/* Author : Joshua Brindle * Karl MacMillan * Jason Tang * Added support for binary policy modules * * Copyright (C) 2004 - 2005 Tresys Technology, LLC * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2. */ #include #include #include #include #include #include #include #include "queue.h" #include "module_compiler.h" union stack_item_u { avrule_block_t *avrule; cond_list_t *cond_list; }; typedef struct scope_stack { union stack_item_u u; int type; /* for above union: 1 = avrule block, 2 = conditional */ avrule_decl_t *decl; /* if in an avrule block, which * declaration is current */ avrule_t *last_avrule; int in_else; /* if in an avrule block, within ELSE branch */ int require_given; /* 1 if this block had at least one require */ struct scope_stack *parent, *child; } scope_stack_t; extern policydb_t *policydbp; extern queue_t id_queue; extern int yyerror(const char *msg); __attribute__ ((format(printf, 1, 2))) extern void yyerror2(const char *fmt, ...); static int push_stack(int stack_type, ...); static void pop_stack(void); /* keep track of the last item added to the stack */ static scope_stack_t *stack_top = NULL; static avrule_block_t *last_block; static uint32_t next_decl_id = 1; static const char * const flavor_str[SYM_NUM] = { [SYM_COMMONS] = "common", [SYM_CLASSES] = "class", [SYM_ROLES] = "role", [SYM_TYPES] = "type", [SYM_USERS] = "user", [SYM_BOOLS] = "bool", [SYM_LEVELS] = "level", [SYM_CATS] = "cat" }; void print_error_msg(int ret, uint32_t symbol_type) { switch (ret) { case -3: yyerror("Out of memory!"); break; case -2: yyerror2("Duplicate declaration of %s", flavor_str[symbol_type]); break; case -1: yyerror2("Could not declare %s here", flavor_str[symbol_type]); break; default: yyerror("Unknown error"); } } int define_policy(int pass, int module_header_given) { char *id; if (module_header_given) { if (policydbp->policy_type != POLICY_MOD) { yyerror ("Module specification found while not building a policy module.\n"); return -1; } if (pass == 2) { while ((id = queue_remove(id_queue)) != NULL) free(id); } else { id = (char *)queue_remove(id_queue); if (!id) { yyerror("no module name"); return -1; } policydbp->name = id; if ((policydbp->version = queue_remove(id_queue)) == NULL) { yyerror ("Expected a module version but none was found."); return -1; } } } else { if (policydbp->policy_type == POLICY_MOD) { yyerror ("Building a policy module, but no module specification found.\n"); return -1; } } /* the first declaration within the global avrule block will always have an id of 1 */ next_decl_id = 2; /* reset the scoping stack */ while (stack_top != NULL) { pop_stack(); } if (push_stack(1, policydbp->global, policydbp->global->branch_list) == -1) { return -1; } last_block = policydbp->global; return 0; } /* Given the current parse stack, returns 1 if a declaration would be * allowed here or 0 if not. For example, declarations are not * allowed in conditionals, so if there are any conditionals in the * current scope stack then this would return a 0. */ static int is_declaration_allowed(void) { if (stack_top->type != 1 || stack_top->in_else) { return 0; } return 1; } /* Attempt to declare a symbol within the current declaration. If * currently within a non-conditional and in a non-else branch then * insert the symbol, return 0 on success if symbol was undeclared. * For roles and users, it is legal to have multiple declarations; as * such return 1 to indicate that caller must free() the datum because * it was not added. If symbols may not be declared here return -1. * For duplicate declarations return -2. For all else, including out * of memory, return -3. Note that dest_value and datum_value might * not be restricted pointers. */ int declare_symbol(uint32_t symbol_type, hashtab_key_t key, hashtab_datum_t datum, uint32_t * dest_value, uint32_t * datum_value) { avrule_decl_t *decl = stack_top->decl; int retval; /* first check that symbols may be declared here */ if (!is_declaration_allowed()) { return -1; } retval = symtab_insert(policydbp, symbol_type, key, datum, SCOPE_DECL, decl->decl_id, dest_value); if (retval == 1 && dest_value) { symtab_datum_t *s = (symtab_datum_t *) hashtab_search(policydbp-> symtab[symbol_type].table, key); assert(s != NULL); if (symbol_type == SYM_LEVELS) { *dest_value = ((level_datum_t *)s)->level->sens; } else { *dest_value = s->value; } } else if (retval == -2) { return -2; } else if (retval < 0) { return -3; } else { /* fall through possible if retval is 0 */ } if (datum_value != NULL) { if (ebitmap_set_bit(decl->declared.scope + symbol_type, *datum_value - 1, 1)) { return -3; } } return retval; } static int role_implicit_bounds(hashtab_t roles_tab, char *role_id, role_datum_t *role) { role_datum_t *bounds; char *bounds_id, *delim; delim = strrchr(role_id, '.'); if (!delim) return 0; /* no implicit boundary */ bounds_id = strdup(role_id); if (!bounds_id) { yyerror("out of memory"); return -1; } bounds_id[(size_t)(delim - role_id)] = '\0'; bounds = hashtab_search(roles_tab, bounds_id); if (!bounds) { yyerror2("role %s doesn't exist, is implicit bounds of %s", bounds_id, role_id); return -1; } if (!role->bounds) role->bounds = bounds->s.value; else if (role->bounds != bounds->s.value) { yyerror2("role %s has inconsistent bounds %s/%s", role_id, bounds_id, policydbp->p_role_val_to_name[role->bounds - 1]); return -1; } free(bounds_id); return 0; } static int create_role(uint32_t scope, unsigned char isattr, role_datum_t **role, char **key) { char *id = queue_remove(id_queue); role_datum_t *datum = NULL; int ret; uint32_t value; *role = NULL; *key = NULL; isattr = isattr ? ROLE_ATTRIB : ROLE_ROLE; if (id == NULL) { yyerror("no role name"); return -1; } datum = malloc(sizeof(*datum)); if (datum == NULL) { yyerror("Out of memory!"); free(id); return -1; } role_datum_init(datum); datum->flavor = isattr; if (scope == SCOPE_DECL) { ret = declare_symbol(SYM_ROLES, id, datum, &value, &value); } else { ret = require_symbol(SYM_ROLES, id, datum, &value, &value); } datum->s.value = value; if (ret == 0) { *role = datum; *key = strdup(id); if (*key == NULL) { yyerror("Out of memory!"); return -1; } } else if (ret == 1) { *role = datum; *key = id; } else { print_error_msg(ret, SYM_ROLES); free(id); role_datum_destroy(datum); free(datum); } return ret; } role_datum_t *declare_role(unsigned char isattr) { char *key = NULL; role_datum_t *role = NULL; role_datum_t *dest_role = NULL; hashtab_t roles_tab; int ret, ret2; ret = create_role(SCOPE_DECL, isattr, &role, &key); if (ret < 0) { return NULL; } /* create a new role_datum_t for this decl, if necessary */ assert(stack_top->type == 1); if (stack_top->parent == NULL) { /* in parent, so use global symbol table */ roles_tab = policydbp->p_roles.table; } else { roles_tab = stack_top->decl->p_roles.table; } dest_role = hashtab_search(roles_tab, key); if (dest_role == NULL) { if (ret == 0) { dest_role = malloc(sizeof(*dest_role)); if (dest_role == NULL) { yyerror("Out of memory!"); free(key); return NULL; } role_datum_init(dest_role); dest_role->s.value = role->s.value; dest_role->flavor = role->flavor; } else { dest_role = role; } ret2 = role_implicit_bounds(roles_tab, key, dest_role); if (ret2 != 0) { free(key); role_datum_destroy(dest_role); free(dest_role); return NULL; } ret2 = hashtab_insert(roles_tab, key, dest_role); if (ret2 != 0) { yyerror("Out of memory!"); free(key); role_datum_destroy(dest_role); free(dest_role); return NULL; } } else { free(key); if (ret == 1) { role_datum_destroy(role); free(role); } } if (ret == 0) { ret2 = ebitmap_set_bit(&dest_role->dominates, dest_role->s.value - 1, 1); if (ret2 != 0) { yyerror("out of memory"); return NULL; } } return dest_role; } static int create_type(uint32_t scope, unsigned char isattr, type_datum_t **type) { char *id; type_datum_t *datum; int ret; uint32_t value = 0; *type = NULL; id = (char *)queue_remove(id_queue); if (!id) { yyerror("no type/attribute name?"); return -1; } if (strcmp(id, "self") == 0) { yyerror("\"self\" is a reserved type name."); free(id); return -1; } datum = malloc(sizeof(*datum)); if (!datum) { yyerror("Out of memory!"); free(id); return -1; } type_datum_init(datum); datum->primary = 1; datum->flavor = isattr ? TYPE_ATTRIB : TYPE_TYPE; if (scope == SCOPE_DECL) { ret = declare_symbol(SYM_TYPES, id, datum, &value, &value); } else { ret = require_symbol(SYM_TYPES, id, datum, &value, &value); } if (ret == 0) { datum->s.value = value; *type = datum; } else if (ret == 1) { type_datum_destroy(datum); free(datum); *type = hashtab_search(policydbp->symtab[SYM_TYPES].table, id); free(id); } else { print_error_msg(ret, SYM_TYPES); free(id); type_datum_destroy(datum); free(datum); } return ret; } type_datum_t *declare_type(unsigned char primary, unsigned char isattr) { type_datum_t *type = NULL; int ret = create_type(SCOPE_DECL, isattr, &type); if (ret == 0) { type->primary = primary; } return type; } static int user_implicit_bounds(hashtab_t users_tab, char *user_id, user_datum_t *user) { user_datum_t *bounds; char *bounds_id, *delim; delim = strrchr(user_id, '.'); if (!delim) return 0; /* no implicit boundary */ bounds_id = strdup(user_id); if (!bounds_id) { yyerror("out of memory"); return -1; } bounds_id[(size_t)(delim - user_id)] = '\0'; bounds = hashtab_search(users_tab, bounds_id); if (!bounds) { yyerror2("user %s doesn't exist, is implicit bounds of %s", bounds_id, user_id); return -1; } if (!user->bounds) user->bounds = bounds->s.value; else if (user->bounds != bounds->s.value) { yyerror2("user %s has inconsistent bounds %s/%s", user_id, bounds_id, policydbp->p_role_val_to_name[user->bounds - 1]); return -1; } free(bounds_id); return 0; } static int create_user(uint32_t scope, user_datum_t **user, char **key) { char *id = queue_remove(id_queue); user_datum_t *datum = NULL; int ret; uint32_t value; *user = NULL; *key = NULL; if (id == NULL) { yyerror("no user name"); return -1; } datum = malloc(sizeof(*datum)); if (datum == NULL) { yyerror("Out of memory!"); free(id); return -1; } user_datum_init(datum); if (scope == SCOPE_DECL) { ret = declare_symbol(SYM_USERS, id, datum, &value, &value); } else { ret = require_symbol(SYM_USERS, id, datum, &value, &value); } datum->s.value = value; if (ret == 0) { *user = datum; *key = strdup(id); if (*key == NULL) { yyerror("Out of memory!"); return -1; } } else if (ret == 1) { *user = datum; *key = id; } else { print_error_msg(ret, SYM_USERS); free(id); user_datum_destroy(datum); free(datum); } return ret; } user_datum_t *declare_user(void) { char *key = NULL; user_datum_t *user = NULL; user_datum_t *dest_user = NULL; hashtab_t users_tab; int ret, ret2; ret = create_user(SCOPE_DECL, &user, &key); if (ret < 0) { return NULL; } /* create a new user_datum_t for this decl, if necessary */ assert(stack_top->type == 1); if (stack_top->parent == NULL) { /* in parent, so use global symbol table */ users_tab = policydbp->p_users.table; } else { users_tab = stack_top->decl->p_users.table; } dest_user = hashtab_search(users_tab, key); if (dest_user == NULL) { if (ret == 0) { dest_user = malloc(sizeof(*dest_user)); if (dest_user == NULL) { yyerror("Out of memory!"); free(key); return NULL; } user_datum_init(dest_user); dest_user->s.value = user->s.value; } else { dest_user = user; } ret2 = user_implicit_bounds(users_tab, key, dest_user); if (ret2 != 0) { free(key); user_datum_destroy(dest_user); free(dest_user); return NULL; } ret2 = hashtab_insert(users_tab, key, dest_user); if (ret2 != 0) { yyerror("Out of memory!"); free(key); user_datum_destroy(dest_user); free(dest_user); return NULL; } } else { free(key); if (ret == 1) { user_datum_destroy(user); free(user); } } return dest_user; } /* Return a type_datum_t for the local avrule_decl with the given ID. * If it does not exist, create one with the same value as 'value'. * This function assumes that the ID is within scope. c.f., * is_id_in_scope(). * * NOTE: this function usurps ownership of id afterwards. The caller * shall not reference it nor free() it afterwards. */ type_datum_t *get_local_type(char *id, uint32_t value, unsigned char isattr) { type_datum_t *dest_typdatum; hashtab_t types_tab; assert(stack_top->type == 1); if (stack_top->parent == NULL) { /* in global, so use global symbol table */ types_tab = policydbp->p_types.table; } else { types_tab = stack_top->decl->p_types.table; } dest_typdatum = hashtab_search(types_tab, id); if (!dest_typdatum) { dest_typdatum = (type_datum_t *) malloc(sizeof(type_datum_t)); if (dest_typdatum == NULL) { free(id); return NULL; } type_datum_init(dest_typdatum); dest_typdatum->s.value = value; dest_typdatum->flavor = isattr ? TYPE_ATTRIB : TYPE_TYPE; dest_typdatum->primary = 1; if (hashtab_insert(types_tab, id, dest_typdatum)) { free(id); type_datum_destroy(dest_typdatum); free(dest_typdatum); return NULL; } } else { free(id); if (dest_typdatum->flavor != isattr ? TYPE_ATTRIB : TYPE_TYPE) { return NULL; } } return dest_typdatum; } /* Return a role_datum_t for the local avrule_decl with the given ID. * If it does not exist, create one with the same value as 'value'. * This function assumes that the ID is within scope. c.f., * is_id_in_scope(). * * NOTE: this function usurps ownership of id afterwards. The caller * shall not reference it nor free() it afterwards. */ role_datum_t *get_local_role(char *id, uint32_t value, unsigned char isattr) { role_datum_t *dest_roledatum; hashtab_t roles_tab; assert(stack_top->type == 1); if (stack_top->parent == NULL) { /* in global, so use global symbol table */ roles_tab = policydbp->p_roles.table; } else { roles_tab = stack_top->decl->p_roles.table; } dest_roledatum = hashtab_search(roles_tab, id); if (!dest_roledatum) { dest_roledatum = (role_datum_t *)malloc(sizeof(role_datum_t)); if (dest_roledatum == NULL) { free(id); return NULL; } role_datum_init(dest_roledatum); dest_roledatum->s.value = value; dest_roledatum->flavor = isattr ? ROLE_ATTRIB : ROLE_ROLE; if (hashtab_insert(roles_tab, id, dest_roledatum)) { free(id); role_datum_destroy(dest_roledatum); free(dest_roledatum); return NULL; } } else { free(id); if (dest_roledatum->flavor != isattr ? ROLE_ATTRIB : ROLE_ROLE) return NULL; } return dest_roledatum; } /* Given the current parse stack, returns 1 if a requirement would be * allowed here or 0 if not. For example, the ELSE branch may never * have its own requirements. */ static int is_require_allowed(void) { if (stack_top->type == 1 && !stack_top->in_else) { return 1; } return 0; } /* Attempt to require a symbol within the current scope. If currently * within an optional (and not its else branch), add the symbol to the * required list. Return 0 on success, 1 if caller needs to free() * datum. If symbols may not be declared here return -1. For duplicate * declarations return -2. For all else, including out of memory, * return -3.. Note that dest_value and datum_value might not be * restricted pointers. */ int require_symbol(uint32_t symbol_type, hashtab_key_t key, hashtab_datum_t datum, uint32_t * dest_value, uint32_t * datum_value) { avrule_decl_t *decl = stack_top->decl; int retval; /* first check that symbols may be required here */ if (!is_require_allowed()) { return -1; } retval = symtab_insert(policydbp, symbol_type, key, datum, SCOPE_REQ, decl->decl_id, dest_value); if (retval == 1) { symtab_datum_t *s = (symtab_datum_t *) hashtab_search(policydbp-> symtab[symbol_type].table, key); assert(s != NULL); if (symbol_type == SYM_LEVELS) { *dest_value = ((level_datum_t *)s)->level->sens; } else { *dest_value = s->value; } } else if (retval == -2) { /* ignore require statements if that symbol was * previously declared and is in current scope */ int prev_declaration_ok = 0; if (is_id_in_scope(symbol_type, key)) { if (symbol_type == SYM_TYPES) { /* check that previous symbol has same * type/attribute-ness */ unsigned char new_isattr = ((type_datum_t *) datum)->flavor; type_datum_t *old_datum = (type_datum_t *) hashtab_search(policydbp-> symtab [SYM_TYPES]. table, key); assert(old_datum != NULL); unsigned char old_isattr = old_datum->flavor; prev_declaration_ok = (old_isattr == new_isattr ? 