905 lines
27 KiB
Go
905 lines
27 KiB
Go
// Copyright 2020 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package storage
|
|
|
|
import (
|
|
"bytes"
|
|
"container/heap"
|
|
"context"
|
|
"fmt"
|
|
"math"
|
|
"slices"
|
|
"sync"
|
|
|
|
"github.com/prometheus/prometheus/model/histogram"
|
|
"github.com/prometheus/prometheus/model/labels"
|
|
"github.com/prometheus/prometheus/tsdb/chunkenc"
|
|
"github.com/prometheus/prometheus/tsdb/chunks"
|
|
tsdb_errors "github.com/prometheus/prometheus/tsdb/errors"
|
|
"github.com/prometheus/prometheus/util/annotations"
|
|
)
|
|
|
|
type mergeGenericQuerier struct {
|
|
queriers []genericQuerier
|
|
|
|
// mergeFn is used when we see series from different queriers Selects with the same labels.
|
|
mergeFn genericSeriesMergeFunc
|
|
|
|
// TODO(bwplotka): Remove once remote queries are asynchronous. False by default.
|
|
concurrentSelect bool
|
|
}
|
|
|
|
// NewMergeQuerier returns a new Querier that merges results of given primary and secondary queriers.
|
|
// See NewFanout commentary to learn more about primary vs secondary differences.
|
|
//
|
|
// In case of overlaps between the data given by primaries' and secondaries' Selects, merge function will be used.
|
|
func NewMergeQuerier(primaries, secondaries []Querier, mergeFn VerticalSeriesMergeFunc) Querier {
|
|
primaries = filterQueriers(primaries)
|
|
secondaries = filterQueriers(secondaries)
|
|
|
|
switch {
|
|
case len(primaries) == 0 && len(secondaries) == 0:
|
|
return noopQuerier{}
|
|
case len(primaries) == 1 && len(secondaries) == 0:
|
|
return primaries[0]
|
|
case len(primaries) == 0 && len(secondaries) == 1:
|
|
return &querierAdapter{newSecondaryQuerierFrom(secondaries[0])}
|
|
}
|
|
|
|
queriers := make([]genericQuerier, 0, len(primaries)+len(secondaries))
|
|
for _, q := range primaries {
|
|
queriers = append(queriers, newGenericQuerierFrom(q))
|
|
}
|
|
for _, q := range secondaries {
|
|
queriers = append(queriers, newSecondaryQuerierFrom(q))
|
|
}
|
|
|
|
concurrentSelect := false
|
|
if len(secondaries) > 0 {
|
|
concurrentSelect = true
|
|
}
|
|
return &querierAdapter{&mergeGenericQuerier{
|
|
mergeFn: (&seriesMergerAdapter{VerticalSeriesMergeFunc: mergeFn}).Merge,
|
|
queriers: queriers,
|
|
concurrentSelect: concurrentSelect,
|
|
}}
|
|
}
|
|
|
|
func filterQueriers(qs []Querier) []Querier {
|
|
ret := make([]Querier, 0, len(qs))
|
|
for _, q := range qs {
|
|
if _, ok := q.(noopQuerier); !ok && q != nil {
|
|
ret = append(ret, q)
|
|
}
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// NewMergeChunkQuerier returns a new Chunk Querier that merges results of given primary and secondary chunk queriers.
|
|
// See NewFanout commentary to learn more about primary vs secondary differences.
|
|
//
|
|
// In case of overlaps between the data given by primaries' and secondaries' Selects, merge function will be used.
|
|
// TODO(bwplotka): Currently merge will compact overlapping chunks with bigger chunk, without limit. Split it: https://github.com/prometheus/tsdb/issues/670
|
|
func NewMergeChunkQuerier(primaries, secondaries []ChunkQuerier, mergeFn VerticalChunkSeriesMergeFunc) ChunkQuerier {
|
|
primaries = filterChunkQueriers(primaries)
|
|
secondaries = filterChunkQueriers(secondaries)
|
|
|
|
switch {
|
|
case len(primaries) == 0 && len(secondaries) == 0:
|
|
return noopChunkQuerier{}
|
|
case len(primaries) == 1 && len(secondaries) == 0:
|
|
return primaries[0]
|
|
case len(primaries) == 0 && len(secondaries) == 1:
|
|
return &chunkQuerierAdapter{newSecondaryQuerierFromChunk(secondaries[0])}
|
|
}
|
|
|
|
queriers := make([]genericQuerier, 0, len(primaries)+len(secondaries))
|
|
for _, q := range primaries {
|
|
queriers = append(queriers, newGenericQuerierFromChunk(q))
|
|
}
|
|
for _, q := range secondaries {
|
|
queriers = append(queriers, newSecondaryQuerierFromChunk(q))
|
|
}
|
|
|
|
concurrentSelect := false
|
|
if len(secondaries) > 0 {
|
|
concurrentSelect = true
|
|
}
|
|
return &chunkQuerierAdapter{&mergeGenericQuerier{
|
|
mergeFn: (&chunkSeriesMergerAdapter{VerticalChunkSeriesMergeFunc: mergeFn}).Merge,
|
|
queriers: queriers,
|
|
concurrentSelect: concurrentSelect,
|
|
}}
|
|
}
|
|
|
|
func filterChunkQueriers(qs []ChunkQuerier) []ChunkQuerier {
|
|
ret := make([]ChunkQuerier, 0, len(qs))
|
|
for _, q := range qs {
|
|
if _, ok := q.(noopChunkQuerier); !ok && q != nil {
|
|
ret = append(ret, q)
|
|
}
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// Select returns a set of series that matches the given label matchers.
