Add some Cursor rules / ignore paths.

This commit is contained in:
John Preston 2025-05-01 11:00:30 +04:00
parent 810f7949f4
commit 983bd1a57b
5 changed files with 621 additions and 0 deletions

100
.cursor/api_usage.md Normal file
View File

@ -0,0 +1,100 @@
# Telegram Desktop API Usage
## API Schema
The API definitions are described using [TL Language](https://core.telegram.org/mtproto/TL) in two main schema files:
1. **`Telegram/SourceFiles/mtproto/scheme/mtproto.tl`**
* Defines the core MTProto protocol types and methods used for basic communication, encryption, authorization, service messages, etc.
* Some fundamental types and methods from this schema (like basic types, RPC calls, containers) are often implemented directly in the C++ MTProto core (`SourceFiles/mtproto/`) and may be skipped during the C++ code generation phase.
* Other parts of `mtproto.tl` might still be processed by the code generator.
2. **`Telegram/SourceFiles/mtproto/scheme/api.tl`**
* Defines the higher-level Telegram API layer, including all the methods and types related to chat functionality, user profiles, messages, channels, stickers, etc.
* This is the primary schema used when making functional API requests within the application.
Both files use the same TL syntax to describe API methods (functions) and types (constructors).
## Code Generation
A custom code generation tool processes `api.tl` (and parts of `mtproto.tl`) to create corresponding C++ classes and types. These generated headers are typically included via the Precompiled Header (PCH) for the main `Telegram` project.
Generated types often follow the pattern `MTP[Type]` (e.g., `MTPUser`, `MTPMessage`) and methods correspond to functions within the `MTP` namespace or related classes (e.g., `MTPmessages_SendMessage`).
## Making API Requests
API requests are made using a standard pattern involving the `api()` object (providing access to the `MTP::Instance`), the generated `MTP...` request object, callback handlers for success (`.done()`) and failure (`.fail()`), and the `.send()` method.
Here's the general structure:
```cpp
// Include necessary headers if not already in PCH
// Obtain the API instance (usually via api() or MTP::Instance::Get())
api().request(MTPnamespace_MethodName(
// Constructor arguments based on the api.tl definition for the method
MTP_flags(flags_value), // Use MTP_flags if the method has flags
MTP_inputPeer(peer), // Use MTP_... types for parameters
MTP_string(messageText),
MTP_long(randomId),
// ... other arguments matching the TL definition
MTP_vector<MTPMessageEntity>() // Example for a vector argument
)).done([=](const MTPResponseType &result) {
// Handle the successful response (result).
// 'result' will be of the C++ type corresponding to the TL type
// specified after the '=' in the api.tl method definition.
// How to access data depends on whether the TL type has one or multiple constructors:
// 1. Multiple Constructors (e.g., User = User | UserEmpty):
// Use .match() with lambdas for each constructor:
result.match([&](const MTPDuser &data) {
/* use data.vfirst_name().v, etc. */
}, [&](const MTPDuserEmpty &data) {
/* handle empty user */
});
// Alternatively, check the type explicitly and use the constructor getter:
if (result.type() == mtpc_user) {
const auto &data = result.c_user(); // Asserts if type is not mtpc_user!
// use data.vfirst_name().v
} else if (result.type() == mtpc_userEmpty) {
const auto &data = result.c_userEmpty();
// handle empty user
}
// 2. Single Constructor (e.g., Messages = messages { msgs: vector<Message> }):
// Use .match() with a single lambda:
result.match([&](const MTPDmessages &data) { /* use data.vmessages().v */ });
// Or check the type explicitly and use the constructor getter:
if (result.type() == mtpc_messages) {
const auto &data = result.c_messages(); // Asserts if type is not mtpc_messages!
// use data.vmessages().v
}
// Or use the shortcut .data() for single-constructor types:
const auto &data = result.data(); // Only works for single-constructor types!
// use data.vmessages().v
}).fail([=](const MTP::Error &error) {
// Handle the API error (error).
// 'error' is an MTP::Error object containing the error code (error.type())
// and description (error.description()). Check for specific error strings.
if (error.type() == u"FLOOD_WAIT_X"_q) {
// Handle flood wait
} else {
Ui::show(Box<InformBox>(Lang::Hard::ServerError())); // Example generic error handling
}
}).handleFloodErrors().send(); // handleFloodErrors() is common, then send()
```
**Key Points:**
* Always refer to `Telegram/SourceFiles/mtproto/scheme/api.tl` for the correct method names, parameters (names and types), and response types.
