/* This file is part of Telegram Desktop, the official desktop application for the Telegram messaging service. For license and copyright information please follow this link: https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL */ #include "statistics/segment_tree.h" namespace Statistic { namespace { constexpr auto kMinArraySize = size_t(30); } // namespace SegmentTree::SegmentTree(std::vector array) : _array(std::move(array)) { if (_array.size() < kMinArraySize) { return; } // The max size of this array is about 2 * 2 ^ log2(n) + 1. const auto size = 2 * std::pow( 2., std::floor((std::log(_array.size()) / std::log(2.)) + 1)); _heap.resize(int(size)); build(1, 0, _array.size()); } void SegmentTree::build(int v, int from, int size) { _heap[v].from = from; _heap[v].to = (from + size - 1); if (size == 1) { _heap[v].sum = _array[from]; _heap[v].max = _array[from]; _heap[v].min = _array[from]; } else { // Build children. build(2 * v, from, size / 2); build(2 * v + 1, from + size / 2, size - size / 2); _heap[v].sum = _heap[2 * v].sum + _heap[2 * v + 1].sum; // max = max of the children. _heap[v].max = std::max(_heap[2 * v].max, _heap[2 * v + 1].max); _heap[v].min = std::min(_heap[2 * v].min, _heap[2 * v + 1].min); } } int SegmentTree::rMaxQ(int from, int to) { if (_array.size() < kMinArraySize) { auto max = std::numeric_limits::min(); from = std::max(from, 0); to = std::min(to, int(_array.size() - 1)); for (auto i = from; i <= to; i++) { max = std::max(max, _array[i]); } return max; } return rMaxQ(1, from, to); } int SegmentTree::rMaxQ(int v, int from, int to) { const auto &n = _heap[v]; // If you did a range update that contained this node, // you can infer the Min value without going down the tree. if (n.pendingVal && contains(n.from, n.to, from, to)) { return n.pendingVal.value; } if (contains(from, to, n.from, n.to)) { return _heap[v].max; } if (intersects(from, to, n.from, n.to)) { propagate(v); const auto leftMin = rMaxQ(2 * v, from, to); const auto rightMin = rMaxQ(2 * v + 1, from, to); return std::max(leftMin, rightMin); } return 0; } int SegmentTree::rMinQ(int from, int to) { if (_array.size() < kMinArraySize) { auto min = std::numeric_limits::max(); from = std::max(from, 0); to = std::min(to, int(_array.size() - 1)); for (auto i = from; i <= to; i++) { min = std::min(min, _array[i]); } return min; } return rMinQ(1, from, to); } int SegmentTree::rMinQ(int v, int from, int to) { const auto &n = _heap[v]; // If you did a range update that contained this node, // you can infer the Min value without going down the tree. if (n.pendingVal && contains(n.from, n.to, from, to)) { return n.pendingVal.value; } if (contains(from, to, n.from, n.to)) { return _heap[v].min; } if (intersects(from, to, n.from, n.to)) { propagate(v); const auto leftMin = rMinQ(2 * v, from, to); const auto rightMin = rMinQ(2 * v + 1, from, to); return std::min(leftMin, rightMin); } return std::numeric_limits::max(); } void SegmentTree::propagate(int v) { auto &n = _heap[v]; if (n.pendingVal) { const auto value = n.pendingVal.value; n.pendingVal = {}; change(_heap[2 * v], value); change(_heap[2 * v + 1], value); } } void SegmentTree::change(SegmentTree::Node &n, int value) { n.pendingVal = { value, true }; n.sum = n.size() * value; n.max = value; n.min = value; _array[n.from] = value; } bool SegmentTree::contains(int from1, int to1, int from2, int to2) const { return (from2 >= from1) && (to2 <= to1); } bool SegmentTree::intersects(int from1, int to1, int from2, int to2) const { return ((from1 <= from2) && (to1 >= from2)) // (.[..)..] or (.[...]..) || ((from1 >= from2) && (from1 <= to2)); // [.(..]..) or [..(..).. } } // namespace Statistic