mirror of
https://github.com/prometheus/prometheus
synced 2025-01-03 21:12:13 +00:00
af1d9e01c7
* Add float histograms to ChunkFromSamplesGeneric Signed-off-by: Justin Lei <justin.lei@grafana.com> * Add Generate*Samples functions to tsdbutil Signed-off-by: Justin Lei <justin.lei@grafana.com> * PR responses Signed-off-by: Justin Lei <justin.lei@grafana.com> --------- Signed-off-by: Justin Lei <justin.lei@grafana.com>
148 lines
3.5 KiB
Go
148 lines
3.5 KiB
Go
// Copyright 2018 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package tsdbutil
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/prometheus/prometheus/model/histogram"
|
|
"github.com/prometheus/prometheus/tsdb/chunkenc"
|
|
"github.com/prometheus/prometheus/tsdb/chunks"
|
|
)
|
|
|
|
type Samples interface {
|
|
Get(i int) Sample
|
|
Len() int
|
|
}
|
|
|
|
type Sample interface {
|
|
T() int64
|
|
V() float64
|
|
H() *histogram.Histogram
|
|
FH() *histogram.FloatHistogram
|
|
Type() chunkenc.ValueType
|
|
}
|
|
|
|
type SampleSlice []Sample
|
|
|
|
func (s SampleSlice) Get(i int) Sample { return s[i] }
|
|
func (s SampleSlice) Len() int { return len(s) }
|
|
|
|
// ChunkFromSamples requires all samples to have the same type.
|
|
func ChunkFromSamples(s []Sample) chunks.Meta {
|
|
return ChunkFromSamplesGeneric(SampleSlice(s))
|
|
}
|
|
|
|
// ChunkFromSamplesGeneric requires all samples to have the same type.
|
|
func ChunkFromSamplesGeneric(s Samples) chunks.Meta {
|
|
mint, maxt := int64(0), int64(0)
|
|
|
|
if s.Len() > 0 {
|
|
mint, maxt = s.Get(0).T(), s.Get(s.Len()-1).T()
|
|
}
|
|
|
|
if s.Len() == 0 {
|
|
return chunks.Meta{
|
|
Chunk: chunkenc.NewXORChunk(),
|
|
}
|
|
}
|
|
|
|
sampleType := s.Get(0).Type()
|
|
c, err := chunkenc.NewEmptyChunk(sampleType.ChunkEncoding())
|
|
if err != nil {
|
|
panic(err) // TODO(codesome): dont panic.
|
|
}
|
|
|
|
ca, _ := c.Appender()
|
|
|
|
for i := 0; i < s.Len(); i++ {
|
|
switch sampleType {
|
|
case chunkenc.ValFloat:
|
|
ca.Append(s.Get(i).T(), s.Get(i).V())
|
|
case chunkenc.ValHistogram:
|
|
ca.AppendHistogram(s.Get(i).T(), s.Get(i).H())
|
|
case chunkenc.ValFloatHistogram:
|
|
ca.AppendFloatHistogram(s.Get(i).T(), s.Get(i).FH())
|
|
default:
|
|
panic(fmt.Sprintf("unknown sample type %s", sampleType.String()))
|
|
}
|
|
}
|
|
return chunks.Meta{
|
|
MinTime: mint,
|
|
MaxTime: maxt,
|
|
Chunk: c,
|
|
}
|
|
}
|
|
|
|
type sample struct {
|
|
t int64
|
|
v float64
|
|
h *histogram.Histogram
|
|
fh *histogram.FloatHistogram
|
|
}
|
|
|
|
func (s sample) T() int64 {
|
|
return s.t
|
|
}
|
|
|
|
func (s sample) V() float64 {
|
|
return s.v
|
|
}
|
|
|
|
func (s sample) H() *histogram.Histogram {
|
|
return s.h
|
|
}
|
|
|
|
func (s sample) FH() *histogram.FloatHistogram {
|
|
return s.fh
|
|
}
|
|
|
|
func (s sample) Type() chunkenc.ValueType {
|
|
switch {
|
|
case s.h != nil:
|
|
return chunkenc.ValHistogram
|
|
case s.fh != nil:
|
|
return chunkenc.ValFloatHistogram
|
|
default:
|
|
return chunkenc.ValFloat
|
|
}
|
|
}
|
|
|
|
// PopulatedChunk creates a chunk populated with samples every second starting at minTime
|
|
func PopulatedChunk(numSamples int, minTime int64) chunks.Meta {
|
|
samples := make([]Sample, numSamples)
|
|
for i := 0; i < numSamples; i++ {
|
|
samples[i] = sample{t: minTime + int64(i*1000), v: 1.0}
|
|
}
|
|
return ChunkFromSamples(samples)
|
|
}
|
|
|
|
// GenerateSamples starting at start and counting up numSamples.
|
|
func GenerateSamples(start, numSamples int) []Sample {
|
|
return generateSamples(start, numSamples, func(i int) Sample {
|
|
return sample{
|
|
t: int64(i),
|
|
v: float64(i),
|
|
}
|
|
})
|
|
}
|
|
|
|
func generateSamples(start, numSamples int, gen func(int) Sample) []Sample {
|
|
samples := make([]Sample, 0, numSamples)
|
|
for i := start; i < start+numSamples; i++ {
|
|
samples = append(samples, gen(i))
|
|
}
|
|
return samples
|
|
}
|