* Use the generated `MTP...` types/classes for request parameters (e.g., `MTP_int`, `MTP_string`, `MTP_bool`, `MTP_vector`, `MTPInputUser`, etc.) and response handling.
* The `.done()` lambda receives the specific C++ `MTP...` type corresponding to the TL return type.
* For types with **multiple constructors** (e.g., `User = User | UserEmpty`), use `result.match([&](const MTPDuser &d){ ... }, [&](const MTPDuserEmpty &d){ ... })` to handle each case, or check `result.type() == mtpc_user` / `mtpc_userEmpty` and call the specific `result.c_user()` / `result.c_userEmpty()` getter (which asserts on type mismatch).
* For types with a **single constructor** (e.g., `Messages = messages{...}`), you can use `result.match([&](const MTPDmessages &d){ ... })` with one lambda, or check `type()` and call `c_messages()`, or use the shortcut `result.data()` to access the fields directly.
* The `.fail()` lambda receives an `MTP::Error` object. Check `error.type()` against known error strings (often defined as constants or using `u"..."_q` literals).
* Directly construct the `MTPnamespace_MethodName(...)` object inside `request()`.
* Include `.handleFloodErrors()` before `.send()` for standard flood wait handling.

159
.cursor/localization.md Normal file
View File

@ -0,0 +1,159 @@
# Telegram Desktop Localization
## Coding Style Note
**Use `auto`:** In the actual codebase, variable types are almost always deduced using `auto` (or `const auto`, `const auto &`) rather than being written out explicitly. Examples in this guide may use explicit types for clarity, but prefer `auto` in practice.
```cpp
// Prefer this:
auto currentTitle = tr::lng_settings_title(tr::now);
auto nameProducer = GetNameProducer(); // Returns rpl::producer<...>
// Instead of this:
QString currentTitle = tr::lng_settings_title(tr::now);
rpl::producer<QString> nameProducer = GetNameProducer();
```
## String Resource File
Base user-facing English strings are defined in the `lang.strings` file:
`Telegram/Resources/langs/lang.strings`
This file uses a key-value format with named placeholders:
```
"lng_settings_title" = "Settings";
"lng_confirm_delete_item" = "Are you sure you want to delete {item_name}?";
"lng_files_selected" = "{count} files selected"; // Simple count example (see Pluralization)
```
Placeholders are enclosed in curly braces, e.g., `{name}`, `{user}`. A special placeholder `{count}` is used for pluralization rules.
### Pluralization
For keys that depend on a number (using the `{count}` placeholder), English typically requires two forms: singular and plural. These are defined in `lang.strings` using `#one` and `#other` suffixes:
```
"lng_files_selected#one" = "{count} file selected";
"lng_files_selected#other" = "{count} files selected";
```
While only `#one` and `#other` are defined in the base `lang.strings`, the code generation process creates C++ accessors for all six CLDR plural categories (`#zero`, `#one`, `#two`, `#few`, `#many`, `#other`) to support languages with more complex pluralization rules.
## Translation Process
While `lang.strings` provides the base English text and the keys, the actual translations are managed via Telegram's translations platform (translations.telegram.org) and loaded dynamically at runtime from the API. The keys from `lang.strings` (including the `#one`/`#other` variants) are used on the platform.
## Code Generation
A code generation tool processes `lang.strings` to create C++ structures and accessors within the `tr` namespace. These allow type-safe access to strings and handling of placeholders and pluralization. Generated keys typically follow the pattern `tr::lng_key_name`.
## String Usage in Code
Strings are accessed in C++ code using the generated objects within the `tr::` namespace. There are two main ways to use them: reactively (returning an `rpl::producer`) or immediately (returning the current value).
### 1. Reactive Usage (rpl::producer)
Calling a generated string function directly returns a reactive producer, typically `rpl::producer<QString>`. This producer automatically updates its value whenever the application language changes.
```cpp
// Key: "settings_title" = "Settings";
auto titleProducer = tr::lng_settings_title(); // Type: rpl::producer<QString>
// Key: "confirm_delete_item" = "Are you sure you want to delete {item_name}?";
auto itemNameProducer = /* ... */; // Type: rpl::producer<QString>
auto confirmationProducer = tr::lng_confirm_delete_item( // Type: rpl::producer<QString>
tr::now, // NOTE: tr::now is NOT passed here for reactive result
lt_item_name,
std::move(itemNameProducer)); // Placeholder producers should be moved
```
### 2. Immediate Usage (Current Value)
Passing `tr::now` as the first argument retrieves the string's current value in the active language (typically as a `QString`).