|
|
func (q *mergeGenericQuerier) Select(ctx context.Context, sortSeries bool, hints *SelectHints, matchers ...*labels.Matcher) genericSeriesSet {
|
|
seriesSets := make([]genericSeriesSet, 0, len(q.queriers))
|
|
if !q.concurrentSelect {
|
|
for _, querier := range q.queriers {
|
|
// We need to sort for merge to work.
|
|
seriesSets = append(seriesSets, querier.Select(ctx, true, hints, matchers...))
|
|
}
|
|
return &lazyGenericSeriesSet{init: func() (genericSeriesSet, bool) {
|
|
s := newGenericMergeSeriesSet(seriesSets, q.mergeFn)
|
|
return s, s.Next()
|
|
}}
|
|
}
|
|
|
|
var (
|
|
wg sync.WaitGroup
|
|
seriesSetChan = make(chan genericSeriesSet)
|
|
)
|
|
// Schedule all Selects for all queriers we know about.
|
|
for _, querier := range q.queriers {
|
|
wg.Add(1)
|
|
go func(qr genericQuerier) {
|
|
defer wg.Done()
|
|
|
|
// We need to sort for NewMergeSeriesSet to work.
|
|
seriesSetChan <- qr.Select(ctx, true, hints, matchers...)
|
|
}(querier)
|
|
}
|
|
go func() {
|
|
wg.Wait()
|
|
close(seriesSetChan)
|
|
}()
|
|
|
|
for r := range seriesSetChan {
|
|
seriesSets = append(seriesSets, r)
|
|
}
|
|
return &lazyGenericSeriesSet{init: func() (genericSeriesSet, bool) {
|
|
s := newGenericMergeSeriesSet(seriesSets, q.mergeFn)
|
|
return s, s.Next()
|
|
}}
|
|
}
|
|
|
|
type labelGenericQueriers []genericQuerier
|
|
|
|
func (l labelGenericQueriers) Len() int { return len(l) }
|
|
func (l labelGenericQueriers) Get(i int) LabelQuerier { return l[i] }
|
|
func (l labelGenericQueriers) SplitByHalf() (labelGenericQueriers, labelGenericQueriers) {
|
|
i := len(l) / 2
|
|
return l[:i], l[i:]
|
|
}
|
|
|
|
// LabelValues returns all potential values for a label name.
|
|
// If matchers are specified the returned result set is reduced
|
|
// to label values of metrics matching the matchers.
|
|
func (q *mergeGenericQuerier) LabelValues(ctx context.Context, name string, hints *LabelHints, matchers ...*labels.Matcher) ([]string, annotations.Annotations, error) {
|
|
res, ws, err := q.lvals(ctx, q.queriers, name, hints, matchers...)
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("LabelValues() from merge generic querier for label %s: %w", name, err)
|
|
}
|
|
return res, ws, nil
|
|
}
|
|
|
|
// lvals performs merge sort for LabelValues from multiple queriers.
|
|
func (q *mergeGenericQuerier) lvals(ctx context.Context, lq labelGenericQueriers, n string, hints *LabelHints, matchers ...*labels.Matcher) ([]string, annotations.Annotations, error) {
|
|
if lq.Len() == 0 {
|
|
return nil, nil, nil
|
|
}
|
|
if lq.Len() == 1 {
|
|
return lq.Get(0).LabelValues(ctx, n, hints, matchers...)
|
|
}
|
|
a, b := lq.SplitByHalf()
|
|
|
|
var ws annotations.Annotations
|
|
s1, w, err := q.lvals(ctx, a, n, hints, matchers...)
|
|
ws.Merge(w)
|
|
if err != nil {
|
|
return nil, ws, err
|
|
}
|
|
s2, ws, err := q.lvals(ctx, b, n, hints, matchers...)
