prometheus/promql/promqltest/test.go

1470 lines
40 KiB
Go

// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promqltest
import (
"context"
"embed"
"errors"
"fmt"
"io/fs"
"math"
"sort"
"strconv"
"strings"
"testing"
"time"
"github.com/grafana/regexp"
"github.com/prometheus/common/model"
"github.com/stretchr/testify/require"
"github.com/prometheus/prometheus/model/exemplar"
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/model/timestamp"
"github.com/prometheus/prometheus/promql"
"github.com/prometheus/prometheus/promql/parser"
"github.com/prometheus/prometheus/promql/parser/posrange"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/util/almost"
"github.com/prometheus/prometheus/util/teststorage"
"github.com/prometheus/prometheus/util/testutil"
)
var (
patSpace = regexp.MustCompile("[\t ]+")
patLoad = regexp.MustCompile(`^load(?:_(with_nhcb))?\s+(.+?)$`)
patEvalInstant = regexp.MustCompile(`^eval(?:_(fail|warn|ordered))?\s+instant\s+(?:at\s+(.+?))?\s+(.+)$`)
patEvalRange = regexp.MustCompile(`^eval(?:_(fail|warn))?\s+range\s+from\s+(.+)\s+to\s+(.+)\s+step\s+(.+?)\s+(.+)$`)
)
const (
defaultEpsilon = 0.000001 // Relative error allowed for sample values.
DefaultMaxSamplesPerQuery = 10000
)
type TBRun interface {
testing.TB
Run(string, func(*testing.T)) bool
}
var testStartTime = time.Unix(0, 0).UTC()
// LoadedStorage returns storage with generated data using the provided load statements.
// Non-load statements will cause test errors.
func LoadedStorage(t testutil.T, input string) *teststorage.TestStorage {
test, err := newTest(t, input)
require.NoError(t, err)
for _, cmd := range test.cmds {
switch cmd.(type) {
case *loadCmd:
require.NoError(t, test.exec(cmd, nil))
default:
t.Errorf("only 'load' commands accepted, got '%s'", cmd)
}
}
return test.storage
}
// NewTestEngine creates a promql.Engine with enablePerStepStats, lookbackDelta and maxSamples, and returns it.
func NewTestEngine(tb testing.TB, enablePerStepStats bool, lookbackDelta time.Duration, maxSamples int) *promql.Engine {
return NewTestEngineWithOpts(tb, promql.EngineOpts{
Logger: nil,
Reg: nil,
MaxSamples: maxSamples,
Timeout: 100 * time.Second,
NoStepSubqueryIntervalFn: func(int64) int64 { return durationMilliseconds(1 * time.Minute) },
EnableAtModifier: true,
EnableNegativeOffset: true,
EnablePerStepStats: enablePerStepStats,
LookbackDelta: lookbackDelta,
EnableDelayedNameRemoval: true,
})
}
// NewTestEngineWithOpts creates a promql.Engine with opts and returns it.
func NewTestEngineWithOpts(tb testing.TB, opts promql.EngineOpts) *promql.Engine {
tb.Helper()
ng := promql.NewEngine(opts)
tb.Cleanup(func() {
require.NoError(tb, ng.Close())
})
return ng
}
// RunBuiltinTests runs an acceptance test suite against the provided engine.
func RunBuiltinTests(t TBRun, engine promql.QueryEngine) {
t.Cleanup(func() { parser.EnableExperimentalFunctions = false })
parser.EnableExperimentalFunctions = true
files, err := fs.Glob(testsFs, "*/*.test")
require.NoError(t, err)
for _, fn := range files {
t.Run(fn, func(t *testing.T) {
content, err := fs.ReadFile(testsFs, fn)
require.NoError(t, err)
RunTest(t, string(content), engine)
})
}
}
// RunTest parses and runs the test against the provided engine.
func RunTest(t testutil.T, input string, engine promql.QueryEngine) {
require.NoError(t, runTest(t, input, engine))
}
func runTest(t testutil.T, input string, engine promql.QueryEngine) error {
test, err := newTest(t, input)
// Why do this before checking err? newTest() can create the test storage and then return an error,
// and we want to make sure to clean that up to avoid leaking goroutines.
defer func() {
if test == nil {
return
}
if test.storage != nil {
test.storage.Close()
}
if test.cancelCtx != nil {
test.cancelCtx()
}
}()
if err != nil {
return err
}
for _, cmd := range test.cmds {
if err := test.exec(cmd, engine); err != nil {
// TODO(fabxc): aggregate command errors, yield diffs for result
// comparison errors.
return err
}
}
return nil
}
// test is a sequence of read and write commands that are run
// against a test storage.
type test struct {
testutil.T
cmds []testCommand
storage *teststorage.TestStorage
context context.Context
cancelCtx context.CancelFunc
}
// newTest returns an initialized empty Test.
func newTest(t testutil.T, input string) (*test, error) {
test := &test{
T: t,
cmds: []testCommand{},
}
err := test.parse(input)
test.clear()
return test, err
}
//go:embed testdata
var testsFs embed.FS
func raise(line int, format string, v ...interface{}) error {
return &parser.ParseErr{
LineOffset: line,
Err: fmt.Errorf(format, v...),
}
}
func parseLoad(lines []string, i int) (int, *loadCmd, error) {
if !patLoad.MatchString(lines[i]) {
return i, nil, raise(i, "invalid load command. (load[_with_nhcb] <step:duration>)")
}
parts := patLoad.FindStringSubmatch(lines[i])
var (
withNHCB = parts[1] == "with_nhcb"
step = parts[2]
)
gap, err := model.ParseDuration(step)
if err != nil {
return i, nil, raise(i, "invalid step definition %q: %s", step, err)
}
cmd := newLoadCmd(time.Duration(gap), withNHCB)
for i+1 < len(lines) {
i++
defLine := lines[i]
if len(defLine) == 0 {
i--
break
}
metric, vals, err := parseSeries(defLine, i)
if err != nil {
return i, nil, err
}
cmd.set(metric, vals...)