```cpp
// Key: "settings_title" = "Settings";
auto currentTitle = tr::lng_settings_title(tr::now); // Type: QString
// Key: "confirm_delete_item" = "Are you sure you want to delete {item_name}?";
const auto currentItemName = QString("My Document"); // Type: QString
auto currentConfirmation = tr::lng_confirm_delete_item( // Type: QString
tr::now, // Pass tr::now for immediate value
lt_item_name, currentItemName); // Placeholder value is a direct QString (or convertible)
```
### 3. Placeholders (`{tag}`)
Placeholders like `{item_name}` are replaced by providing arguments after `tr::now` (for immediate) or as the initial arguments (for reactive). A corresponding `lt_tag_name` constant is passed before the value.
* **Immediate:** Pass the direct value (e.g., `QString`, `int`).
* **Reactive:** Pass an `rpl::producer` of the corresponding type (e.g., `rpl::producer<QString>`). Remember to `std::move` the producer or use `rpl::duplicate` if you need to reuse the original producer afterwards.
### 4. Pluralization (`{count}`)
Keys using `{count}` require a numeric value for the `lt_count` placeholder. The correct plural form (`#zero`, `#one`, ..., `#other`) is automatically selected based on this value and the current language rules.
* **Immediate (`tr::now`):** Pass a `float64` or `int` (which is auto-converted to `float64`).
```cpp
int count = 1;
auto filesText = tr::lng_files_selected(tr::now, lt_count, count); // Type: QString
count = 5;
filesText = tr::lng_files_selected(tr::now, lt_count, count); // Uses "files_selected#other"
```
* **Reactive:** Pass an `rpl::producer<float64>`. Use the `tr::to_count()` helper to convert an `rpl::producer<int>` or wrap a single value.
```cpp
// From an existing int producer:
auto countProducer = /* ... */; // Type: rpl::producer<int>
auto filesTextProducer = tr::lng_files_selected( // Type: rpl::producer<QString>
lt_count,
countProducer | tr::to_count()); // Use tr::to_count() for conversion
// From a single int value wrapped reactively:
int currentCount = 5;
auto filesTextProducerSingle = tr::lng_files_selected( // Type: rpl::producer<QString>
lt_count,
rpl::single(currentCount) | tr::to_count());
// Alternative for single values (less common): rpl::single(currentCount * 1.)
```
### 5. Custom Projectors
An optional final argument can be a projector function (like `Ui::Text::Upper` or `Ui::Text::WithEntities`) to transform the output.
* If the projector returns `OutputType`, the string function returns `OutputType` (immediate) or `rpl::producer<OutputType>` (reactive).
* Placeholder values must match the projector's *input* requirements. For `Ui::Text::WithEntities`, placeholders expect `TextWithEntities` (immediate) or `rpl::producer<TextWithEntities>` (reactive).
```cpp
// Immediate with Ui::Text::WithEntities projector
// Key: "user_posted_photo" = "{user} posted a photo";
const auto userName = TextWithEntities{ /* ... */ }; // Type: TextWithEntities
auto message = tr::lng_user_posted_photo( // Type: TextWithEntities
tr::now,
lt_user,
userName, // Must be TextWithEntities
Ui::Text::WithEntities); // Projector
// Reactive with Ui::Text::WithEntities projector
auto userNameProducer = /* ... */; // Type: rpl::producer<TextWithEntities>
auto messageProducer = tr::lng_user_posted_photo( // Type: rpl::producer<TextWithEntities>
lt_user,
std::move(userNameProducer), // Move placeholder producers
Ui::Text::WithEntities); // Projector
```
## Key Summary
* Keys are defined in `Resources/langs/lang.strings` using `{tag}` placeholders.
* Plural keys use `{count}` and have `#one`/`#other` variants in `lang.strings`.
* Access keys via `tr::lng_key_name(...)` in C++.
* Call with `tr::now` as the first argument for the immediate `QString` (or projected type).
* Call without `tr::now` for the reactive `rpl::producer<QString>` (or projected type).
* Provide placeholder values (`lt_tag_name, value`) matching the usage (direct value for immediate, `rpl::producer` for reactive). Producers should typically be moved via `std::move`.
