prometheus/head.go

536 lines
12 KiB
Go

package tsdb
import (
"errors"
"math"
"sort"
"sync"
"time"
"github.com/bradfitz/slice"
"github.com/fabxc/tsdb/chunks"
"github.com/fabxc/tsdb/labels"
"github.com/go-kit/kit/log"
)
// headBlock handles reads and writes of time series data within a time window.
type headBlock struct {
mtx sync.RWMutex
dir string
// descs holds all chunk descs for the head block. Each chunk implicitly
// is assigned the index as its ID.
descs []*chunkDesc
// mapping maps a series ID to its position in an ordered list
// of all series. The orderDirty flag indicates that it has gone stale.
mapper *positionMapper
// hashes contains a collision map of label set hashes of chunks
// to their chunk descs.
hashes map[uint64][]*chunkDesc
values map[string]stringset // label names to possible values
postings *memPostings // postings lists for terms
wal *WAL
stats *BlockStats
}
// openHeadBlock creates a new empty head block.
func openHeadBlock(dir string, l log.Logger) (*headBlock, error) {
wal, err := OpenWAL(dir, log.NewContext(l).With("component", "wal"), 15*time.Second)
if err != nil {
return nil, err
}
b := &headBlock{
dir: dir,
descs: []*chunkDesc{},
hashes: map[uint64][]*chunkDesc{},
values: map[string]stringset{},
postings: &memPostings{m: make(map[term][]uint32)},
wal: wal,
mapper: newPositionMapper(nil),
}
b.stats = &BlockStats{
MinTime: math.MinInt64,
MaxTime: math.MaxInt64,
}
err = wal.ReadAll(&walHandler{
series: func(lset labels.Labels) {
b.create(lset.Hash(), lset)
b.stats.SeriesCount++
b.stats.ChunkCount++ // head block has one chunk/series
},
sample: func(s hashedSample) {
cd := b.descs[s.ref]
cd.append(s.t, s.v)
if s.t > b.stats.MaxTime {
b.stats.MaxTime = s.t
}
b.stats.SampleCount++
},
})
if err != nil {
return nil, err
}
b.updateMapping()
return b, nil
}
// Close syncs all data and closes underlying resources of the head block.
func (h *headBlock) Close() error {
return h.wal.Close()
}
func (h *headBlock) Dir() string { return h.dir }
func (h *headBlock) Persisted() bool { return false }
func (h *headBlock) Index() IndexReader { return &headIndexReader{h} }
func (h *headBlock) Series() SeriesReader { return &headSeriesReader{h} }
// Stats returns statisitics about the indexed data.
func (h *headBlock) Stats() BlockStats {
h.stats.mtx.RLock()
defer h.stats.mtx.RUnlock()
return *h.stats
}
type headSeriesReader struct {
*headBlock
}
// Chunk returns the chunk for the reference number.
func (h *headSeriesReader) Chunk(ref uint32) (chunks.Chunk, error) {
h.mtx.RLock()
defer h.mtx.RUnlock()
if int(ref) >= len(h.descs) {
return nil, errNotFound
}
return h.descs[int(ref)].chunk, nil
}
type safeChunk struct {
cd *chunkDesc
}
func (c *safeChunk) Iterator() chunks.Iterator {
c.cd.mtx.Lock()
defer c.cd.mtx.Unlock()
return c.cd.iterator()
}
func (c *safeChunk) Appender() (chunks.Appender, error) { panic("illegal") }
func (c *safeChunk) Bytes() []byte { panic("illegal") }
func (c *safeChunk) Encoding() chunks.Encoding { panic("illegal") }
type headIndexReader struct {
*headBlock
}
// LabelValues returns the possible label values
func (h *headIndexReader) LabelValues(names ...string) (StringTuples, error) {
h.mtx.RLock()
defer h.mtx.RUnlock()
if len(names) != 1 {
return nil, errInvalidSize
}
var sl []string
for s := range h.values[names[0]] {
sl = append(sl, s)
}
sort.Strings(sl)
return &stringTuples{l: len(names), s: sl}, nil
}
// Postings returns the postings list iterator for the label pair.
func (h *headIndexReader) Postings(name, value string) (Postings, error) {
h.mtx.RLock()
defer h.mtx.RUnlock()
return h.postings.get(term{name: name, value: value}), nil
}
// Series returns the series for the given reference.
