prometheus/storage/metric/operation.go

347 lines
9.8 KiB
Go

// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric
import (
"fmt"
"sort"
"time"
clientmodel "github.com/prometheus/client_golang/model"
)
// op encapsulates a primitive query operation.
type op interface {
// Fingerprint returns the fingerprint of the metric this operation
// operates on.
Fingerprint() *clientmodel.Fingerprint
// ExtractSamples extracts samples from a stream of values and advances
// the operation time.
ExtractSamples(Values) Values
// Consumed returns whether the operator has consumed all data it needs.
Consumed() bool
// CurrentTime gets the current operation time. In a newly created op,
// this is the starting time of the operation. During ongoing execution
// of the op, the current time is advanced accordingly. Once no
// subsequent work associated with the operation remains, nil is
// returned.
CurrentTime() clientmodel.Timestamp
}
// durationOperator encapsulates a general operation that occurs over a
// duration.
type durationOperator interface {
op
Through() clientmodel.Timestamp
}
// ops is a heap of operations, primary sorting key is the fingerprint.
type ops []op
// Len implements sort.Interface and heap.Interface.
func (o ops) Len() int {
return len(o)
}
// Less implements sort.Interface and heap.Interface. It compares the
// fingerprints. If they are equal, the comparison is delegated to
// currentTimeSort.
func (o ops) Less(i, j int) bool {
fpi := o[i].Fingerprint()
fpj := o[j].Fingerprint()
if fpi.Equal(fpj) {
return currentTimeSort{o}.Less(i, j)
}
return fpi.Less(fpj)
}
// Swap implements sort.Interface and heap.Interface.
func (o ops) Swap(i, j int) {
o[i], o[j] = o[j], o[i]
}
// Push implements heap.Interface.
func (o *ops) Push(x interface{}) {
// Push and Pop use pointer receivers because they modify the slice's
// length, not just its contents.
*o = append(*o, x.(op))
}
// Push implements heap.Interface.
func (o *ops) Pop() interface{} {
old := *o
n := len(old)
x := old[n-1]
*o = old[0 : n-1]
return x
}
// currentTimeSort is a wrapper for ops with customized sorting order.
type currentTimeSort struct {
ops
}
// currentTimeSort implements sort.Interface and sorts the operations in
// chronological order by their current time.
func (s currentTimeSort) Less(i, j int) bool {
return s.ops[i].CurrentTime().Before(s.ops[j].CurrentTime())
}
// baseOp contains the implementations and fields shared between different op
// types.
type baseOp struct {
fp clientmodel.Fingerprint
current clientmodel.Timestamp
}
func (g *baseOp) Fingerprint() *clientmodel.Fingerprint {
return &g.fp
}
func (g *baseOp) CurrentTime() clientmodel.Timestamp {
return g.current
}
// getValuesAtTimeOp encapsulates getting values at or adjacent to a specific
// time.
type getValuesAtTimeOp struct {
baseOp
consumed bool
}
func (g *getValuesAtTimeOp) String() string {
return fmt.Sprintf("getValuesAtTimeOp at %s", g.current)
}
func (g *getValuesAtTimeOp) ExtractSamples(in Values) (out Values) {
if len(in) == 0 {
return
}
out = extractValuesAroundTime(g.current, in)
g.consumed = true
return
}
func (g getValuesAtTimeOp) Consumed() bool {
return g.consumed
}
// getValuesAtIntervalOp encapsulates getting values at a given interval over a
// duration.
type getValuesAtIntervalOp struct {
baseOp
through clientmodel.Timestamp
interval time.Duration
}
func (g *getValuesAtIntervalOp) String() string {
return fmt.Sprintf("getValuesAtIntervalOp from %s each %s through %s", g.current, g.interval, g.through)
}
func (g *getValuesAtIntervalOp) Through() clientmodel.Timestamp {
return g.through
}
func (g *getValuesAtIntervalOp) ExtractSamples(in Values) (out Values) {
if len(in) == 0 {
return
}
lastChunkTime := in[len(in)-1].Timestamp
for len(in) > 0 {
out = append(out, extractValuesAroundTime(g.current, in)...)
lastExtractedTime := out[len(out)-1].Timestamp
in = in.TruncateBefore(lastExtractedTime.Add(
clientmodel.MinimumTick))
g.current = g.current.Add(g.interval)
for !g.current.After(lastExtractedTime) {
g.current = g.current.Add(g.interval)
}
if lastExtractedTime.Equal(lastChunkTime) {
break
}
if g.current.After(g.through) {
break
}
}
return
}
func (g *getValuesAtIntervalOp) Consumed() bool {
return g.current.After(g.through)
}
// getValuesAlongRangeOp encapsulates getting all values in a given range.