* For `{count}`:
* Immediate: Pass `int` or `float64`.
* Reactive: Pass `rpl::producer<float64>`, typically by converting an `int` producer using `| tr::to_count()`.
* Optional projector function as the last argument modifies the output type and required placeholder types.
* Actual translations are loaded at runtime from the API.

211
.cursor/rpl_guide.md Normal file
View File

@ -0,0 +1,211 @@
# RPL (Reactive Programming Library) Guide
## Coding Style Note
**Use `auto`:** In the actual codebase, variable types are almost always deduced using `auto` (or `const auto`, `const auto &`) rather than being written out explicitly. Examples in this guide may use explicit types for clarity, but prefer `auto` in practice.
```cpp
// Prefer this:
auto intProducer = rpl::single(123);
const auto &lifetime = existingLifetime;
// Instead of this:
rpl::producer<int> intProducer = rpl::single(123);
const rpl::lifetime &lifetime = existingLifetime;
// Sometimes needed if deduction is ambiguous or needs help:
auto user = std::make_shared<UserData>();
auto data = QByteArray::fromHex("...");
```
## Introduction
RPL is the reactive programming library used in this project, residing in the `rpl::` namespace. It allows handling asynchronous streams of data over time.
The core concept is the `rpl::producer`, which represents a stream of values that can be generated over a certain lifetime.
## Producers: `rpl::producer<Type, Error = no_error>`
The fundamental building block is `rpl::producer<Type, Error>`. It produces values of `Type` and can optionally signal an error of type `Error`. By default, `Error` is `rpl::no_error`, indicating that the producer does not explicitly handle error signaling through this mechanism.
```cpp
// A producer that emits integers.
auto intProducer = /* ... */; // Type: rpl::producer<int>
// A producer that emits strings and can potentially emit a CustomError.
auto stringProducerWithError = /* ... */; // Type: rpl::producer<QString, CustomError>
```
Producers are typically lazy; they don't start emitting values until someone subscribes to them.
## Lifetime Management: `rpl::lifetime`
Reactive pipelines have a limited duration, managed by `rpl::lifetime`. An `rpl::lifetime` object essentially holds a collection of cleanup callbacks. When the lifetime ends (either explicitly destroyed or goes out of scope), these callbacks are executed, tearing down the associated pipeline and freeing resources.
```cpp
rpl::lifetime myLifetime;
// ... later ...
// myLifetime is destroyed, cleanup happens.
// Or, pass a lifetime instance to manage a pipeline's duration.
rpl::lifetime &parentLifetime = /* ... get lifetime from context ... */;
```
## Starting a Pipeline: `rpl::start_...`
To consume values from a producer, you start a pipeline using one of the `rpl::start_...` methods. These methods subscribe to the producer and execute callbacks for the events they handle.
The most common method is `rpl::start_with_next`:
```cpp
auto counter = /* ... */; // Type: rpl::producer<int>
rpl::lifetime lifetime;
// Counter is consumed here, use std::move if it's an l-value.
std::move(
counter
) | rpl::start_with_next([=](int nextValue) {
// Process the next integer value emitted by the producer.
qDebug() << "Received: " << nextValue;
}, lifetime); // Pass the lifetime to manage the subscription.
// Note: `counter` is now in a moved-from state and likely invalid.
// If you need to start the same producer multiple times, duplicate it:
// rpl::duplicate(counter) | rpl::start_with_next(...);
// If you DON'T pass a lifetime to a start_... method:
auto counter2 = /* ... */; // Type: rpl::producer<int>
rpl::lifetime subscriptionLifetime = std::move(
counter2
) | rpl::start_with_next([=](int nextValue) { /* ... */ });
// The returned lifetime MUST be stored. If it's discarded immediately,
// the subscription stops instantly.
// `counter2` is also moved-from here.
```
Other variants allow handling errors (`_error`) and completion (`_done`):
```cpp
auto dataStream = /* ... */; // Type: rpl::producer<QString, Error>
rpl::lifetime lifetime;
// Assuming dataStream might be used again, we duplicate it for the first start.