1 : 0); } else { prev_declaration_ok = 1; } } if (prev_declaration_ok) { /* ignore this require statement because it * was already declared within my scope */ stack_top->require_given = 1; return 1; } else { /* previous declaration was not in scope or * had a mismatched type/attribute, so * generate an error */ return -2; } } else if (retval < 0) { return -3; } else { /* fall through possible if retval is 0 or 1 */ } if (datum_value != NULL) { if (ebitmap_set_bit(decl->required.scope + symbol_type, *datum_value - 1, 1)) { return -3; } } stack_top->require_given = 1; return retval; } int add_perm_to_class(uint32_t perm_value, uint32_t class_value) { avrule_decl_t *decl = stack_top->decl; scope_index_t *scope; assert(perm_value >= 1); assert(class_value >= 1); scope = &decl->required; if (class_value > scope->class_perms_len) { uint32_t i; ebitmap_t *new_map = realloc(scope->class_perms_map, class_value * sizeof(*new_map)); if (new_map == NULL) { return -1; } scope->class_perms_map = new_map; for (i = scope->class_perms_len; i < class_value; i++) { ebitmap_init(scope->class_perms_map + i); } scope->class_perms_len = class_value; } if (ebitmap_set_bit(scope->class_perms_map + class_value - 1, perm_value - 1, 1)) { return -1; } return 0; } static int perm_destroy(hashtab_key_t key, hashtab_datum_t datum, void *p __attribute__ ((unused))) { if (key) free(key); free(datum); return 0; } static void class_datum_destroy(class_datum_t * cladatum) { if (cladatum != NULL) { hashtab_map(cladatum->permissions.table, perm_destroy, NULL); hashtab_destroy(cladatum->permissions.table); free(cladatum); } } int require_class(int pass) { char *class_id = queue_remove(id_queue); char *perm_id = NULL; class_datum_t *datum = NULL; perm_datum_t *perm = NULL; int ret; if (pass == 2) { free(class_id); while ((perm_id = queue_remove(id_queue)) != NULL) free(perm_id); return 0; } /* first add the class if it is not already there */ if (class_id == NULL) { yyerror("no class name for class definition?"); return -1; } if ((datum = calloc(1, sizeof(*datum))) == NULL || symtab_init(&datum->permissions, PERM_SYMTAB_SIZE)) { yyerror("Out of memory!"); return -1; } ret = require_symbol(SYM_CLASSES, class_id, datum, &datum->s.value, &datum->s.value); if (ret < 0) { print_error_msg(ret, SYM_CLASSES); free(class_id); class_datum_destroy(datum); return -1; } if (ret == 0) { /* a new class was added; reindex everything */ if (policydb_index_classes(policydbp)) { yyerror("Out of memory!"); return -1; } } else { class_datum_destroy(datum); datum = hashtab_search(policydbp->p_classes.table, class_id); assert(datum); /* the class datum should have existed */ free(class_id); } /* now add each of the permissions to this class's requirements */ while ((perm_id = queue_remove(id_queue)) != NULL) { int allocated = 0; /* Is the permission already in the table? */ perm = hashtab_search(datum->permissions.table, perm_id); if (!perm && datum->comdatum) perm = hashtab_search(datum->comdatum->permissions.table, perm_id); if (perm) { /* Yes, drop the name. */ free(perm_id); } else { /* No - allocate and insert an entry for it. */ if (policydbp->policy_type == POLICY_BASE) { yyerror2 ("Base policy - require of permission %s without prior declaration.", perm_id); free(perm_id); return -1; } allocated = 1; if ((perm = malloc(sizeof(*perm))) == NULL) { yyerror("Out of memory!"); free(perm_id); return -1; } memset(perm, 0, sizeof(*perm)); ret = hashtab_insert(datum->permissions.table, perm_id, perm); if (ret) { yyerror("Out of memory!"); free(perm_id); free(perm); return -1; } perm->s.value = datum->permissions.nprim + 1; } if (add_perm_to_class(perm->s.value, datum->s.value) == -1) { yyerror("Out of memory!"); return -1; } /* Update number of primitives if we allocated one. */ if (allocated) datum->permissions.nprim++; } return 0; } static int require_role_or_attribute(int pass, unsigned char isattr) { char *key = NULL; role_datum_t *role = NULL; int ret; if (pass == 2) { free(queue_remove(id_queue)); return 0; } ret = create_role(SCOPE_REQ, isattr, &role, &key); if (ret < 0) { return -1; } free(key); if (ret == 0) { ret = ebitmap_set_bit(&role->dominates, role->s.value - 1, 1); if (ret != 0) { yyerror("Out of memory"); return -1; } } else { role_datum_destroy(role); free(role); } return 0; } int require_role(int pass) { return require_role_or_attribute(pass, 0); } int require_attribute_role(int pass) { return require_role_or_attribute(pass, 1); } static int require_type_or_attribute(int pass, unsigned char isattr) { type_datum_t *type = NULL; int ret; if (pass == 2) { free(queue_remove(id_queue)); return 0; } ret = create_type(SCOPE_REQ, isattr, &type); if (ret < 0) { return -1; } return 0; } int require_type(int pass) { return require_type_or_attribute(pass, 0); } int require_attribute(int pass) { return require_type_or_attribute(pass, 1); } int require_user(int pass) { char *key = NULL; user_datum_t *user = NULL; int ret; if (pass == 1) { free(queue_remove(id_queue)); return 0; } ret = create_user(SCOPE_REQ, &user, &key); if (ret < 0) { return -1; } free(key); if (ret == 1) { user_datum_destroy(user); free(user); } return 0; } static int require_bool_tunable(int pass, int is_tunable) { char *id = queue_remove(id_queue); cond_bool_datum_t *booldatum = NULL; int retval; if (pass == 2) { free(id); return 0; } if (id == NULL) { yyerror("no boolean name"); return -1; } if ((booldatum = calloc(1, sizeof(*booldatum))) == NULL) { cond_destroy_bool(id, booldatum, NULL); yyerror("Out of memory!"); return -1; } if (is_tunable) booldatum->flags |= COND_BOOL_FLAGS_TUNABLE; retval = require_symbol(SYM_BOOLS, id, (hashtab_datum_t *) booldatum, &booldatum->s.value, &booldatum->s.value); if (retval != 0) { cond_destroy_bool(id, booldatum, NULL); if (retval < 0) { print_error_msg(retval, SYM_BOOLS); return -1; } } return 0; } int require_bool(int pass) { return require_bool_tunable(pass, 0); } int require_tunable(int pass) { return require_bool_tunable(pass, 1); } int require_sens(int pass) { char *id = queue_remove(id_queue); level_datum_t *level = NULL; int retval; if (pass == 2) { free(id); return 0; } if (!id) { yyerror("no sensitivity name"); return -1; } level = malloc(sizeof(level_datum_t)); if (!level) { free(id); yyerror("Out of memory!"); return -1; } level_datum_init(level); level->level = malloc(sizeof(mls_level_t)); if (!level->level) { free(id); level_datum_destroy(level); free(level); yyerror("Out of memory!"); return -1; } mls_level_init(level->level); retval = require_symbol(SYM_LEVELS, id, (hashtab_datum_t *) level, &level->level->sens, &level->level->sens); if (retval != 0) { free(id); mls_level_destroy(level->level); free(level->level); level_datum_destroy(level); free(level); if (retval < 0) { print_error_msg(retval, SYM_LEVELS); return -1; } } return 0; } int require_cat(int pass) { char *id = queue_remove(id_queue); cat_datum_t *cat = NULL; int retval; if (pass == 2) { free(id); return 0; } if (!id) { yyerror("no category name"); return -1; } cat = malloc(sizeof(cat_datum_t)); if (!cat) { free(id); yyerror("Out of memory!"); return -1; } cat_datum_init(cat); retval = require_symbol(SYM_CATS, id, (hashtab_datum_t *) cat, &cat->s.value, &cat->s.value); if (retval != 0) { free(id); cat_datum_destroy(cat); free(cat); if (retval < 0) { print_error_msg(retval, SYM_CATS); return -1; } } return 0; } static int is_scope_in_stack(scope_datum_t * scope, scope_stack_t * stack) { uint32_t i; if (stack == NULL) { return 0; /* no matching scope found */ } if (stack->type == 1) { avrule_decl_t *decl = stack->decl; for (i = 0; i < scope->decl_ids_len; i++) { if (scope->decl_ids[i] == decl->decl_id) { return 1; } } } else { /* note that conditionals can't declare or require * symbols, so skip this level */ } /* not within scope of this stack, so try its parent */ return is_scope_in_stack(scope, stack->parent); } int is_id_in_scope(uint32_t symbol_type, hashtab_key_t id) { scope_datum_t *scope = (scope_datum_t *) hashtab_search(policydbp->scope[symbol_type]. table, id); if (scope == NULL) { return 1; /* id is not known, so return success */ } return is_scope_in_stack(scope, stack_top); } static int is_perm_in_scope_index(uint32_t perm_value, uint32_t class_value, scope_index_t * scope) { if (class_value > scope->class_perms_len) { return 1; } if (ebitmap_get_bit(scope->class_perms_map + class_value - 1, perm_value - 1)) { return 1; } return 0; } static int is_perm_in_stack(uint32_t perm_value, uint32_t class_value, scope_stack_t * stack) { if (stack == NULL) { return 0; /* no matching scope found */ } if (stack->type == 1) { avrule_decl_t *decl = stack->decl; if (is_perm_in_scope_index (perm_value, class_value, &decl->required) || is_perm_in_scope_index(perm_value, class_value, &decl->declared)) { return 1; } } else { /* note that conditionals can't declare or require * symbols, so skip this level */ } /* not within scope of this stack, so try its parent */ return is_perm_in_stack(perm_value, class_value, stack->parent); } int is_perm_in_scope(hashtab_key_t perm_id, hashtab_key_t class_id) { class_datum_t *cladatum = (class_datum_t *) hashtab_search(policydbp->p_classes.table, class_id); perm_datum_t *perdatum; if (cladatum == NULL) { return 1; } perdatum = (perm_datum_t *) hashtab_search(cladatum->permissions.table, perm_id); if (perdatum == NULL) { return 1; } return is_perm_in_stack(perdatum->s.value, cladatum->s.value, stack_top); } cond_list_t *get_current_cond_list(cond_list_t * cond) { /* FIX ME: do something different here if in a nested * conditional? */ avrule_decl_t *decl = stack_top->decl; return get_decl_cond_list(policydbp, decl, cond); } /* Append the new conditional node to the existing ones. During * expansion the list will be reversed -- i.e., the last AV rule will * be the first one listed in the policy. This matches the behavior * of the upstream compiler. */ void append_cond_list(cond_list_t * cond) { cond_list_t *old_cond = get_current_cond_list(cond); avrule_t *tmp; assert(old_cond != NULL); /* probably out of memory */ if (old_cond->avtrue_list == NULL) { old_cond->avtrue_list = cond->avtrue_list; } else { for (tmp = old_cond->avtrue_list; tmp->next != NULL; tmp = tmp->next) ; tmp->next = cond->avtrue_list; } if (old_cond->avfalse_list == NULL) { old_cond->avfalse_list = cond->avfalse_list; } else { for (tmp = old_cond->avfalse_list; tmp->next != NULL; tmp = tmp->next) ; tmp->next = cond->avfalse_list; } old_cond->flags |= cond->flags; } void append_avrule(avrule_t * avrule) { avrule_decl_t *decl = stack_top->decl; /* currently avrules follow a completely different code path * for handling avrules and compute types * (define_cond_avrule_te_avtab, define_cond_compute_type); * therefore there ought never be a conditional on top of the * scope stack */ assert(stack_top->type == 1); if (stack_top->last_avrule == NULL) { decl->avrules = avrule; } else { stack_top->last_avrule->next = avrule; } stack_top->last_avrule = avrule; } /* this doesn't actually append, but really prepends it */ void append_role_trans(role_trans_rule_t * role_tr_rules) { avrule_decl_t *decl = stack_top->decl; /* role transitions are not allowed within conditionals */ assert(stack_top->type == 1); role_tr_rules->next = decl->role_tr_rules; decl->role_tr_rules = role_tr_rules; } /* this doesn't actually append, but really prepends it */ void append_role_allow(role_allow_rule_t * role_allow_rules) { avrule_decl_t *decl = stack_top->decl; /* role allows are not allowed within conditionals */ assert(stack_top->type == 1); role_allow_rules->next = decl->role_allow_rules; decl->role_allow_rules = role_allow_rules; } /* this doesn't actually append, but really prepends it */ void append_filename_trans(filename_trans_rule_t * filename_trans_rules) { avrule_decl_t *decl = stack_top->decl; /* filename transitions are not allowed within conditionals */ assert(stack_top->type == 1); filename_trans_rules->next = decl->filename_trans_rules; decl->filename_trans_rules = filename_trans_rules; } /* this doesn't actually append, but really prepends it */ void append_range_trans(range_trans_rule_t * range_tr_rules) { avrule_decl_t *decl = stack_top->decl; /* range transitions are not allowed within conditionals */ assert(stack_top->type == 1); range_tr_rules->next = decl->range_tr_rules; decl->range_tr_rules = range_tr_rules; } int begin_optional(int pass) { avrule_block_t *block = NULL; avrule_decl_t *decl; if (pass == 1) { /* allocate a new avrule block for this optional block */ if ((block = avrule_block_create()) == NULL || (decl = avrule_decl_create(next_decl_id)) == NULL) { goto cleanup; } block->flags |= AVRULE_OPTIONAL; block->branch_list = decl; last_block->next = block; } else { /* select the next block from the chain built during pass 1 */ block = last_block->next; assert(block != NULL && block->branch_list != NULL && block->branch_list->decl_id == next_decl_id); decl = block->branch_list; } if (push_stack(1, block, decl) == -1) { goto cleanup; } stack_top->last_avrule = NULL; last_block = block; next_decl_id++; return 0; cleanup: yyerror("Out of memory!"); avrule_block_destroy(block); return -1; } int end_optional(int pass __attribute__ ((unused))) { /* once nested conditionals are allowed, do the stack unfolding here */ pop_stack(); return 0; } int begin_optional_else(int pass) { avrule_decl_t *decl; assert(stack_top->type == 1 && stack_top->in_else == 0); if (pass == 1) { /* allocate a new declaration and add it to the * current chain */ if ((decl = avrule_decl_create(next_decl_id)) == NULL) { yyerror("Out of memory!"); return -1; } stack_top->decl->next = decl; } else { /* pick the (hopefully last) declaration of this avrule block, built from pass 1 */ decl = stack_top->decl->next; assert(decl != NULL && decl->next == NULL && decl->decl_id == next_decl_id); } stack_top->in_else = 1; stack_top->decl = decl; stack_top->last_avrule = NULL; stack_top->require_given = 0; next_decl_id++; return 0; } static int copy_requirements(avrule_decl_t * dest, scope_stack_t * stack) { uint32_t i; if (stack == NULL) { return 0; } if (stack->type == 1) { scope_index_t *src_scope = &stack->decl->required; scope_index_t *dest_scope = &dest->required; for (i = 0; i < SYM_NUM; i++) { ebitmap_t *src_bitmap = &src_scope->scope[i]; ebitmap_t *dest_bitmap = &dest_scope->scope[i]; if (ebitmap_union(dest_bitmap, src_bitmap)) { yyerror("Out of memory!"); return -1; } } /* now copy class permissions */ if (src_scope->class_perms_len > dest_scope->class_perms_len) { ebitmap_t *new_map = realloc(dest_scope->class_perms_map, src_scope->class_perms_len * sizeof(*new_map)); if (new_map == NULL) { yyerror("Out of memory!"); return -1; } dest_scope->class_perms_map = new_map; for (i = dest_scope->class_perms_len; i < src_scope->class_perms_len; i++) { ebitmap_init(dest_scope->class_perms_map + i); } dest_scope->class_perms_len = src_scope->class_perms_len; } for (i = 0; i < src_scope->class_perms_len; i++) { ebitmap_t *src_bitmap = &src_scope->class_perms_map[i]; ebitmap_t *dest_bitmap = &dest_scope->class_perms_map[i]; if (ebitmap_union(dest_bitmap, src_bitmap)) { yyerror("Out of memory!"); return -1; } } } return copy_requirements(dest, stack->parent); } /* During pass 1, check that at least one thing was required within * this block, for those places where a REQUIRED is necessary. During * pass 2, have this block inherit its parents' requirements. Return * 0 on success, -1 on failure. */ int end_avrule_block(int pass) { avrule_decl_t *decl = stack_top->decl; assert(stack_top->type == 1); if (pass == 2) { /* this avrule_decl inherits all of its parents' * requirements */ if (copy_requirements(decl, stack_top->parent) == -1) { return -1; } return 0; } if (!stack_top->in_else && !stack_top->require_given) { if (policydbp->policy_type == POLICY_BASE && stack_top->parent != NULL) { /* if this is base no require should be in the global block */ return 0; } else { /* non-ELSE branches must have at least one thing required */ yyerror("This block has no require section."); return -1; } } return 0; } /* Push a new scope on to the stack and update the 'last' pointer. * Return 0 on success, -1 if out * of memory. */ static int push_stack(int stack_type, ...) { scope_stack_t *s = calloc(1, sizeof(*s)); va_list ap; if (s == NULL) { return -1; } va_start(ap, stack_type); switch (s->type = stack_type) { case 1:{ s->u.avrule = va_arg(ap, avrule_block_t *); s->decl = va_arg(ap, avrule_decl_t *); break; } case 2:{ s->u.cond_list = va_arg(ap, cond_list_t *); break; } default: /* invalid stack type given */ assert(0); } va_end(ap); s->parent = stack_top; s->child = NULL; stack_top = s; return 0; } /* Pop off the most recently added from the stack. Update the 'last' * pointer. */ static void pop_stack(void) { scope_stack_t *parent; assert(stack_top != NULL); parent = stack_top->parent; if (parent != NULL) { parent->child = NULL; } free(stack_top); stack_top = parent; }