type getValuesAlongRangeOp struct {
baseOp
through clientmodel.Timestamp
}
func (g *getValuesAlongRangeOp) String() string {
return fmt.Sprintf("getValuesAlongRangeOp from %s through %s", g.current, g.through)
}
func (g *getValuesAlongRangeOp) Through() clientmodel.Timestamp {
return g.through
}
func (g *getValuesAlongRangeOp) ExtractSamples(in Values) (out Values) {
if len(in) == 0 {
return
}
// Find the first sample where time >= g.current.
firstIdx := sort.Search(len(in), func(i int) bool {
return !in[i].Timestamp.Before(g.current)
})
if firstIdx == len(in) {
// No samples at or after operator start time. This can only
// happen if we try applying the operator to a time after the
// last recorded sample. In this case, we're finished.
g.current = g.through.Add(clientmodel.MinimumTick)
return
}
// Find the first sample where time > g.through.
lastIdx := sort.Search(len(in), func(i int) bool {
return in[i].Timestamp.After(g.through)
})
if lastIdx == firstIdx {
g.current = g.through.Add(clientmodel.MinimumTick)
return
}
lastSampleTime := in[lastIdx-1].Timestamp
// Sample times are stored with a maximum time resolution of one second,
// so we have to add exactly that to target the next chunk on the next
// op iteration.
g.current = lastSampleTime.Add(time.Second)
return in[firstIdx:lastIdx]
}
func (g *getValuesAlongRangeOp) Consumed() bool {
return g.current.After(g.through)
}
// getValueRangeAtIntervalOp encapsulates getting all values from ranges along
// intervals.
//
// Works just like getValuesAlongRangeOp, but when from > through, through is
// incremented by interval and from is reset to through-rangeDuration. Returns
// current time nil when from > totalThrough.
type getValueRangeAtIntervalOp struct {
baseOp
rangeThrough clientmodel.Timestamp
rangeDuration time.Duration
interval time.Duration
through clientmodel.Timestamp
}
func (g *getValueRangeAtIntervalOp) String() string {
return fmt.Sprintf("getValueRangeAtIntervalOp range %s from %s each %s through %s", g.rangeDuration, g.current, g.interval, g.through)
}
func (g *getValueRangeAtIntervalOp) Through() clientmodel.Timestamp {
panic("not implemented")
}
func (g *getValueRangeAtIntervalOp) advanceToNextInterval() {
g.rangeThrough = g.rangeThrough.Add(g.interval)
g.current = g.rangeThrough.Add(-g.rangeDuration)
}
func (g *getValueRangeAtIntervalOp) ExtractSamples(in Values) (out Values) {
if len(in) == 0 {
return
}
// Find the first sample where time >= g.current.
firstIdx := sort.Search(len(in), func(i int) bool {
return !in[i].Timestamp.Before(g.current)
})
if firstIdx == len(in) {
// No samples at or after operator start time. This can only
// happen if we try applying the operator to a time after the
// last recorded sample. In this case, we're finished.
g.current = g.through.Add(clientmodel.MinimumTick)
return
}
// Find the first sample where time > g.rangeThrough.
lastIdx := sort.Search(len(in), func(i int) bool {
return in[i].Timestamp.After(g.rangeThrough)
})
// This only happens when there is only one sample and it is both after
// g.current and after g.rangeThrough. In this case, both indexes are 0.
if lastIdx == firstIdx {
g.advanceToNextInterval()
return
}
lastSampleTime := in[lastIdx-1].Timestamp
// Sample times are stored with a maximum time resolution of one second,
// so we have to add exactly that to target the next chunk on the next
// op iteration.
g.current = lastSampleTime.Add(time.Second)
if g.current.After(g.rangeThrough) {
g.advanceToNextInterval()
}
return in[firstIdx:lastIdx]
}
func (g *getValueRangeAtIntervalOp) Consumed() bool {
return g.current.After(g.through)
}
// getValuesAtIntervalOps contains getValuesAtIntervalOp operations. It
// implements sort.Interface and sorts the operations in ascending order by
// their frequency.
type getValuesAtIntervalOps []*getValuesAtIntervalOp
func (s getValuesAtIntervalOps) Len() int {
return len(s)
}
func (s getValuesAtIntervalOps) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s getValuesAtIntervalOps) Less(i, j int) bool {
return s[i].interval < s[j].interval
}
// extractValuesAroundTime searches for the provided time in the list of
// available samples and emits a slice containing the data points that
// are adjacent to it.
//
// An assumption of this is that the provided samples are already sorted!
func extractValuesAroundTime(t clientmodel.Timestamp, in Values) Values {
i := sort.Search(len(in), func(i int) bool {
return !in[i].Timestamp.Before(t)
})
if i == len(in) {
// Target time is past the end, return only the last sample.
return in[len(in)-1:]
}
if in[i].Timestamp.Equal(t) && len(in) > i+1 {
// We hit exactly the current sample time. Very unlikely in
// practice. Return only the current sample.
return in[i : i+1]
}
if i == 0 {
// We hit before the first sample time. Return only the first
// sample.
return in[0:1]
}
// We hit between two samples. Return both surrounding samples.
return in[i-1 : i+1]
}