// If it's the only use, std::move(dataStream) would be preferred.
rpl::duplicate(
dataStream
) | rpl::start_with_error([=](Error &&error) {
// Handle the error signaled by the producer.
qDebug() << "Error: " << error.text();
}, lifetime);
// Using dataStream again, perhaps duplicated again or moved if last use.
rpl::duplicate(
dataStream
) | rpl::start_with_done([=]() {
// Execute when the producer signals it's finished emitting values.
qDebug() << "Stream finished.";
}, lifetime);
// Last use of dataStream, so we move it.
std::move(
dataStream
) | rpl::start_with_next_error_done(
[=](QString &&value) { /* handle next value */ },
[=](Error &&error) { /* handle error */ },
[=]() { /* handle done */ },
lifetime);
```
## Transforming Producers
RPL provides functions to create new producers by transforming existing ones:
* `rpl::map`: Transforms each value emitted by a producer.
```cpp
auto ints = /* ... */; // Type: rpl::producer<int>
// The pipe operator often handles the move implicitly for chained transformations.
auto strings = std::move(
ints // Explicit move is safer
) | rpl::map([](int value) {
return QString::number(value * 2);
}); // Emits strings like "0", "2", "4", ...
```
* `rpl::filter`: Emits only the values from a producer that satisfy a condition.
```cpp
auto ints = /* ... */; // Type: rpl::producer<int>
auto evenInts = std::move(
ints // Explicit move is safer
) | rpl::filter([](int value) {
return (value % 2 == 0);
}); // Emits only even numbers.
```
## Combining Producers
You can combine multiple producers into one:
* `rpl::combine`: Combines the latest values from multiple producers whenever *any* of them emits a new value. Requires all producers to have emitted at least one value initially.
While it produces a `std::tuple`, subsequent operators like `map`, `filter`, and `start_with_next` can automatically unpack this tuple into separate lambda arguments.
```cpp
auto countProducer = rpl::single(1); // Type: rpl::producer<int>
auto textProducer = rpl::single(u"hello"_q); // Type: rpl::producer<QString>
rpl::lifetime lifetime;
// rpl::combine takes producers by const-ref internally and duplicates,
// so move/duplicate is usually not strictly needed here unless you
// want to signal intent or manage the lifetime of p1/p2 explicitly.
auto combined = rpl::combine(
countProducer, // or rpl::duplicate(countProducer)
textProducer // or rpl::duplicate(textProducer)
);
// Starting the combined producer consumes it.
// The lambda receives unpacked arguments, not the tuple itself.
std::move(
combined
) | rpl::start_with_next([=](int count, const QString &text) {
// No need for std::get<0>(latest), etc.
qDebug() << "Combined: Count=" << count << ", Text=" << text;
}, lifetime);
// This also works with map, filter, etc.
std::move(
combined
) | rpl::filter([=](int count, const QString &text) {
return count > 0 && !text.isEmpty();
}) | rpl::map([=](int count, const QString &text) {
return text.repeated(count);
}) | rpl::start_with_next([=](const QString &result) {
qDebug() << "Mapped & Filtered: " << result;
}, lifetime);
```
* `rpl::merge`: Merges the output of multiple producers of the *same type* into a single producer. It emits a value whenever *any* of the source producers emits a value.
```cpp
auto sourceA = /* ... */; // Type: rpl::producer<QString>
auto sourceB = /* ... */; // Type: rpl::producer<QString>
// rpl::merge also duplicates internally.
auto merged = rpl::merge(sourceA, sourceB);
// Starting the merged producer consumes it.
std::move(
merged
) | rpl::start_with_next([=](QString &&value) {
// Receives values from either sourceA or sourceB as they arrive.
qDebug() << "Merged value: " << value;
}, lifetime);
```
## Key Concepts Summary
* Use `rpl::producer<Type, Error>` to represent streams of values.
* Manage subscription duration using `rpl::lifetime`.
* Pass `rpl::lifetime` to `rpl::start_...` methods.
* If `rpl::lifetime` is not passed, **store the returned lifetime** to keep the subscription active.
* Use operators like `| rpl::map`, `| rpl::filter` to transform streams.
* Use `rpl::combine` or `rpl::merge` to combine streams.
* When starting a chain (`std::move(producer) | rpl::map(...)`), explicitly move the initial producer.
* These functions typically duplicate their input producers internally.
* Starting a pipeline consumes the producer; use `

149
.cursor/styling.md Normal file
View File

@ -0,0 +1,149 @@
# Telegram Desktop UI Styling
## Style Definition Files
UI element styles (colors, fonts, paddings, margins, icons, etc.) are defined in `.style` files using a custom syntax. These files are located alongside the C++ source files they correspond to within specific UI component directories (e.g., `Telegram/SourceFiles/ui/chat/chat.style`).
