/* This file is part of Telegram Desktop, the official desktop application for the Telegram messaging service. For license and copyright information please follow this link: https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL */ #pragma once #include "core/basic_types.h" #include "base/flags.h" #include "base/algorithm.h" // Define specializations for QByteArray for Qt 5.3.2, because // QByteArray in Qt 5.3.2 doesn't declare "pointer" subtype. #ifdef OS_MAC_OLD namespace gsl { template <> inline span make_span(QByteArray &cont) { return span(cont.data(), cont.size()); } template <> inline span make_span(const QByteArray &cont) { return span(cont.constData(), cont.size()); } } // namespace gsl #endif // OS_MAC_OLD namespace base { template inline constexpr D up_cast(T object) { using DV = std::decay_t; using TV = std::decay_t; if constexpr (std::is_base_of_v) { return object; } else { return nullptr; } } template inline bool contains(const Container &container, const T &value) { auto end = std::end(container); return std::find(std::begin(container), end, value) != end; } // We need a custom comparator for std::set>::find to work with pointers. // thanks to http://stackoverflow.com/questions/18939882/raw-pointer-lookup-for-sets-of-unique-ptrs template struct pointer_comparator { using is_transparent = std::true_type; // helper does some magic in order to reduce the number of // pairs of types we need to know how to compare: it turns // everything into a pointer, and then uses `std::less` // to do the comparison: struct helper { T *ptr = nullptr; helper() = default; helper(const helper &other) = default; helper(T *p) : ptr(p) { } template helper(const std::shared_ptr &other) : ptr(other.get()) { } template helper(const std::unique_ptr &other) : ptr(other.get()) { } bool operator<(helper other) const { return std::less()(ptr, other.ptr); } }; // without helper, we'd need 2^n different overloads, where // n is the number of types we want to support (so, 8 with // raw pointers, unique pointers, and shared pointers). That // seems silly. // && helps enforce rvalue use only bool operator()(const helper &&lhs, const helper &&rhs) const { return lhs < rhs; } }; template using set_of_unique_ptr = std::set, base::pointer_comparator>; template using set_of_shared_ptr = std::set, base::pointer_comparator>; using byte_span = gsl::span; using const_byte_span = gsl::span; using byte_vector = std::vector; template using byte_array = std::array; inline void copy_bytes(byte_span destination, const_byte_span source) { Expects(destination.size() >= source.size()); memcpy(destination.data(), source.data(), source.size()); } inline void move_bytes(byte_span destination, const_byte_span source) { Expects(destination.size() >= source.size()); memmove(destination.data(), source.data(), source.size()); } inline void set_bytes(byte_span destination, gsl::byte value) { memset(destination.data(), gsl::to_integer(value), destination.size()); } inline int compare_bytes(const_byte_span a, const_byte_span b) { auto aSize = a.size(), bSize = b.size(); return (aSize > bSize) ? 1 : (aSize < bSize) ? -1 : memcmp(a.data(), b.data(), aSize); } // Thanks https://stackoverflow.com/a/28139075 template struct reversion_wrapper { Container &container; }; template auto begin(reversion_wrapper wrapper) { return std::rbegin(wrapper.container); } template auto end(reversion_wrapper wrapper) { return std::rend(wrapper.container); } template reversion_wrapper reversed(Container &&container) { return { container }; } template inline bool in_range(Value &&value, From &&from, Till &&till) { return (value >= from) && (value < till); } } // namespace base // using for_const instead of plain range-based for loop to ensure usage of const_iterator // it is important for the copy-on-write Qt containers // if you have "QVector v" then "for (T * const p : v)" will still call QVector::detach(), // while "for_const (T *p, v)" won't and "for_const (T *&p, v)" won't compile #define for_const(range_declaration, range_expression) for (range_declaration : std::as_const(range_expression)) template inline void InvokeQueued(QObject *context, Lambda &&lambda) { QObject proxy; QObject::connect(&proxy, &QObject::destroyed, context, std::forward(lambda), Qt::QueuedConnection); } static const int32 ScrollMax = INT_MAX; extern uint64 _SharedMemoryLocation[]; template T *SharedMemoryLocation() { static_assert(N < 4, "Only 4 shared memory locations!"); return reinterpret_cast(_SharedMemoryLocation + N); } // see https://github.com/boostcon/cppnow_presentations_2012/blob/master/wed/schurr_cpp11_tools_for_class_authors.pdf class str_const { // constexpr string public: template constexpr str_const(const char(&a)[N]) : _str(a), _size(N - 1) { } constexpr char operator[](std::size_t n) const { return (n < _size) ? _str[n] : #ifndef OS_MAC_OLD throw