}
return i, cmd, nil
}
func parseSeries(defLine string, line int) (labels.Labels, []parser.SequenceValue, error) {
metric, vals, err := parser.ParseSeriesDesc(defLine)
if err != nil {
parser.EnrichParseError(err, func(parseErr *parser.ParseErr) {
parseErr.LineOffset = line
})
return labels.Labels{}, nil, err
}
return metric, vals, nil
}
func (t *test) parseEval(lines []string, i int) (int, *evalCmd, error) {
instantParts := patEvalInstant.FindStringSubmatch(lines[i])
rangeParts := patEvalRange.FindStringSubmatch(lines[i])
if instantParts == nil && rangeParts == nil {
return i, nil, raise(i, "invalid evaluation command. Must be either 'eval[_fail|_warn|_ordered] instant [at <offset:duration>] <query>' or 'eval[_fail|_warn] range from <from> to <to> step <step> <query>'")
}
isInstant := instantParts != nil
var mod string
var expr string
if isInstant {
mod = instantParts[1]
expr = instantParts[3]
} else {
mod = rangeParts[1]
expr = rangeParts[5]
}
_, err := parser.ParseExpr(expr)
if err != nil {
parser.EnrichParseError(err, func(parseErr *parser.ParseErr) {
parseErr.LineOffset = i
posOffset := posrange.Pos(strings.Index(lines[i], expr))
parseErr.PositionRange.Start += posOffset
parseErr.PositionRange.End += posOffset
parseErr.Query = lines[i]
})
return i, nil, err
}
formatErr := func(format string, args ...any) error {
combinedArgs := []any{expr, i + 1}
combinedArgs = append(combinedArgs, args...)
return fmt.Errorf("error in eval %s (line %v): "+format, combinedArgs...)
}
var cmd *evalCmd
if isInstant {
at := instantParts[2]
offset, err := model.ParseDuration(at)
if err != nil {
return i, nil, formatErr("invalid timestamp definition %q: %s", at, err)
}
ts := testStartTime.Add(time.Duration(offset))
cmd = newInstantEvalCmd(expr, ts, i+1)
} else {
from := rangeParts[2]
to := rangeParts[3]
step := rangeParts[4]
parsedFrom, err := model.ParseDuration(from)
if err != nil {
return i, nil, formatErr("invalid start timestamp definition %q: %s", from, err)
}
parsedTo, err := model.ParseDuration(to)
if err != nil {
return i, nil, formatErr("invalid end timestamp definition %q: %s", to, err)
}
if parsedTo < parsedFrom {
return i, nil, formatErr("invalid test definition, end timestamp (%s) is before start timestamp (%s)", to, from)
}
parsedStep, err := model.ParseDuration(step)
if err != nil {
return i, nil, formatErr("invalid step definition %q: %s", step, err)
}
cmd = newRangeEvalCmd(expr, testStartTime.Add(time.Duration(parsedFrom)), testStartTime.Add(time.Duration(parsedTo)), time.Duration(parsedStep), i+1)
}
switch mod {
case "ordered":
// Ordered results are not supported for range queries, but the regex for range query commands does not allow
// asserting an ordered result, so we don't need to do any error checking here.
cmd.ordered = true
case "fail":
cmd.fail = true
case "warn":
cmd.warn = true
}
for j := 1; i+1 < len(lines); j++ {
i++
defLine := lines[i]
if len(defLine) == 0 {
i--
break
}
if cmd.fail && strings.HasPrefix(defLine, "expected_fail_message") {
cmd.expectedFailMessage = strings.TrimSpace(strings.TrimPrefix(defLine, "expected_fail_message"))
break
}
if cmd.fail && strings.HasPrefix(defLine, "expected_fail_regexp") {
pattern := strings.TrimSpace(strings.TrimPrefix(defLine, "expected_fail_regexp"))
cmd.expectedFailRegexp, err = regexp.Compile(pattern)
if err != nil {
return i, nil, formatErr("invalid regexp '%s' for expected_fail_regexp: %w", pattern, err)
}
break
}
if f, err := parseNumber(defLine); err == nil {
cmd.expect(0, parser.SequenceValue{Value: f})
break
}
metric, vals, err := parseSeries(defLine, i)
if err != nil {
return i, nil, err
}
// Currently, we are not expecting any matrices.
if len(vals) > 1 && isInstant {
return i, nil, formatErr("expecting multiple values in instant evaluation not allowed")
}
cmd.expectMetric(j, metric, vals...)