Definitions from other `.style` files can be included using the `using` directive at the top of the file:
```style
using "ui/basic.style";
using "ui/widgets/widgets.style";
```
The central definition of named colors happens in `Telegram/SourceFiles/ui/colors.palette`. This file allows for theme generation and loading colors from various sources.
### Syntax Overview
1. **Built-in Types:** The syntax recognizes several base types inferred from the value assigned:
* `int`: Integer numbers (e.g., `lineHeight: 20;`)
* `bool`: Boolean values (e.g., `useShadow: true;`)
* `pixels`: Pixel values, ending with `px` (e.g., `borderWidth: 1px;`). Generated as `int` in C++.
* `color`: Named colors defined in `colors.palette` (e.g., `background: windowBg;`)
* `icon`: Defined inline using a specific syntax (see below). Generates `style::icon`.
* `margins`: Four pixel values for margins or padding. Requires `margins(top, right, bottom, left)` syntax (e.g., `margin: margins(10px, 5px, 10px, 5px);` or `padding: margins(8px, 8px, 8px, 8px);`). Generates `style::margins` (an alias for `QMargins`).
* `size`: Two pixel values for width and height (e.g., `iconSize: size(16px, 16px);`). Generates `style::size`.
* `point`: Two pixel values for x and y coordinates (e.g., `textPos: point(5px, 2px);`). Generates `style::point`.
* `align`: Alignment keywords (e.g., `textAlign: align(center);` or `iconAlign: align(left);`). Generates `style::align`.
* `font`: Font definitions (e.g., `font: font(14px semibold);`). Generates `style::font`.
* `double`: Floating point numbers (e.g., `disabledOpacity: 0.5;`)
*Note on Borders:* Borders are typically defined using multiple fields like `border: pixels;` (for width) and `borderFg: color;` (for color), rather than a single CSS-like property.
2. **Structure Definition:** You can define complex data structures directly within the `.style` file:
```style
MyButtonStyle { // Defines a structure named 'MyButtonStyle'
textPadding: margins; // Field 'textPadding' expects margins type
icon: icon; // Field 'icon' of type icon
height: pixels; // Field 'height' of type pixels
}
```
This generates a `struct MyButtonStyle { ... };` inside the `namespace style`. Fields will have corresponding C++ types (`style::margins`, `style::icon`, `int`).
3. **Variable Definition & Inheritance:** Variables are defined using `name: value;` or `groupName { ... }`. They can be of built-in types or custom structures. Structures can be initialized inline or inherit from existing variables.
**Icon Definition Syntax:** Icons are defined inline using the `icon{...}` syntax. The generator probes for `.svg` files or `.png` files (including `@2x`, `@3x` variants) based on the provided path stem.
```style
// Single-part icon definition:
myIconSearch: icon{{ "gui/icons/search", iconColor }};
// Multi-part icon definition (layers drawn bottom-up):
myComplexIcon: icon{
{ "gui/icons/background", iconBgColor },
{ "gui/icons/foreground", iconFgColor }
};
// Icon with path modifiers (PNG only for flips, SVG only for size):
myFlippedIcon: icon{{ "gui/icons/arrow-flip_horizontal", arrowColor }};
myResizedIcon: icon{{ "gui/icons/logo-128x128", logoColor }}; // Forces 128x128 for SVG
```
**Other Variable Examples:**
```style
// Simple variables
buttonHeight: 30px;
activeButtonColor: buttonBgActive; // Named color from colors.palette
// Variable of a custom structure type, initialized inline
defaultButton: MyButtonStyle {
textPadding: margins(10px, 15px, 10px, 15px); // Use margins(...) syntax
icon: myIconSearch; // Assign the previously defined icon variable
height: buttonHeight; // Reference another variable
}
// Another variable inheriting from 'defaultButton' and overriding/adding fields
primaryButton: MyButtonStyle(defaultButton) {
icon: myComplexIcon; // Override icon with the multi-part one
backgroundColor: activeButtonColor; // Add a field not in MyButtonStyle definition
}
// Style group (often used for specific UI elements)
chatInput { // Example using separate border properties and explicit padding
border: 1px; // Border width
borderFg: defaultInputFieldBorder; // Border color (named color)
padding: margins(5px, 10px, 5px, 10px); // Use margins(...) syntax for padding field
backgroundColor: defaultChatBg; // Background color
}
```
## Code Generation
A code generation tool processes these `.style` files and `colors.palette` to create C++ objects.