func (h *headIndexReader) Series(ref uint32) (labels.Labels, []ChunkMeta, error) {
h.mtx.RLock()
defer h.mtx.RUnlock()
if int(ref) >= len(h.descs) {
return nil, nil, errNotFound
}
cd := h.descs[ref]
cd.mtx.RLock()
meta := ChunkMeta{
MinTime: cd.firstTimestamp,
MaxTime: cd.lastTimestamp,
Ref: ref,
}
cd.mtx.RUnlock()
return cd.lset, []ChunkMeta{meta}, nil
}
func (h *headIndexReader) LabelIndices() ([][]string, error) {
h.mtx.RLock()
defer h.mtx.RUnlock()
res := [][]string{}
for s := range h.values {
res = append(res, []string{s})
}
return res, nil
}
func (h *headIndexReader) Stats() (BlockStats, error) {
h.stats.mtx.RLock()
defer h.stats.mtx.RUnlock()
return *h.stats, nil
}
// get retrieves the chunk with the hash and label set and creates
// a new one if it doesn't exist yet.
func (h *headBlock) get(hash uint64, lset labels.Labels) *chunkDesc {
cds := h.hashes[hash]
for _, cd := range cds {
if cd.lset.Equals(lset) {
return cd
}
}
return nil
}
func (h *headBlock) create(hash uint64, lset labels.Labels) *chunkDesc {
cd := &chunkDesc{
lset: lset,
chunk: chunks.NewXORChunk(),
lastTimestamp: math.MinInt64,
}
var err error
cd.app, err = cd.chunk.Appender()
if err != nil {
// Getting an Appender for a new chunk must not panic.
panic(err)
}
// Index the new chunk.
cd.ref = uint32(len(h.descs))
h.descs = append(h.descs, cd)
h.hashes[hash] = append(h.hashes[hash], cd)
for _, l := range lset {
valset, ok := h.values[l.Name]
if !ok {
valset = stringset{}
h.values[l.Name] = valset
}
valset.set(l.Value)
h.postings.add(cd.ref, term{name: l.Name, value: l.Value})
}
h.postings.add(cd.ref, term{})
return cd
}
var (
// ErrOutOfOrderSample is returned if an appended sample has a
// timestamp larger than the most recent sample.
ErrOutOfOrderSample = errors.New("out of order sample")
// ErrAmendSample is returned if an appended sample has the same timestamp
// as the most recent sample but a different value.
ErrAmendSample = errors.New("amending sample")
ErrOutOfBounds = errors.New("out of bounds")
)
func (h *headBlock) appendBatch(samples []hashedSample) (int, error) {
// Find head chunks for all samples and allocate new IDs/refs for
// ones we haven't seen before.
var (
newSeries []labels.Labels
newSamples []*hashedSample
newHashes []uint64
uniqueHashes = map[uint64]uint32{}
)
h.mtx.RLock()
defer h.mtx.RUnlock()
for i := range samples {
s := &samples[i]
cd := h.get(s.hash, s.labels)
if cd != nil {
// Samples must only occur in order.
if s.t < cd.lastTimestamp {
return 0, ErrOutOfOrderSample
}
if cd.lastTimestamp == s.t && cd.lastValue != s.v {
return 0, ErrAmendSample
}
// TODO(fabxc): sample refs are only scoped within a block for
// now and we ignore any previously set value
s.ref = cd.ref
continue
}
// There may be several samples for a new series in a batch.
// We don't want to reserve a new space for each.
if ref, ok := uniqueHashes[s.hash]; ok {
s.ref = ref
newSamples = append(newSamples, s)
continue
}
s.ref = uint32(len(newSeries))
uniqueHashes[s.hash] = s.ref
newSeries = append(newSeries, s.labels)
newHashes = append(newHashes, s.hash)
newSamples = append(newSamples, s)
}
// Write all new series and samples to the WAL and add it to the
// in-mem database on success.
if err := h.wal.Log(newSeries, samples); err != nil {
return 0, err
}
// After the samples were successfully written to the WAL, there may
// be no further failures.
if len(newSeries) > 0 {
h.mtx.RUnlock()
h.mtx.Lock()
base := len(h.descs)
for i, s := range newSeries {
h.create(newHashes[i], s)
}
for _, s := range newSamples {
s.ref = uint32(base) + s.ref
}
h.mtx.Unlock()
h.mtx.RLock()
}
var (
total = uint64(len(samples))
mint = int64(math.MaxInt64)
maxt = int64(math.MinInt64)
)
for _, s := range samples {
cd := h.descs[s.ref]
cd.mtx.Lock()
// Skip duplicate samples.