}
return i, cmd, nil
}
// getLines returns trimmed lines after removing the comments.
func getLines(input string) []string {
lines := strings.Split(input, "\n")
for i, l := range lines {
l = strings.TrimSpace(l)
if strings.HasPrefix(l, "#") {
l = ""
}
lines[i] = l
}
return lines
}
// parse the given command sequence and appends it to the test.
func (t *test) parse(input string) error {
lines := getLines(input)
var err error
// Scan for steps line by line.
for i := 0; i < len(lines); i++ {
l := lines[i]
if len(l) == 0 {
continue
}
var cmd testCommand
switch c := strings.ToLower(patSpace.Split(l, 2)[0]); {
case c == "clear":
cmd = &clearCmd{}
case strings.HasPrefix(c, "load"):
i, cmd, err = parseLoad(lines, i)
case strings.HasPrefix(c, "eval"):
i, cmd, err = t.parseEval(lines, i)
default:
return raise(i, "invalid command %q", l)
}
if err != nil {
return err
}
t.cmds = append(t.cmds, cmd)
}
return nil
}
// testCommand is an interface that ensures that only the package internal
// types can be a valid command for a test.
type testCommand interface {
testCmd()
}
func (*clearCmd) testCmd() {}
func (*loadCmd) testCmd() {}
func (*evalCmd) testCmd() {}
// loadCmd is a command that loads sequences of sample values for specific
// metrics into the storage.
type loadCmd struct {
gap time.Duration
metrics map[uint64]labels.Labels
defs map[uint64][]promql.Sample
exemplars map[uint64][]exemplar.Exemplar
withNHCB bool
}
func newLoadCmd(gap time.Duration, withNHCB bool) *loadCmd {
return &loadCmd{
gap: gap,
metrics: map[uint64]labels.Labels{},
defs: map[uint64][]promql.Sample{},
exemplars: map[uint64][]exemplar.Exemplar{},
withNHCB: withNHCB,
}
}
func (cmd loadCmd) String() string {
return "load"
}
// set a sequence of sample values for the given metric.
func (cmd *loadCmd) set(m labels.Labels, vals ...parser.SequenceValue) {
h := m.Hash()
samples := make([]promql.Sample, 0, len(vals))
ts := testStartTime
for _, v := range vals {
if !v.Omitted {
samples = append(samples, promql.Sample{
T: ts.UnixNano() / int64(time.Millisecond/time.Nanosecond),
F: v.Value,
H: v.Histogram,
})
}
ts = ts.Add(cmd.gap)
}
cmd.defs[h] = samples
cmd.metrics[h] = m
}
// append the defined time series to the storage.
func (cmd *loadCmd) append(a storage.Appender) error {
for h, smpls := range cmd.defs {
m := cmd.metrics[h]
for _, s := range smpls {
if err := appendSample(a, s, m); err != nil {
return err
}
}
}
if cmd.withNHCB {
return cmd.appendCustomHistogram(a)
}
return nil
}
func getHistogramMetricBase(m labels.Labels, suffix string) (labels.Labels, uint64) {
mName := m.Get(labels.MetricName)
baseM := labels.NewBuilder(m).
Set(labels.MetricName, strings.TrimSuffix(mName, suffix)).
Del(labels.BucketLabel).
Labels()
hash := baseM.Hash()
return baseM, hash
}
type tempHistogramWrapper struct {
metric labels.Labels
upperBounds []float64
histogramByTs map[int64]tempHistogram
}
func newTempHistogramWrapper() tempHistogramWrapper {
return tempHistogramWrapper{
upperBounds: []float64{},
histogramByTs: map[int64]tempHistogram{},
}
}
type tempHistogram struct {
bucketCounts map[float64]float64
count float64
sum float64
}
func newTempHistogram() tempHistogram {
return tempHistogram{
bucketCounts: map[float64]float64{},
}
}
func processClassicHistogramSeries(m labels.Labels, suffix string, histogramMap map[uint64]tempHistogramWrapper, smpls []promql.Sample, updateHistogramWrapper func(*tempHistogramWrapper), updateHistogram func(*tempHistogram, float64)) {
m2, m2hash := getHistogramMetricBase(m, suffix)
histogramWrapper, exists := histogramMap[m2hash]
if !exists {
histogramWrapper = newTempHistogramWrapper()
}
histogramWrapper.metric = m2
if updateHistogramWrapper != nil {
updateHistogramWrapper(&histogramWrapper)
}
for _, s := range smpls {
if s.H != nil {
continue
}
histogram, exists := histogramWrapper.histogramByTs[s.T]
if !exists {
histogram = newTempHistogram()
}
updateHistogram(&histogram, s.F)
histogramWrapper.histogramByTs[s.T] = histogram
}
histogramMap[m2hash] = histogramWrapper
}
func processUpperBoundsAndCreateBaseHistogram(upperBounds0 []float64) ([]float64, *histogram.FloatHistogram) {
sort.Float64s(upperBounds0)
upperBounds := make([]float64, 0, len(upperBounds0))
prevLE := math.Inf(-1)
for _, le := range upperBounds0 {
if le != prevLE { // deduplicate
upperBounds = append(upperBounds, le)
prevLE = le
}
}
var customBounds []float64
if upperBounds[len(upperBounds)-1] == math.Inf(1) {
customBounds = upperBounds[:len(upperBounds)-1]
} else {
customBounds = upperBounds
}
return upperBounds, &histogram.FloatHistogram{
Count: 0,
Sum: 0,
Schema: histogram.CustomBucketsSchema,
PositiveSpans: []histogram.Span{
{Offset: 0, Length: uint32(len(upperBounds))},
},
PositiveBuckets: make([]float64, len(upperBounds)),
CustomValues: customBounds,
}
}
// If classic histograms are defined, convert them into native histograms with custom
// bounds and append the defined time series to the storage.
func (cmd *loadCmd) appendCustomHistogram(a storage.Appender) error {
histogramMap := map[uint64]tempHistogramWrapper{}
// Go through all the time series to collate classic histogram data
// and organise them by timestamp.