|
|
ws.Merge(w)
|
|
if err != nil {
|
|
return nil, ws, err
|
|
}
|
|
return mergeStrings(s1, s2), ws, nil
|
|
}
|
|
|
|
func mergeStrings(a, b []string) []string {
|
|
maxl := len(a)
|
|
if len(b) > len(a) {
|
|
maxl = len(b)
|
|
}
|
|
res := make([]string, 0, maxl*10/9)
|
|
|
|
for len(a) > 0 && len(b) > 0 {
|
|
switch {
|
|
case a[0] == b[0]:
|
|
res = append(res, a[0])
|
|
a, b = a[1:], b[1:]
|
|
case a[0] < b[0]:
|
|
res = append(res, a[0])
|
|
a = a[1:]
|
|
default:
|
|
res = append(res, b[0])
|
|
b = b[1:]
|
|
}
|
|
}
|
|
|
|
// Append all remaining elements.
|
|
res = append(res, a...)
|
|
res = append(res, b...)
|
|
return res
|
|
}
|
|
|
|
// LabelNames returns all the unique label names present in all queriers in sorted order.
|
|
func (q *mergeGenericQuerier) LabelNames(ctx context.Context, hints *LabelHints, matchers ...*labels.Matcher) ([]string, annotations.Annotations, error) {
|
|
var (
|
|
labelNamesMap = make(map[string]struct{})
|
|
warnings annotations.Annotations
|
|
)
|
|
for _, querier := range q.queriers {
|
|
names, wrn, err := querier.LabelNames(ctx, hints, matchers...)
|
|
if wrn != nil {
|
|
// TODO(bwplotka): We could potentially wrap warnings.
|
|
warnings.Merge(wrn)
|
|
}
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("LabelNames() from merge generic querier: %w", err)
|
|
}
|
|
for _, name := range names {
|
|
labelNamesMap[name] = struct{}{}
|
|
}
|
|
}
|
|
if len(labelNamesMap) == 0 {
|
|
return nil, warnings, nil
|
|
}
|
|
|
|
labelNames := make([]string, 0, len(labelNamesMap))
|
|
for name := range labelNamesMap {
|
|
labelNames = append(labelNames, name)
|
|
}
|
|
slices.Sort(labelNames)
|
|
return labelNames, warnings, nil
|
|
}
|
|
|
|
// Close releases the resources of the generic querier.
|
|
func (q *mergeGenericQuerier) Close() error {
|
|
errs := tsdb_errors.NewMulti()
|
|
for _, querier := range q.queriers {
|
|
if err := querier.Close(); err != nil {
|
|
errs.Add(err)
|
|
}
|
|
}
|
|
return errs.Err()
|
|
}
|
|
|
|
// VerticalSeriesMergeFunc returns merged series implementation that merges series with same labels together.
|
|
// It has to handle time-overlapped series as well.
|
|
type VerticalSeriesMergeFunc func(...Series) Series
|
|
|
|
// NewMergeSeriesSet returns a new SeriesSet that merges many SeriesSets together.
|
|
func NewMergeSeriesSet(sets []SeriesSet, mergeFunc VerticalSeriesMergeFunc) SeriesSet {
|
|
genericSets := make([]genericSeriesSet, 0, len(sets))
|
|
for _, s := range sets {
|
|
genericSets = append(genericSets, &genericSeriesSetAdapter{s})
|
|
}
|
|
return &seriesSetAdapter{newGenericMergeSeriesSet(genericSets, (&seriesMergerAdapter{VerticalSeriesMergeFunc: mergeFunc}).Merge)}
|
|
}
|
|
|
|
// VerticalChunkSeriesMergeFunc returns merged chunk series implementation that merges potentially time-overlapping
|
|
// chunk series with the same labels into single ChunkSeries.
|
|
//
|
|
// NOTE: It's up to implementation how series are vertically merged (if chunks are sorted, re-encoded etc).
|
|
type VerticalChunkSeriesMergeFunc func(...ChunkSeries) ChunkSeries
|
|
|
|
// NewMergeChunkSeriesSet returns a new ChunkSeriesSet that merges many SeriesSet together.
|
|
func NewMergeChunkSeriesSet(sets []ChunkSeriesSet, mergeFunc VerticalChunkSeriesMergeFunc) ChunkSeriesSet {
|
|
genericSets := make([]genericSeriesSet, 0, len(sets))
|
|
for _, s := range sets {
|
|
genericSets = append(genericSets, &genericChunkSeriesSetAdapter{s})
|
|
}
|
|
return &chunkSeriesSetAdapter{newGenericMergeSeriesSet(genericSets, (&chunkSeriesMergerAdapter{VerticalChunkSeriesMergeFunc: mergeFunc}).Merge)}
|
|
}
|
|
|
|
// genericMergeSeriesSet implements genericSeriesSet.