if cd.lastTimestamp == s.t && cd.lastValue != s.v {
total--
continue
}
cd.append(s.t, s.v)
cd.mtx.Unlock()
if mint > s.t {
mint = s.t
}
if maxt < s.t {
maxt = s.t
}
}
h.stats.mtx.Lock()
defer h.stats.mtx.Unlock()
h.stats.SampleCount += total
h.stats.SeriesCount += uint64(len(newSeries))
h.stats.ChunkCount += uint64(len(newSeries)) // head block has one chunk/series
if mint < h.stats.MinTime {
h.stats.MinTime = mint
}
if maxt > h.stats.MaxTime {
h.stats.MaxTime = maxt
}
return int(total), nil
}
func (h *headBlock) fullness() float64 {
h.stats.mtx.RLock()
defer h.stats.mtx.RUnlock()
return float64(h.stats.SampleCount) / float64(h.stats.SeriesCount+1) / 250
}
func (h *headBlock) updateMapping() {
h.mtx.RLock()
if h.mapper.sortable != nil && h.mapper.Len() == len(h.descs) {
h.mtx.RUnlock()
return
}
cds := make([]*chunkDesc, len(h.descs))
copy(cds, h.descs)
h.mtx.RUnlock()
s := slice.SortInterface(cds, func(i, j int) bool {
return labels.Compare(cds[i].lset, cds[j].lset) < 0
})
h.mapper.update(s)
}
// remapPostings changes the order of the postings from their ID to the ordering
// of the series they reference.
// Returned postings have no longer monotonic IDs and MUST NOT be used for regular
// postings set operations, i.e. intersect and merge.
func (h *headBlock) remapPostings(p Postings) Postings {
list, err := expandPostings(p)
if err != nil {
return errPostings{err: err}
}
h.mapper.mtx.Lock()
defer h.mapper.mtx.Unlock()
h.updateMapping()
h.mapper.Sort(list)
return newListPostings(list)
}
// chunkDesc wraps a plain data chunk and provides cached meta data about it.
type chunkDesc struct {
mtx sync.RWMutex
ref uint32
lset labels.Labels
chunk chunks.Chunk
// Caching fielddb.
firstTimestamp int64
lastTimestamp int64
lastValue float64
numSamples int
sampleBuf [4]sample
app chunks.Appender // Current appender for the chunkdb.
}
func (cd *chunkDesc) append(ts int64, v float64) {
if cd.numSamples == 0 {
cd.firstTimestamp = ts
}
cd.app.Append(ts, v)
cd.lastTimestamp = ts
cd.lastValue = v
cd.numSamples++
cd.sampleBuf[0] = cd.sampleBuf[1]
cd.sampleBuf[1] = cd.sampleBuf[2]
cd.sampleBuf[2] = cd.sampleBuf[3]
cd.sampleBuf[3] = sample{t: ts, v: v}
}
func (cd *chunkDesc) iterator() chunks.Iterator {
it := &memSafeIterator{
Iterator: cd.chunk.Iterator(),
i: -1,
total: cd.numSamples,
buf: cd.sampleBuf,
}
return it
}
type memSafeIterator struct {
chunks.Iterator
i int
total int
buf [4]sample
}
func (it *memSafeIterator) Next() bool {
if it.i+1 >= it.total {
return false
}
it.i++
if it.total-it.i > 4 {
return it.Iterator.Next()
}
return true
}
func (it *memSafeIterator) At() (int64, float64) {
if it.total-it.i > 4 {
return it.Iterator.At()
}
s := it.buf[4-(it.total-it.i)]
return s.t, s.v
}
// positionMapper stores a position mapping from unsorted to
// sorted indices of a sortable collection.
type positionMapper struct {
mtx sync.RWMutex
sortable sort.Interface
iv, fw []int
}
func newPositionMapper(s sort.Interface) *positionMapper {
m := &positionMapper{}
if s != nil {
m.update(s)
}
return m
}
func (m *positionMapper) Len() int { return m.sortable.Len() }
func (m *positionMapper) Less(i, j int) bool { return m.sortable.Less(i, j) }
func (m *positionMapper) Swap(i, j int) {
m.sortable.Swap(i, j)
m.iv[i], m.iv[j] = m.iv[j], m.iv[i]
}
func (m *positionMapper) Sort(l []uint32) {
slice.Sort(l, func(i, j int) bool {
return m.fw[l[i]] < m.fw[l[j]]
})
}
func (m *positionMapper) update(s sort.Interface) {
m.sortable = s
m.iv = make([]int, s.Len())
m.fw = make([]int, s.Len())
for i := range m.iv {
m.iv[i] = i
}
sort.Sort(m)
for i, k := range m.iv {
m.fw[k] = i
}
}