for hash, smpls := range cmd.defs {
m := cmd.metrics[hash]
mName := m.Get(labels.MetricName)
switch {
case strings.HasSuffix(mName, "_bucket") && m.Has(labels.BucketLabel):
le, err := strconv.ParseFloat(m.Get(labels.BucketLabel), 64)
if err != nil || math.IsNaN(le) {
continue
}
processClassicHistogramSeries(m, "_bucket", histogramMap, smpls, func(histogramWrapper *tempHistogramWrapper) {
histogramWrapper.upperBounds = append(histogramWrapper.upperBounds, le)
}, func(histogram *tempHistogram, f float64) {
histogram.bucketCounts[le] = f
})
case strings.HasSuffix(mName, "_count"):
processClassicHistogramSeries(m, "_count", histogramMap, smpls, nil, func(histogram *tempHistogram, f float64) {
histogram.count = f
})
case strings.HasSuffix(mName, "_sum"):
processClassicHistogramSeries(m, "_sum", histogramMap, smpls, nil, func(histogram *tempHistogram, f float64) {
histogram.sum = f
})
}
}
// Convert the collated classic histogram data into native histograms
// with custom bounds and append them to the storage.
for _, histogramWrapper := range histogramMap {
upperBounds, fhBase := processUpperBoundsAndCreateBaseHistogram(histogramWrapper.upperBounds)
samples := make([]promql.Sample, 0, len(histogramWrapper.histogramByTs))
for t, histogram := range histogramWrapper.histogramByTs {
fh := fhBase.Copy()
var prevCount, total float64
for i, le := range upperBounds {
currCount, exists := histogram.bucketCounts[le]
if !exists {
currCount = 0
}
count := currCount - prevCount
fh.PositiveBuckets[i] = count
total += count
prevCount = currCount
}
fh.Sum = histogram.sum
if histogram.count != 0 {
total = histogram.count
}
fh.Count = total
s := promql.Sample{T: t, H: fh.Compact(0)}
if err := s.H.Validate(); err != nil {
return err
}
samples = append(samples, s)
}
sort.Slice(samples, func(i, j int) bool { return samples[i].T < samples[j].T })
for _, s := range samples {
if err := appendSample(a, s, histogramWrapper.metric); err != nil {
return err
}
}
}
return nil
}
func appendSample(a storage.Appender, s promql.Sample, m labels.Labels) error {
if s.H != nil {
if _, err := a.AppendHistogram(0, m, s.T, nil, s.H); err != nil {
return err
}
} else {
if _, err := a.Append(0, m, s.T, s.F); err != nil {
return err
}
}
return nil
}
// evalCmd is a command that evaluates an expression for the given time (range)
// and expects a specific result.
type evalCmd struct {
expr string
start time.Time
end time.Time
step time.Duration
line int
isRange bool // if false, instant query
fail, warn, ordered bool
expectedFailMessage string
expectedFailRegexp *regexp.Regexp
metrics map[uint64]labels.Labels
expectScalar bool
expected map[uint64]entry
}
type entry struct {
pos int
vals []parser.SequenceValue
}
func (e entry) String() string {
return fmt.Sprintf("%d: %s", e.pos, e.vals)
}
func newInstantEvalCmd(expr string, start time.Time, line int) *evalCmd {
return &evalCmd{
expr: expr,
start: start,
line: line,
metrics: map[uint64]labels.Labels{},
expected: map[uint64]entry{},
}
}
func newRangeEvalCmd(expr string, start, end time.Time, step time.Duration, line int) *evalCmd {
return &evalCmd{
expr: expr,
start: start,
end: end,
step: step,
line: line,
isRange: true,
metrics: map[uint64]labels.Labels{},
expected: map[uint64]entry{},
}
}
func (ev *evalCmd) String() string {
return "eval"
}
// expect adds a sequence of values to the set of expected
// results for the query.
func (ev *evalCmd) expect(pos int, vals ...parser.SequenceValue) {
ev.expectScalar = true
ev.expected[0] = entry{pos: pos, vals: vals}
}
// expectMetric adds a new metric with a sequence of values to the set of expected
// results for the query.
func (ev *evalCmd) expectMetric(pos int, m labels.Labels, vals ...parser.SequenceValue) {
ev.expectScalar = false
h := m.Hash()
ev.metrics[h] = m
ev.expected[h] = entry{pos: pos, vals: vals}
}
// compareResult compares the result value with the defined expectation.