std::out_of_range(""); #else // OS_MAC_OLD throw std::exception(); #endif // OS_MAC_OLD } constexpr std::size_t size() const { return _size; } const char *c_str() const { return _str; } private: const char* const _str; const std::size_t _size; }; inline QString str_const_toString(const str_const &str) { return QString::fromUtf8(str.c_str(), str.size()); } inline QByteArray str_const_toByteArray(const str_const &str) { return QByteArray::fromRawData(str.c_str(), str.size()); } template inline void accumulate_max(T &a, const T &b) { if (a < b) a = b; } template inline void accumulate_min(T &a, const T &b) { if (a > b) a = b; } class Exception : public std::exception { public: Exception(const QString &msg, bool isFatal = true) : _fatal(isFatal), _msg(msg.toUtf8()) { LOG(("Exception: %1").arg(msg)); } bool fatal() const { return _fatal; } virtual const char *what() const throw() { return _msg.constData(); } virtual ~Exception() throw() { } private: bool _fatal; QByteArray _msg; }; using TimeId = int32; void unixtimeInit(); void unixtimeSet(TimeId serverTime, bool force = false); TimeId unixtime(); uint64 msgid(); int32 reqid(); QDateTime ParseDateTime(TimeId serverTime); inline void mylocaltime(struct tm * _Tm, const time_t * _Time) { #ifdef Q_OS_WIN localtime_s(_Tm, _Time); #else localtime_r(_Time, _Tm); #endif } namespace ThirdParty { void start(); void finish(); } using TimeMs = int64; bool checkms(); // returns true if time has changed TimeMs getms(bool checked = false); const static uint32 _md5_block_size = 64; class HashMd5 { public: HashMd5(const void *input = 0, uint32 length = 0); void feed(const void *input, uint32 length); int32 *result(); private: void init(); void finalize(); void transform(const uchar *block); bool _finalized; uchar _buffer[_md5_block_size]; uint32 _count[2]; uint32 _state[4]; uchar _digest[16]; }; int32 hashCrc32(const void *data, uint32 len); int32 *hashSha1(const void *data, uint32 len, void *dest); // dest - ptr to 20 bytes, returns (int32*)dest inline std::array hashSha1(const void *data, int size) { auto result = std::array(); hashSha1(data, size, result.data()); return result; } int32 *hashSha256(const void *data, uint32 len, void *dest); // dest - ptr to 32 bytes, returns (int32*)dest inline std::array hashSha256(const void *data, int size) { auto result = std::array(); hashSha256(data, size, result.data()); return result; } int32 *hashMd5(const void *data, uint32 len, void *dest); // dest = ptr to 16 bytes, returns (int32*)dest inline std::array hashMd5(const void *data, int size) { auto result = std::array(); hashMd5(data, size, result.data()); return result; } char *hashMd5Hex(const int32 *hashmd5, void *dest); // dest = ptr to 32 bytes, returns (char*)dest inline char *hashMd5Hex(const void *data, uint32 len, void *dest) { // dest = ptr to 32 bytes, returns (char*)dest return hashMd5Hex(HashMd5(data, len).result(), dest); } inline std::array hashMd5Hex(const void *data, int size) { auto result = std::array(); hashMd5Hex(data, size, result.data()); return result; } // good random (using openssl implementation) void memset_rand(void *data, uint32 len); template T rand_value() { T result; memset_rand(&result, sizeof(result)); return result; } inline void memset_rand_bad(void *data, uint32 len) { for (uchar *i = reinterpret_cast(data), *e = i + len; i != e; ++i) { *i = uchar(rand() & 0xFF); } } template inline void memsetrnd_bad(T &value) { memset_rand_bad(&value, sizeof(value)); } class ReadLockerAttempt { public: ReadLockerAttempt(not_null lock) : _lock(lock), _locked(_lock->tryLockForRead()) { } ReadLockerAttempt(const ReadLockerAttempt &other) = delete; ReadLockerAttempt &operator=(const ReadLockerAttempt &other) = delete; ReadLockerAttempt(ReadLockerAttempt &&other) : _lock(other._lock), _locked(base::take(other._locked)) { } ReadLockerAttempt &operator=(ReadLockerAttempt &&other) { _lock = other._lock; _locked = base::take(other._locked); return *this; } ~ReadLockerAttempt() { if (_locked) { _lock->unlock(); } } operator bool() const { return _locked; } private: not_null _lock; bool _locked = false; }; inline QString fromUtf8Safe(const char *str, int32 size = -1) { if (!str || !size) return QString(); if (size < 0) size = int32(strlen(str)); QString result(QString::fromUtf8(str, size)); QByteArray back = result.toUtf8(); if (back.size() != size || memcmp(back.constData(), str, size)) return QString::fromLocal8Bit(str, size); return result; } inline QString fromUtf8Safe(const QByteArray &str) { return fromUtf8Safe(str.constData(), str.size()); } static const QRegularExpression::PatternOptions reMultiline(QRegularExpression::DotMatchesEverythingOption | QRegularExpression::MultilineOption); template inline T snap(const T &v, const T &_min, const T &_max) { return (v < _min) ? _min : ((v > _max) ? _max : v); } template class ManagedPtr { public: ManagedPtr() = default; ManagedPtr(T *p) : _data(p) { } T *operator->() const { return _data; } T *v() const { return _data; } explicit operator bool() const { return _data != nullptr; } protected: using Parent = ManagedPtr; T *_data = nullptr; }; QString translitRusEng(const QString &rus); QString rusKeyboardLayoutSwitch(const QString &from); enum DBISendKey { dbiskEnter = 0, dbiskCtrlEnter = 1, }; enum DBINotifyView { dbinvShowPreview = 0, dbinvShowName = 1, dbinvShowNothing = 2, }; enum DBIWorkMode { dbiwmWindowAndTray = 0, dbiwmTrayOnly = 1, dbiwmWindowOnly = 2, }; struct ProxyData { enum class Type { None, Socks5, Http, Mtproto, }; Type type = Type::None; QString host; uint32 port = 0; QString user, password; std::vector resolvedIPs; TimeMs resolvedExpireAt = 0; bool valid() const; bool supportsCalls() const; bool tryCustomResolve() const; explicit operator bool() const; bool operator==(const ProxyData &other) const; bool operator!=(const ProxyData &other) const; static bool ValidSecret(const QString &secret); }; ProxyData ToDirectIpProxy(const ProxyData &proxy, int ipIndex = 0); QNetworkProxy ToNetworkProxy(const ProxyData &proxy); enum DBIScale { dbisAuto = 0, dbisOne = 1, dbisOneAndQuarter = 2, dbisOneAndHalf = 3, dbisTwo = 4, dbisScaleCount = 5, }; static const int MatrixRowShift = 40000; enum DBIPlatform { dbipWindows = 0, dbipMac = 1, dbipLinux64 = 2, dbipLinux32 = 3, dbipMacOld = 4, }; enum DBIPeerReportSpamStatus { dbiprsNoButton = 0, // hidden, but not in the cloud settings yet dbiprsUnknown = 1, // contacts not loaded yet dbiprsShowButton = 2, // show report spam button, each show peer request setting from cloud dbiprsReportSent = 3, // report sent, but the report spam panel is not hidden yet dbiprsHidden = 4, // hidden in the cloud or not needed (bots, contacts, etc), no more requests dbiprsRequesting = 5, // requesting the cloud setting right now }; class MimeType { public: enum class Known { Unknown, TDesktopTheme, TDesktopPalette, WebP, }; MimeType(const QMimeType &type) : _typeStruct(type) { } MimeType(Known type) : _type(type) { } QStringList globPatterns() const; QString filterString() const; QString name() const; private: QMimeType _typeStruct; Known _type = Known::Unknown; }; MimeType mimeTypeForName(const QString &mime); MimeType mimeTypeForFile(const QFileInfo &file); MimeType mimeTypeForData(const QByteArray &data); #include inline int rowscount(int fullCount, int countPerRow) { return (fullCount + countPerRow - 1) / countPerRow; } inline int floorclamp(int value, int step, int lowest, int highest) { return qMin(qMax(value / step, lowest), highest); } inline int floorclamp(float64 value, int step, int lowest, int highest) { return qMin(qMax(static_cast(std::floor(value / step)), lowest), highest); } inline int ceilclamp(int value, int step, int lowest, int highest) { return qMax(qMin((value + step - 1) / step, highest), lowest); } inline int ceilclamp(float64 value, int32 step, int32 lowest, int32 highest) { return qMax(qMin(static_cast(std::ceil(value / step)), highest), lowest); } static int32 FullArcLength = 360 * 16; static int32 QuarterArcLength = (FullArcLength / 4); static int32 MinArcLength = (FullArcLength / 360); static int32 AlmostFullArcLength = (FullArcLength - MinArcLength); // This pointer is used for global non-POD variables that are allocated // on demand by createIfNull(lambda) and are never automatically freed. template class NeverFreedPointer { public: NeverFreedPointer() = default; NeverFreedPointer(const NeverFreedPointer &other) = delete; NeverFreedPointer &operator=(const NeverFreedPointer &other) = delete; template void createIfNull(Args&&... args) { if (isNull()) { reset(new T(std::forward(args)...)); } }; T *data() const { return _p; } T *release() { return base::take(_p); } void reset(T *p = nullptr) { delete _p; _p = p; } bool isNull() const { return data() == nullptr; } void clear() { reset(); } T *operator->() const { return data(); } T &operator*() const { Assert(!isNull()); return *data(); } explicit operator bool() const { return !isNull(); } private: T *_p; }; // This pointer is used for static non-POD variables that are allocated // on first use by constructor and are never automatically freed. template class StaticNeverFreedPointer { public: explicit StaticNeverFreedPointer(T *p) : _p(p) { } StaticNeverFreedPointer(const StaticNeverFreedPointer &other) = delete; StaticNeverFreedPointer &operator=(const StaticNeverFreedPointer &other) = delete; T *data() const { return _p; } T *release() { return base::take(_p); } void reset(T *p = nullptr) { delete _p; _p = p; } bool isNull() const { return data() == nullptr; } void clear() { reset(); } T *operator->() const { return data(); } T &operator*() const { Assert(!isNull()); return *data(); } explicit operator bool() const { return !isNull(); } private: T *_p = nullptr; };