|
|
type genericMergeSeriesSet struct {
|
|
currentLabels labels.Labels
|
|
mergeFunc genericSeriesMergeFunc
|
|
|
|
heap genericSeriesSetHeap
|
|
sets []genericSeriesSet
|
|
currentSets []genericSeriesSet
|
|
}
|
|
|
|
// newGenericMergeSeriesSet returns a new genericSeriesSet that merges (and deduplicates)
|
|
// series returned by the series sets when iterating.
|
|
// Each series set must return its series in labels order, otherwise
|
|
// merged series set will be incorrect.
|
|
// Overlapped situations are merged using provided mergeFunc.
|
|
func newGenericMergeSeriesSet(sets []genericSeriesSet, mergeFunc genericSeriesMergeFunc) genericSeriesSet {
|
|
if len(sets) == 1 {
|
|
return sets[0]
|
|
}
|
|
|
|
// We are pre-advancing sets, so we can introspect the label of the
|
|
// series under the cursor.
|
|
var h genericSeriesSetHeap
|
|
for _, set := range sets {
|
|
if set == nil {
|
|
continue
|
|
}
|
|
if set.Next() {
|
|
heap.Push(&h, set)
|
|
}
|
|
if err := set.Err(); err != nil {
|
|
return errorOnlySeriesSet{err}
|
|
}
|
|
}
|
|
return &genericMergeSeriesSet{
|
|
mergeFunc: mergeFunc,
|
|
sets: sets,
|
|
heap: h,
|
|
}
|
|
}
|
|
|
|
func (c *genericMergeSeriesSet) Next() bool {
|
|
// Run in a loop because the "next" series sets may not be valid anymore.
|
|
// If, for the current label set, all the next series sets come from
|
|
// failed remote storage sources, we want to keep trying with the next label set.
|
|
for {
|
|
// Firstly advance all the current series sets. If any of them have run out,
|
|
// we can drop them, otherwise they should be inserted back into the heap.
|
|
for _, set := range c.currentSets {
|
|
if set.Next() {
|
|
heap.Push(&c.heap, set)
|
|
}
|
|
}
|
|
|
|
if len(c.heap) == 0 {
|
|
return false
|
|
}
|
|
|
|
// Now, pop items of the heap that have equal label sets.
|
|
c.currentSets = c.currentSets[:0]
|
|
c.currentLabels = c.heap[0].At().Labels()
|
|
for len(c.heap) > 0 && labels.Equal(c.currentLabels, c.heap[0].At().Labels()) {
|
|
set := heap.Pop(&c.heap).(genericSeriesSet)
|
|
c.currentSets = append(c.currentSets, set)
|
|
}
|
|
|
|
// As long as the current set contains at least 1 set,
|
|
// then it should return true.
|
|
if len(c.currentSets) != 0 {
|
|
break
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (c *genericMergeSeriesSet) At() Labels {
|
|
if len(c.currentSets) == 1 {
|
|
return c.currentSets[0].At()
|
|
}
|
|
series := make([]Labels, 0, len(c.currentSets))
|
|
for _, seriesSet := range c.currentSets {
|
|
series = append(series, seriesSet.At())
|
|
}
|
|
return c.mergeFunc(series...)
|
|
}
|
|
|
|
func (c *genericMergeSeriesSet) Err() error {
|
|
for _, set := range c.sets {
|
|
if err := set.Err(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (c *genericMergeSeriesSet) Warnings() annotations.Annotations {
|
|
var ws annotations.Annotations
|
|
for _, set := range c.sets {
|
|
ws.Merge(set.Warnings())
|
|
}
|
|
return ws
|
|
}
|
|
|
|
type genericSeriesSetHeap []genericSeriesSet
|
|
|
|
func (h genericSeriesSetHeap) Len() int { return len(h) }
|
|
func (h genericSeriesSetHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
|
|
|
|
func (h genericSeriesSetHeap) Less(i, j int) bool {
|
|
a, b := h[i].At().Labels(), h[j].At().Labels()
|
|
return labels.Compare(a, b) < 0
|
|
}
|
|
|
|
func (h *genericSeriesSetHeap) Push(x interface{}) {
|
|
*h = append(*h, x.(genericSeriesSet))
|
|
}
|
|
|
|
func (h *genericSeriesSetHeap) Pop() interface{} {
|
|
old := *h
|
|
n := len(old)
|
|
x := old[n-1]
|
|
*h = old[0 : n-1]
|
|
return x
|
|
}
|
|
|
|
// ChainedSeriesMerge returns single series from many same, potentially overlapping series by chaining samples together.