func (ev *evalCmd) compareResult(result parser.Value) error {
switch val := result.(type) {
case promql.Matrix:
if ev.ordered {
return fmt.Errorf("expected ordered result, but query returned a matrix")
}
if ev.expectScalar {
return fmt.Errorf("expected scalar result, but got matrix %s", val.String())
}
if err := assertMatrixSorted(val); err != nil {
return err
}
seen := map[uint64]bool{}
for _, s := range val {
hash := s.Metric.Hash()
if _, ok := ev.metrics[hash]; !ok {
return fmt.Errorf("unexpected metric %s in result, has %s", s.Metric, formatSeriesResult(s))
}
seen[hash] = true
exp := ev.expected[hash]
var expectedFloats []promql.FPoint
var expectedHistograms []promql.HPoint
for i, e := range exp.vals {
ts := ev.start.Add(time.Duration(i) * ev.step)
if ts.After(ev.end) {
return fmt.Errorf("expected %v points for %s, but query time range cannot return this many points", len(exp.vals), ev.metrics[hash])
}
t := ts.UnixNano() / int64(time.Millisecond/time.Nanosecond)
if e.Histogram != nil {
expectedHistograms = append(expectedHistograms, promql.HPoint{T: t, H: e.Histogram})
} else if !e.Omitted {
expectedFloats = append(expectedFloats, promql.FPoint{T: t, F: e.Value})
}
}
if len(expectedFloats) != len(s.Floats) || len(expectedHistograms) != len(s.Histograms) {
return fmt.Errorf("expected %v float points and %v histogram points for %s, but got %s", len(expectedFloats), len(expectedHistograms), ev.metrics[hash], formatSeriesResult(s))
}
for i, expected := range expectedFloats {
actual := s.Floats[i]
if expected.T != actual.T {
return fmt.Errorf("expected float value at index %v for %s to have timestamp %v, but it had timestamp %v (result has %s)", i, ev.metrics[hash], expected.T, actual.T, formatSeriesResult(s))
}
if !almost.Equal(actual.F, expected.F, defaultEpsilon) {
return fmt.Errorf("expected float value at index %v (t=%v) for %s to be %v, but got %v (result has %s)", i, actual.T, ev.metrics[hash], expected.F, actual.F, formatSeriesResult(s))
}
}
for i, expected := range expectedHistograms {
actual := s.Histograms[i]
if expected.T != actual.T {
return fmt.Errorf("expected histogram value at index %v for %s to have timestamp %v, but it had timestamp %v (result has %s)", i, ev.metrics[hash], expected.T, actual.T, formatSeriesResult(s))
}
if !compareNativeHistogram(expected.H.Compact(0), actual.H.Compact(0)) {
return fmt.Errorf("expected histogram value at index %v (t=%v) for %s to be %v, but got %v (result has %s)", i, actual.T, ev.metrics[hash], expected.H, actual.H, formatSeriesResult(s))
}
}
}
for hash := range ev.expected {
if !seen[hash] {
return fmt.Errorf("expected metric %s not found", ev.metrics[hash])
}
}
case promql.Vector:
if ev.expectScalar {
return fmt.Errorf("expected scalar result, but got vector %s", val.String())
}
seen := map[uint64]bool{}
for pos, v := range val {
fp := v.Metric.Hash()
if _, ok := ev.metrics[fp]; !ok {
if v.H != nil {
return fmt.Errorf("unexpected metric %s in result, has value %v", v.Metric, v.H)
}
return fmt.Errorf("unexpected metric %s in result, has value %v", v.Metric, v.F)
}
exp := ev.expected[fp]
if ev.ordered && exp.pos != pos+1 {
return fmt.Errorf("expected metric %s with %v at position %d but was at %d", v.Metric, exp.vals, exp.pos, pos+1)
}
exp0 := exp.vals[0]
expH := exp0.Histogram
if expH == nil && v.H != nil {
return fmt.Errorf("expected float value %v for %s but got histogram %s", exp0, v.Metric, HistogramTestExpression(v.H))
}
if expH != nil && v.H == nil {
return fmt.Errorf("expected histogram %s for %s but got float value %v", HistogramTestExpression(expH), v.Metric, v.F)
}
if expH != nil && !compareNativeHistogram(expH.Compact(0), v.H.Compact(0)) {
return fmt.Errorf("expected %v for %s but got %s", HistogramTestExpression(expH), v.Metric, HistogramTestExpression(v.H))
}
if !almost.Equal(exp0.Value, v.F, defaultEpsilon) {
return fmt.Errorf("expected %v for %s but got %v", exp0.Value, v.Metric, v.F)
}
seen[fp] = true
}
for fp, expVals := range ev.expected {
if !seen[fp] {
return fmt.Errorf("expected metric %s with %v not found", ev.metrics[fp], expVals)
}
}
case promql.Scalar:
if !ev.expectScalar {
return fmt.Errorf("expected vector or matrix result, but got %s", val.String())
}
exp0 := ev.expected[0].vals[0]
if exp0.Histogram != nil {
return fmt.Errorf("expected histogram %v but got %s", exp0.Histogram.TestExpression(), val.String())
}
if !almost.Equal(exp0.Value, val.V, defaultEpsilon) {
return fmt.Errorf("expected scalar %v but got %v", exp0.Value, val.V)
}
default:
panic(fmt.Errorf("promql.Test.compareResult: unexpected result type %T", result))
}
return nil
}
// compareNativeHistogram is helper function to compare two native histograms
// which can tolerate some differ in the field of float type, such as Count, Sum.
func compareNativeHistogram(exp, cur *histogram.FloatHistogram) bool {
if exp == nil || cur == nil {
return false
}
if exp.Schema != cur.Schema ||
!almost.Equal(exp.Count, cur.Count, defaultEpsilon) ||
!almost.Equal(exp.Sum, cur.Sum, defaultEpsilon) {
return false
}
if exp.UsesCustomBuckets() {
if !histogram.FloatBucketsMatch(exp.CustomValues, cur.CustomValues) {
return false
}
}
if exp.ZeroThreshold != cur.ZeroThreshold ||
!almost.Equal(exp.ZeroCount, cur.ZeroCount, defaultEpsilon) {
return false
}
if !spansMatch(exp.NegativeSpans, cur.NegativeSpans) {
return false
}
if !floatBucketsMatch(exp.NegativeBuckets, cur.NegativeBuckets) {
return false
}
if !spansMatch(exp.PositiveSpans, cur.PositiveSpans) {
return false
}
if !floatBucketsMatch(exp.PositiveBuckets, cur.PositiveBuckets) {
return false
}
return true
}
func floatBucketsMatch(b1, b2 []float64) bool {
if len(b1) != len(b2) {
return false
}
for i, b := range b1 {
if !almost.Equal(b, b2[i], defaultEpsilon) {
return false
}
}
return true
}
func spansMatch(s1, s2 []histogram.Span) bool {
if len(s1) == 0 && len(s2) == 0 {
return true
}
s1idx, s2idx := 0, 0
for {
if s1idx >= len(s1) {
return allEmptySpans(s2[s2idx:])
}
if s2idx >= len(s2) {
return allEmptySpans(s1[s1idx:])
}
currS1, currS2 := s1[s1idx], s2[s2idx]
s1idx++
s2idx++
if currS1.Length == 0 {
// This span is zero length, so we add consecutive such spans
// until we find a non-zero span.