- The `using` directives resolve dependencies between `.style` files.
- Custom structure definitions (like `MyButtonStyle`) generate corresponding `struct MyButtonStyle { ... };` within the `namespace style`.
- Style variables/groups (like `defaultButton`, `primaryButton`, `chatInput`) are generated as objects/structs within the `st` namespace (e.g., `st::defaultButton`, `st::primaryButton`, `st::chatInput`). These generated structs contain members corresponding to the fields defined in the `.style` file.
- Color objects are generated into the `st` namespace as well, based on their names in `colors.palette` (e.g., `st::windowBg`, `st::buttonBgActive`).
- The generated header files for styles are placed in the `Telegram/SourceFiles/styles/` directory with a `style_` prefix (e.g., `styles/style_widgets.h` for `ui/widgets/widgets.style`). You include them like `#include "styles/style_widgets.h"`.
Generated C++ types correspond to the `.style` types: `style::color`, `style::font`, `style::margins` (used for both `margin:` and `padding:` fields), `style::icon`, `style::size`, `style::point`, `style::align`, and `int` or `bool` for simple types.
## Style Usage in Code
Styles are applied in C++ code by referencing the generated `st::...` objects and their members.
```cpp
// Example: Including the generated style header
#include "styles/style_widgets.h" // For styles defined in ui/widgets/widgets.style
// ... inside some UI class code ...
// Accessing members of a generated style struct
int height = st::primaryButton.height; // Accessing the 'height' field (pixels -> int)
const style::icon &icon = st::primaryButton.icon; // Accessing the 'icon' field (st::myComplexIcon)
style::margins padding = st::primaryButton.textPadding; // Accessing 'textPadding'
style::color bgColor = st::primaryButton.backgroundColor; // Accessing the color (st::activeButtonColor)
// Applying styles (conceptual examples)
myButton->setIcon(st::primaryButton.icon);
myButton->setHeight(st::primaryButton.height);
myButton->setPadding(st::primaryButton.textPadding);
myButton->setBackgroundColor(st::primaryButton.backgroundColor);
// Using styles directly in painting
void MyWidget::paintEvent(QPaintEvent *e) {
Painter p(this);
p.fillRect(rect(), st::chatInput.backgroundColor); // Use color from chatInput style
// Border painting requires width and color
int borderWidth = st::chatInput.border; // Access border width (pixels -> int)
style::color borderColor = st::chatInput.borderFg; // Access border color
if (borderWidth > 0) {
p.setPen(QPen(borderColor, borderWidth));
// Adjust rect for pen width if needed before drawing
p.drawRect(rect().adjusted(borderWidth / 2, borderWidth / 2, -borderWidth / 2, -borderWidth / 2));
}
// Access padding (style::margins)
style::margins inputPadding = st::chatInput.padding;
// ... use inputPadding.top(), inputPadding.left() etc. for content layout ...
}
```
**Key Points:**
* Styles are defined in `.style` files next to their corresponding C++ source files.
* `using "path/to/other.style";` includes definitions from other style files.
* Named colors are defined centrally in `ui/colors.palette`.
* `.style` syntax supports built-in types (like `pixels`, `color`, `margins`, `point`, `size`, `align`, `font`, `double`), custom structure definitions (`Name { field: type; ... }`), variable definitions (`name: value;`), and inheritance (`child: Name(parent) { ... }`).
* Values must match the expected type (e.g., fields declared as `margins` type, like `margin:` or `padding:`, require `margins(...)` syntax). Borders are typically set via separate `border: pixels;` and `borderFg: color;` fields.
* Icons are defined inline using `name: icon{{ "path_stem", color }};` or `name: icon{ { "path1", c1 }, ... };` syntax, with optional path modifiers.
* Code generation creates `struct` definitions in the `style` namespace for custom types and objects/structs in the `st` namespace for defined variables/groups.
* Generated headers are in `styles/` with a `style_` prefix and must be included.
* Access style properties via the generated `st::` objects (e.g., `st::primaryButton.height`, `st::chatInput.backgroundColor`).

2
.cursorignore Normal file
View File

@ -0,0 +1,2 @@
# Add directories or file patterns to ignore during indexing (e.g. foo/ or *.csv)
Telegram/ThirdParty/