|
|
// If one or more samples overlap, one sample from random overlapped ones is kept and all others with the same
|
|
// timestamp are dropped.
|
|
//
|
|
// This works the best with replicated series, where data from two series are exactly the same. This does not work well
|
|
// with "almost" the same data, e.g. from 2 Prometheus HA replicas. This is fine, since from the Prometheus perspective
|
|
// this never happens.
|
|
//
|
|
// It's optimized for non-overlap cases as well.
|
|
func ChainedSeriesMerge(series ...Series) Series {
|
|
if len(series) == 0 {
|
|
return nil
|
|
}
|
|
return &SeriesEntry{
|
|
Lset: series[0].Labels(),
|
|
SampleIteratorFn: func(it chunkenc.Iterator) chunkenc.Iterator {
|
|
return ChainSampleIteratorFromSeries(it, series)
|
|
},
|
|
}
|
|
}
|
|
|
|
// chainSampleIterator is responsible to iterate over samples from different iterators of the same time series in timestamps
|
|
// order. If one or more samples overlap, one sample from random overlapped ones is kept and all others with the same
|
|
// timestamp are dropped. It's optimized for non-overlap cases as well.
|
|
type chainSampleIterator struct {
|
|
iterators []chunkenc.Iterator
|
|
h samplesIteratorHeap
|
|
|
|
curr chunkenc.Iterator
|
|
lastT int64
|
|
|
|
// Whether the previous and the current sample are direct neighbors
|
|
// within the same base iterator.
|
|
consecutive bool
|
|
}
|
|
|
|
// Return a chainSampleIterator initialized for length entries, re-using the memory from it if possible.
|
|
func getChainSampleIterator(it chunkenc.Iterator, length int) *chainSampleIterator {
|
|
csi, ok := it.(*chainSampleIterator)
|
|
if !ok {
|
|
csi = &chainSampleIterator{}
|
|
}
|
|
if cap(csi.iterators) < length {
|
|
csi.iterators = make([]chunkenc.Iterator, length)
|
|
} else {
|
|
csi.iterators = csi.iterators[:length]
|
|
}
|
|
csi.h = nil
|
|
csi.lastT = math.MinInt64
|
|
return csi
|
|
}
|
|
|
|
func ChainSampleIteratorFromSeries(it chunkenc.Iterator, series []Series) chunkenc.Iterator {
|
|
csi := getChainSampleIterator(it, len(series))
|
|
for i, s := range series {
|
|
csi.iterators[i] = s.Iterator(csi.iterators[i])
|
|
}
|
|
return csi
|
|
}
|
|
|
|
func ChainSampleIteratorFromIterables(it chunkenc.Iterator, iterables []chunkenc.Iterable) chunkenc.Iterator {
|
|
csi := getChainSampleIterator(it, len(iterables))
|
|
for i, c := range iterables {
|
|
csi.iterators[i] = c.Iterator(csi.iterators[i])
|
|
}
|
|
return csi
|
|
}
|
|
|
|
func ChainSampleIteratorFromIterators(it chunkenc.Iterator, iterators []chunkenc.Iterator) chunkenc.Iterator {
|
|
csi := getChainSampleIterator(it, 0)
|
|
csi.iterators = iterators
|
|
return csi
|
|
}
|
|
|
|
func (c *chainSampleIterator) Seek(t int64) chunkenc.ValueType {
|
|
// No-op check.
|
|
if c.curr != nil && c.lastT >= t {
|
|
return c.curr.Seek(c.lastT)
|
|
}
|
|
// Don't bother to find out if the next sample is consecutive. Callers
|
|
// of Seek usually aren't interested anyway.
|
|
c.consecutive = false
|
|
c.h = samplesIteratorHeap{}
|
|
for _, iter := range c.iterators {
|
|
if iter.Seek(t) == chunkenc.ValNone {
|
|
if iter.Err() != nil {
|
|
// If any iterator is reporting an error, abort.
|
|
return chunkenc.ValNone
|
|
}
|
|
continue
|
|
}
|
|
heap.Push(&c.h, iter)
|
|
}
|
|
if len(c.h) > 0 {
|
|
c.curr = heap.Pop(&c.h).(chunkenc.Iterator)
|
|
c.lastT = c.curr.AtT()
|
|
return c.curr.Seek(c.lastT)
|
|
}
|
|
c.curr = nil
|
|
return chunkenc.ValNone
|
|
}
|
|
|
|
func (c *chainSampleIterator) At() (t int64, v float64) {
|
|
if c.curr == nil {
|
|
panic("chainSampleIterator.At called before first .Next or after .Next returned false.")