for ; s1idx < len(s1) && s1[s1idx].Length == 0; s1idx++ {
currS1.Offset += s1[s1idx].Offset
}
if s1idx < len(s1) {
currS1.Offset += s1[s1idx].Offset
currS1.Length = s1[s1idx].Length
s1idx++
}
}
if currS2.Length == 0 {
// This span is zero length, so we add consecutive such spans
// until we find a non-zero span.
for ; s2idx < len(s2) && s2[s2idx].Length == 0; s2idx++ {
currS2.Offset += s2[s2idx].Offset
}
if s2idx < len(s2) {
currS2.Offset += s2[s2idx].Offset
currS2.Length = s2[s2idx].Length
s2idx++
}
}
if currS1.Length == 0 && currS2.Length == 0 {
// The last spans of both set are zero length. Previous spans match.
return true
}
if currS1.Offset != currS2.Offset || currS1.Length != currS2.Length {
return false
}
}
}
func allEmptySpans(s []histogram.Span) bool {
for _, ss := range s {
if ss.Length > 0 {
return false
}
}
return true
}
func (ev *evalCmd) checkExpectedFailure(actual error) error {
if ev.expectedFailMessage != "" {
if ev.expectedFailMessage != actual.Error() {
return fmt.Errorf("expected error %q evaluating query %q (line %d), but got: %s", ev.expectedFailMessage, ev.expr, ev.line, actual.Error())
}
}
if ev.expectedFailRegexp != nil {
if !ev.expectedFailRegexp.MatchString(actual.Error()) {
return fmt.Errorf("expected error matching pattern %q evaluating query %q (line %d), but got: %s", ev.expectedFailRegexp.String(), ev.expr, ev.line, actual.Error())
}
}
// We're not expecting a particular error, or we got the error we expected.
// This test passes.
return nil
}
func formatSeriesResult(s promql.Series) string {
floatPlural := "s"
histogramPlural := "s"
if len(s.Floats) == 1 {
floatPlural = ""
}
if len(s.Histograms) == 1 {
histogramPlural = ""
}
return fmt.Sprintf("%v float point%s %v and %v histogram point%s %v", len(s.Floats), floatPlural, s.Floats, len(s.Histograms), histogramPlural, s.Histograms)
}
// HistogramTestExpression returns TestExpression() for the given histogram or "" if the histogram is nil.
func HistogramTestExpression(h *histogram.FloatHistogram) string {
if h != nil {
return h.TestExpression()
}
return ""
}
// clearCmd is a command that wipes the test's storage state.
type clearCmd struct{}
func (cmd clearCmd) String() string {
return "clear"
}
type atModifierTestCase struct {
expr string
evalTime time.Time
}
func atModifierTestCases(exprStr string, evalTime time.Time) ([]atModifierTestCase, error) {
expr, err := parser.ParseExpr(exprStr)
if err != nil {
return nil, err
}
ts := timestamp.FromTime(evalTime)
containsNonStepInvariant := false
// Setting the @ timestamp for all selectors to be evalTime.
// If there is a subquery, then the selectors inside it don't get the @ timestamp.
// If any selector already has the @ timestamp set, then it is untouched.
parser.Inspect(expr, func(node parser.Node, path []parser.Node) error {
if hasAtModifier(path) {
// There is a subquery with timestamp in the path,
// hence don't change any timestamps further.
return nil
}
switch n := node.(type) {
case *parser.VectorSelector:
if n.Timestamp == nil {
n.Timestamp = makeInt64Pointer(ts)
}
case *parser.MatrixSelector:
if vs := n.VectorSelector.(*parser.VectorSelector); vs.Timestamp == nil {
vs.Timestamp = makeInt64Pointer(ts)
}
case *parser.SubqueryExpr:
if n.Timestamp == nil {
n.Timestamp = makeInt64Pointer(ts)
}
case *parser.Call:
_, ok := promql.AtModifierUnsafeFunctions[n.Func.Name]
containsNonStepInvariant = containsNonStepInvariant || ok
}
return nil
})
if containsNonStepInvariant {
// Expression contains a function whose result can vary with evaluation
// time, even though its arguments are step invariant: skip it.
return nil, nil
}
newExpr := expr.String() // With all the @ evalTime set.
additionalEvalTimes := []int64{-10 * ts, 0, ts / 5, ts, 10 * ts}
if ts == 0 {
additionalEvalTimes = []int64{-1000, -ts, 1000}
}
testCases := make([]atModifierTestCase, 0, len(additionalEvalTimes))
for _, et := range additionalEvalTimes {
testCases = append(testCases, atModifierTestCase{
expr: newExpr,
evalTime: timestamp.Time(et),
})
}
return testCases, nil
}
func hasAtModifier(path []parser.Node) bool {
for _, node := range path {
if n, ok := node.(*parser.SubqueryExpr); ok {
if n.Timestamp != nil {
return true
}
}
}
return false
}
// exec processes a single step of the test.
