(_rsa);
}
private:
void computeFingerprint() {
Expects(isValid());
mtpBuffer string;
MTP_bytes(toBytes(_rsa->n)).write(string);
MTP_bytes(toBytes(_rsa->e)).write(string);
uchar sha1Buffer[20];
_fingerprint = *(uint64*)(hashSha1(&string[0], string.size() * sizeof(mtpPrime), sha1Buffer) + 3);
}
static base::byte_vector toBytes(BIGNUM *number) {
auto size = BN_num_bytes(number);
auto result = base::byte_vector(size, gsl::byte {});
BN_bn2bin(number, reinterpret_cast<unsigned char*>(result.data()));
return result;
}
RSA *_rsa = nullptr;
uint64 _fingerprint = 0;
};
RSAPublicKey::RSAPublicKey(base::const_byte_span key) : _private(std::make_shared<Private>(key)) {
}
RSAPublicKey::RSAPublicKey(base::const_byte_span nBytes, base::const_byte_span eBytes) : _private(std::make_shared<Private>(nBytes, eBytes)) {
}
bool RSAPublicKey::isValid() const {
return _private && _private->isValid();
}
uint64 RSAPublicKey::getFingerPrint() const {
Expects(isValid());
return _private->getFingerPrint();
}
base::byte_vector RSAPublicKey::getN() const {
Expects(isValid());
return _private->getN();
}
base::byte_vector RSAPublicKey::getE() const {
Expects(isValid());
return _private->getE();
}
base::byte_vector RSAPublicKey::encrypt(base::const_byte_span data) const {
Expects(isValid());
return _private->encrypt(data);
}
base::byte_vector RSAPublicKey::decrypt(base::const_byte_span data) const {
Expects(isValid());
return _private->decrypt(data);
}
} // namespace internal
} // namespace MTP