|
|
}
|
|
return c.curr.At()
|
|
}
|
|
|
|
func (c *chainSampleIterator) AtHistogram(h *histogram.Histogram) (int64, *histogram.Histogram) {
|
|
if c.curr == nil {
|
|
panic("chainSampleIterator.AtHistogram called before first .Next or after .Next returned false.")
|
|
}
|
|
t, h := c.curr.AtHistogram(h)
|
|
// If the current sample is not consecutive with the previous one, we
|
|
// cannot be sure anymore about counter resets for counter histograms.
|
|
// TODO(beorn7): If a `NotCounterReset` sample is followed by a
|
|
// non-consecutive `CounterReset` sample, we could keep the hint as
|
|
// `CounterReset`. But then we needed to track the previous sample
|
|
// in more detail, which might not be worth it.
|
|
if !c.consecutive && h.CounterResetHint != histogram.GaugeType {
|
|
h.CounterResetHint = histogram.UnknownCounterReset
|
|
}
|
|
return t, h
|
|
}
|
|
|
|
func (c *chainSampleIterator) AtFloatHistogram(fh *histogram.FloatHistogram) (int64, *histogram.FloatHistogram) {
|
|
if c.curr == nil {
|
|
panic("chainSampleIterator.AtFloatHistogram called before first .Next or after .Next returned false.")
|
|
}
|
|
t, fh := c.curr.AtFloatHistogram(fh)
|
|
// If the current sample is not consecutive with the previous one, we
|
|
// cannot be sure anymore about counter resets for counter histograms.
|
|
// TODO(beorn7): If a `NotCounterReset` sample is followed by a
|
|
// non-consecutive `CounterReset` sample, we could keep the hint as
|
|
// `CounterReset`. But then we needed to track the previous sample
|
|
// in more detail, which might not be worth it.
|
|
if !c.consecutive && fh.CounterResetHint != histogram.GaugeType {
|
|
fh.CounterResetHint = histogram.UnknownCounterReset
|
|
}
|
|
return t, fh
|
|
}
|
|
|
|
func (c *chainSampleIterator) AtT() int64 {
|
|
if c.curr == nil {
|
|
panic("chainSampleIterator.AtT called before first .Next or after .Next returned false.")
|
|
}
|
|
return c.curr.AtT()
|
|
}
|
|
|
|
func (c *chainSampleIterator) Next() chunkenc.ValueType {
|
|
var (
|
|
currT int64
|
|
currValueType chunkenc.ValueType
|
|
iteratorChanged bool
|
|
)
|
|
if c.h == nil {
|
|
iteratorChanged = true
|
|
c.h = samplesIteratorHeap{}
|
|
// We call c.curr.Next() as the first thing below.
|
|
// So, we don't call Next() on it here.
|
|
c.curr = c.iterators[0]
|
|
for _, iter := range c.iterators[1:] {
|
|
if iter.Next() == chunkenc.ValNone {
|
|
if iter.Err() != nil {
|
|
// If any iterator is reporting an error, abort.
|
|
// If c.iterators[0] is reporting an error, we'll handle that below.
|
|
return chunkenc.ValNone
|
|
}
|
|
} else {
|
|
heap.Push(&c.h, iter)
|
|
}
|
|
}
|
|
}
|
|
|
|
if c.curr == nil {
|
|
return chunkenc.ValNone
|
|
}
|
|
|
|
for {
|
|
currValueType = c.curr.Next()
|
|
|
|
if currValueType == chunkenc.ValNone {
|
|
if c.curr.Err() != nil {
|
|
// Abort if we've hit an error.
|
|
return chunkenc.ValNone
|
|
}
|
|
|
|
if len(c.h) == 0 {
|
|
// No iterator left to iterate.
|
|
c.curr = nil
|
|
return chunkenc.ValNone
|
|
}
|
|
} else {
|
|
currT = c.curr.AtT()
|
|
if currT == c.lastT {
|
|
// Ignoring sample for the same timestamp.
|
|
continue
|
|
}
|
|
if len(c.h) == 0 {
|
|
// curr is the only iterator remaining,
|
|
// no need to check with the heap.
|
|
break
|
|
}
|
|
|
|
// Check current iterator with the top of the heap.
|
|
nextT := c.h[0].AtT()
|
|
if currT < nextT {
|
|
// Current iterator has smaller timestamp than the heap.
|
|
break
|
|
}
|
|
// Current iterator does not hold the smallest timestamp.