func (t *test) exec(tc testCommand, engine promql.QueryEngine) error {
switch cmd := tc.(type) {
case *clearCmd:
t.clear()
case *loadCmd:
app := t.storage.Appender(t.context)
if err := cmd.append(app); err != nil {
app.Rollback()
return err
}
if err := app.Commit(); err != nil {
return err
}
case *evalCmd:
return t.execEval(cmd, engine)
default:
panic("promql.Test.exec: unknown test command type")
}
return nil
}
func (t *test) execEval(cmd *evalCmd, engine promql.QueryEngine) error {
if cmd.isRange {
return t.execRangeEval(cmd, engine)
}
return t.execInstantEval(cmd, engine)
}
func (t *test) execRangeEval(cmd *evalCmd, engine promql.QueryEngine) error {
q, err := engine.NewRangeQuery(t.context, t.storage, nil, cmd.expr, cmd.start, cmd.end, cmd.step)
if err != nil {
return fmt.Errorf("error creating range query for %q (line %d): %w", cmd.expr, cmd.line, err)
}
res := q.Exec(t.context)
if res.Err != nil {
if cmd.fail {
return cmd.checkExpectedFailure(res.Err)
}
return fmt.Errorf("error evaluating query %q (line %d): %w", cmd.expr, cmd.line, res.Err)
}
if res.Err == nil && cmd.fail {
return fmt.Errorf("expected error evaluating query %q (line %d) but got none", cmd.expr, cmd.line)
}
countWarnings, _ := res.Warnings.CountWarningsAndInfo()
if !cmd.warn && countWarnings > 0 {
return fmt.Errorf("unexpected warnings evaluating query %q (line %d): %v", cmd.expr, cmd.line, res.Warnings)
}
if cmd.warn && countWarnings == 0 {
return fmt.Errorf("expected warnings evaluating query %q (line %d) but got none", cmd.expr, cmd.line)
}
defer q.Close()
if err := cmd.compareResult(res.Value); err != nil {
return fmt.Errorf("error in %s %s (line %d): %w", cmd, cmd.expr, cmd.line, err)
}
return nil
}
func (t *test) execInstantEval(cmd *evalCmd, engine promql.QueryEngine) error {
queries, err := atModifierTestCases(cmd.expr, cmd.start)
if err != nil {
return err
}
queries = append([]atModifierTestCase{{expr: cmd.expr, evalTime: cmd.start}}, queries...)
for _, iq := range queries {
if err := t.runInstantQuery(iq, cmd, engine); err != nil {
return err
}
}
return nil
}
func (t *test) runInstantQuery(iq atModifierTestCase, cmd *evalCmd, engine promql.QueryEngine) error {
q, err := engine.NewInstantQuery(t.context, t.storage, nil, iq.expr, iq.evalTime)
if err != nil {
return fmt.Errorf("error creating instant query for %q (line %d): %w", cmd.expr, cmd.line, err)
}
defer q.Close()
res := q.Exec(t.context)
if res.Err != nil {
if cmd.fail {
if err := cmd.checkExpectedFailure(res.Err); err != nil {
return err
}
return nil
}
return fmt.Errorf("error evaluating query %q (line %d): %w", iq.expr, cmd.line, res.Err)
}
if res.Err == nil && cmd.fail {
return fmt.Errorf("expected error evaluating query %q (line %d) but got none", iq.expr, cmd.line)
}
countWarnings, _ := res.Warnings.CountWarningsAndInfo()
if !cmd.warn && countWarnings > 0 {
return fmt.Errorf("unexpected warnings evaluating query %q (line %d): %v", iq.expr, cmd.line, res.Warnings)
}
if cmd.warn && countWarnings == 0 {
return fmt.Errorf("expected warnings evaluating query %q (line %d) but got none", iq.expr, cmd.line)
}
err = cmd.compareResult(res.Value)
if err != nil {
return fmt.Errorf("error in %s %s (line %d): %w", cmd, iq.expr, cmd.line, err)
}
// Check query returns same result in range mode,
// by checking against the middle step.
q, err = engine.NewRangeQuery(t.context, t.storage, nil, iq.expr, iq.evalTime.Add(-time.Minute), iq.evalTime.Add(time.Minute), time.Minute)
if err != nil {
return fmt.Errorf("error creating range query for %q (line %d): %w", cmd.expr, cmd.line, err)
}
rangeRes := q.Exec(t.context)
if rangeRes.Err != nil {
return fmt.Errorf("error evaluating query %q (line %d) in range mode: %w", iq.expr, cmd.line, rangeRes.Err)
}
defer q.Close()
if cmd.ordered {
// Range queries are always sorted by labels, so skip this test case that expects results in a particular order.
return nil
}
mat := rangeRes.Value.(promql.Matrix)
if err := assertMatrixSorted(mat); err != nil {
return err
}
vec := make(promql.Vector, 0, len(mat))
for _, series := range mat {
// We expect either Floats or Histograms.
for _, point := range series.Floats {
if point.T == timeMilliseconds(iq.evalTime) {
vec = append(vec, promql.Sample{Metric: series.Metric, T: point.T, F: point.F})
break
}
}
for _, point := range series.Histograms {
if point.T == timeMilliseconds(iq.evalTime) {
vec = append(vec, promql.Sample{Metric: series.Metric, T: point.T, H: point.H})
break
}
}
}
if _, ok := res.Value.(promql.Scalar); ok {
err = cmd.compareResult(promql.Scalar{V: vec[0].F})
} else {
err = cmd.compareResult(vec)
}
if err != nil {
return fmt.Errorf("error in %s %s (line %d) range mode: %w", cmd, iq.expr, cmd.line, err)
}
return nil
}
func assertMatrixSorted(m promql.Matrix) error {
if len(m) <= 1 {
return nil
}
for i, s := range m[:len(m)-1] {
nextIndex := i + 1
nextMetric := m[nextIndex].Metric
if labels.Compare(s.Metric, nextMetric) > 0 {
return fmt.Errorf("matrix results should always be sorted by labels, but matrix is not sorted: series at index %v with labels %s sorts before series at index %v with labels %s", nextIndex, nextMetric, i, s.Metric)
}
}
return nil
}
// clear the current test storage of all inserted samples.
func (t *test) clear() {
if t.storage != nil {
err := t.storage.Close()
require.NoError(t.T, err, "Unexpected error while closing test storage.")