|
|
heap.Push(&c.h, c.curr)
|
|
}
|
|
|
|
c.curr = heap.Pop(&c.h).(chunkenc.Iterator)
|
|
iteratorChanged = true
|
|
currT = c.curr.AtT()
|
|
currValueType = c.curr.Seek(currT)
|
|
if currT != c.lastT {
|
|
break
|
|
}
|
|
}
|
|
|
|
c.consecutive = !iteratorChanged
|
|
c.lastT = currT
|
|
return currValueType
|
|
}
|
|
|
|
func (c *chainSampleIterator) Err() error {
|
|
errs := tsdb_errors.NewMulti()
|
|
for _, iter := range c.iterators {
|
|
errs.Add(iter.Err())
|
|
}
|
|
return errs.Err()
|
|
}
|
|
|
|
type samplesIteratorHeap []chunkenc.Iterator
|
|
|
|
func (h samplesIteratorHeap) Len() int { return len(h) }
|
|
func (h samplesIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
|
|
|
|
func (h samplesIteratorHeap) Less(i, j int) bool {
|
|
return h[i].AtT() < h[j].AtT()
|
|
}
|
|
|
|
func (h *samplesIteratorHeap) Push(x interface{}) {
|
|
*h = append(*h, x.(chunkenc.Iterator))
|
|
}
|
|
|
|
func (h *samplesIteratorHeap) Pop() interface{} {
|
|
old := *h
|
|
n := len(old)
|
|
x := old[n-1]
|
|
*h = old[0 : n-1]
|
|
return x
|
|
}
|
|
|
|
// NewCompactingChunkSeriesMerger returns VerticalChunkSeriesMergeFunc that merges the same chunk series into single chunk series.
|
|
// In case of the chunk overlaps, it compacts those into one or more time-ordered non-overlapping chunks with merged data.
|
|
// Samples from overlapped chunks are merged using series vertical merge func.
|
|
// It expects the same labels for each given series.
|
|
//
|
|
// NOTE: Use the returned merge function only when you see potentially overlapping series, as this introduces small a overhead
|
|
// to handle overlaps between series.
|
|
func NewCompactingChunkSeriesMerger(mergeFunc VerticalSeriesMergeFunc) VerticalChunkSeriesMergeFunc {
|
|
return func(series ...ChunkSeries) ChunkSeries {
|
|
if len(series) == 0 {
|
|
return nil
|
|
}
|
|
return &ChunkSeriesEntry{
|
|
Lset: series[0].Labels(),
|
|
ChunkIteratorFn: func(chunks.Iterator) chunks.Iterator {
|
|
iterators := make([]chunks.Iterator, 0, len(series))
|
|
for _, s := range series {
|
|
iterators = append(iterators, s.Iterator(nil))
|
|
}
|
|
return &compactChunkIterator{
|
|
mergeFunc: mergeFunc,
|
|
iterators: iterators,
|
|
}
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
// compactChunkIterator is responsible to compact chunks from different iterators of the same time series into single chainSeries.
|
|
// If time-overlapping chunks are found, they are encoded and passed to series merge and encoded again into one bigger chunk.
|
|
// TODO(bwplotka): Currently merge will compact overlapping chunks with bigger chunk, without limit. Split it: https://github.com/prometheus/tsdb/issues/670
|
|
type compactChunkIterator struct {
|
|
mergeFunc VerticalSeriesMergeFunc
|
|
iterators []chunks.Iterator
|
|
|
|
h chunkIteratorHeap
|
|
|
|
err error
|
|
curr chunks.Meta
|
|
}
|
|
|
|
func (c *compactChunkIterator) At() chunks.Meta {
|
|
return c.curr
|
|
}
|
|
|
|
func (c *compactChunkIterator) Next() bool {
|
|
if c.h == nil {
|
|
for _, iter := range c.iterators {
|
|
if iter.Next() {
|
|
heap.Push(&c.h, iter)
|
|
}
|
|
}
|
|
}
|
|
if len(c.h) == 0 {
|
|
return false
|
|
}
|
|
|
|
iter := heap.Pop(&c.h).(chunks.Iterator)
|
|
c.curr = iter.At()
|
|
if iter.Next() {
|
|
heap.Push(&c.h, iter)
|
|
}
|
|
|
|
var (
|
|
overlapping []Series
|
|
oMaxTime = c.curr.MaxTime
|
|
prev = c.curr
|
|
)
|
|
// Detect overlaps to compact. Be smart about it and deduplicate on the fly if chunks are identical.
|
|
for len(c.h) > 0 {
|
|
// Get the next oldest chunk by min, then max time.
|
|
next := c.h[0].At()
|
|
if next.MinTime > oMaxTime {
|
|
// No overlap with current one.
|
|
break
|
|
}
|
|
|
|
// Only do something if it is not a perfect duplicate.
|
|
if next.MinTime != prev.MinTime ||
|
|
next.MaxTime != prev.MaxTime ||
|
|
!bytes.Equal(next.Chunk.Bytes(), prev.Chunk.Bytes()) {
|
|
// We operate on same series, so labels do not matter here.
|
|
overlapping = append(overlapping, newChunkToSeriesDecoder(labels.EmptyLabels(), next))
|
|
if next.MaxTime > oMaxTime {
|
|
oMaxTime = next.MaxTime
|
|
}
|
|
prev = next
|
|
}
|
|
|
|
iter := heap.Pop(&c.h).(chunks.Iterator)
|
|
if iter.Next() {
|
|
heap.Push(&c.h, iter)
|
|
}
|
|
}
|
|
if len(overlapping) == 0 {
|
|
return true
|
|
}
|
|
|
|
// Add last as it's not yet included in overlap. We operate on same series, so labels does not matter here.
|
|
iter = NewSeriesToChunkEncoder(c.mergeFunc(append(overlapping, newChunkToSeriesDecoder(labels.EmptyLabels(), c.curr))...)).Iterator(nil)
|
|
if !iter.Next() {
|
|
if c.err = iter.Err(); c.err != nil {
|
|
return false
|
|
}
|
|
panic("unexpected seriesToChunkEncoder lack of iterations")
|
|
}
|
|
c.curr = iter.At()
|
|
if iter.Next() {
|
|
heap.Push(&c.h, iter)
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (c *compactChunkIterator) Err() error {
|
|
errs := tsdb_errors.NewMulti()
|
|
for _, iter := range c.iterators {
|
|
errs.Add(iter.Err())
|
|
}
|
|
errs.Add(c.err)
|
|
return errs.Err()
|
|
}
|
|
|
|
type chunkIteratorHeap []chunks.Iterator
|
|
|
|
func (h chunkIteratorHeap) Len() int { return len(h) }
|
|
func (h chunkIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
|
|
|
|
func (h chunkIteratorHeap) Less(i, j int) bool {
|
|
at := h[i].At()
|
|
bt := h[j].At()
|
|
if at.MinTime == bt.MinTime {
|
|
return at.MaxTime < bt.MaxTime
|
|
}
|
|
return at.MinTime < bt.MinTime
|
|
}
|
|
|
|
func (h *chunkIteratorHeap) Push(x interface{}) {
|
|
*h = append(*h, x.(chunks.Iterator))
|
|
}
|
|
|
|
func (h *chunkIteratorHeap) Pop() interface{} {
|
|
old := *h
|
|
n := len(old)
|
|
x := old[n-1]
|
|
*h = old[0 : n-1]
|
|
return x
|
|
}
|
|
|
|
// NewConcatenatingChunkSeriesMerger returns a VerticalChunkSeriesMergeFunc that simply concatenates the
|
|
// chunks from the series. The resultant stream of chunks for a series might be overlapping and unsorted.
|
|
func NewConcatenatingChunkSeriesMerger() VerticalChunkSeriesMergeFunc {
|
|
return func(series ...ChunkSeries) ChunkSeries {
|
|
if len(series) == 0 {
|
|
return nil
|
|
}
|
|
return &ChunkSeriesEntry{
|
|
Lset: series[0].Labels(),
|
|
ChunkIteratorFn: func(chunks.Iterator) chunks.Iterator {
|
|
iterators := make([]chunks.Iterator, 0, len(series))
|
|
for _, s := range series {
|
|
iterators = append(iterators, s.Iterator(nil))
|
|
}
|
|
return &concatenatingChunkIterator{
|
|
iterators: iterators,
|
|
}
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
type concatenatingChunkIterator struct {
|
|
iterators []chunks.Iterator
|
|
idx int
|
|
|
|
curr chunks.Meta
|
|
}
|
|
|
|
func (c *concatenatingChunkIterator) At() chunks.Meta {
|
|
return c.curr
|
|
}
|
|
|
|
func (c *concatenatingChunkIterator) Next() bool {
|
|
if c.idx >= len(c.iterators) {
|
|
return false
|
|
}
|
|
if c.iterators[c.idx].Next() {
|
|
c.curr = c.iterators[c.idx].At()
|
|
return true
|
|
}
|
|
if c.iterators[c.idx].Err() != nil {
|
|
return false
|
|
}
|
|
c.idx++
|
|
return c.Next()
|
|
}
|
|
|
|
func (c *concatenatingChunkIterator) Err() error {
|
|
errs := tsdb_errors.NewMulti()
|
|
for _, iter := range c.iterators {
|
|
errs.Add(iter.Err())
|
|
}
|
|
return errs.Err()
|
|
}
|