}
if t.cancelCtx != nil {
t.cancelCtx()
}
t.storage = teststorage.New(t)
t.context, t.cancelCtx = context.WithCancel(context.Background())
}
func parseNumber(s string) (float64, error) {
n, err := strconv.ParseInt(s, 0, 64)
f := float64(n)
if err != nil {
f, err = strconv.ParseFloat(s, 64)
}
if err != nil {
return 0, fmt.Errorf("error parsing number: %w", err)
}
return f, nil
}
// LazyLoader lazily loads samples into storage.
// This is specifically implemented for unit testing of rules.
type LazyLoader struct {
loadCmd *loadCmd
storage storage.Storage
SubqueryInterval time.Duration
queryEngine *promql.Engine
context context.Context
cancelCtx context.CancelFunc
opts LazyLoaderOpts
}
// LazyLoaderOpts are options for the lazy loader.
type LazyLoaderOpts struct {
// Both of these must be set to true for regular PromQL (as of
// Prometheus v2.33). They can still be disabled here for legacy and
// other uses.
EnableAtModifier, EnableNegativeOffset bool
}
// NewLazyLoader returns an initialized empty LazyLoader.
func NewLazyLoader(input string, opts LazyLoaderOpts) (*LazyLoader, error) {
ll := &LazyLoader{
opts: opts,
}
err := ll.parse(input)
if err != nil {
return nil, err
}
err = ll.clear()
return ll, err
}
// parse the given load command.
func (ll *LazyLoader) parse(input string) error {
lines := getLines(input)
// Accepts only 'load' command.
for i := 0; i < len(lines); i++ {
l := lines[i]
if len(l) == 0 {
continue
}
if strings.HasPrefix(strings.ToLower(patSpace.Split(l, 2)[0]), "load") {
_, cmd, err := parseLoad(lines, i)
if err != nil {
return err
}
ll.loadCmd = cmd
return nil
}
return raise(i, "invalid command %q", l)
}
return errors.New("no \"load\" command found")
}
// clear the current test storage of all inserted samples.
func (ll *LazyLoader) clear() error {
if ll.storage != nil {
if err := ll.storage.Close(); err != nil {
return fmt.Errorf("closing test storage: %w", err)
}
}
if ll.cancelCtx != nil {
ll.cancelCtx()
}
var err error
ll.storage, err = teststorage.NewWithError()
if err != nil {
return err
}
opts := promql.EngineOpts{
Logger: nil,
Reg: nil,
MaxSamples: 10000,
Timeout: 100 * time.Second,
NoStepSubqueryIntervalFn: func(int64) int64 { return durationMilliseconds(ll.SubqueryInterval) },
EnableAtModifier: ll.opts.EnableAtModifier,
EnableNegativeOffset: ll.opts.EnableNegativeOffset,
EnableDelayedNameRemoval: true,
}
ll.queryEngine = promql.NewEngine(opts)
ll.context, ll.cancelCtx = context.WithCancel(context.Background())
return nil
}
// appendTill appends the defined time series to the storage till the given timestamp (in milliseconds).
func (ll *LazyLoader) appendTill(ts int64) error {
app := ll.storage.Appender(ll.Context())
for h, smpls := range ll.loadCmd.defs {
m := ll.loadCmd.metrics[h]
for i, s := range smpls {
if s.T > ts {
// Removing the already added samples.
ll.loadCmd.defs[h] = smpls[i:]
break
}
if err := appendSample(app, s, m); err != nil {
return err
}
if i == len(smpls)-1 {
ll.loadCmd.defs[h] = nil
}
}
}
return app.Commit()
}
// WithSamplesTill loads the samples till given timestamp and executes the given function.
func (ll *LazyLoader) WithSamplesTill(ts time.Time, fn func(error)) {
tsMilli := ts.Sub(time.Unix(0, 0).UTC()) / time.Millisecond
fn(ll.appendTill(int64(tsMilli)))
}
// QueryEngine returns the LazyLoader's query engine.
func (ll *LazyLoader) QueryEngine() *promql.Engine {
return ll.queryEngine
}
// Queryable allows querying the LazyLoader's data.
// Note: only the samples till the max timestamp used
// in `WithSamplesTill` can be queried.
func (ll *LazyLoader) Queryable() storage.Queryable {
return ll.storage
}
// Context returns the LazyLoader's context.
func (ll *LazyLoader) Context() context.Context {
return ll.context
}
// Storage returns the LazyLoader's storage.
func (ll *LazyLoader) Storage() storage.Storage {
return ll.storage
}
// Close closes resources associated with the LazyLoader.
func (ll *LazyLoader) Close() error {
ll.cancelCtx()
err := ll.queryEngine.Close()
if sErr := ll.storage.Close(); sErr != nil {
return errors.Join(sErr, err)
}
return err
}
func makeInt64Pointer(val int64) *int64 {
valp := new(int64)
*valp = val
return valp
}
func timeMilliseconds(t time.Time) int64 {
return t.UnixNano() / int64(time.Millisecond/time.Nanosecond)
}
func durationMilliseconds(d time.Duration) int64 {
return int64(d / (time.Millisecond / time.Nanosecond))
}