mirror of
https://github.com/prometheus/prometheus
synced 2025-01-16 03:41:50 +00:00
9e3df532d8
This function is useful to analyze promQL queries. We want to use this in Mimir to record the time range which the query touches. I also chose to remove the `Engine` receiver because it was unnecessary, and it makes it easier to use, but happy to refactor that if you disagree. The function is untested on its own. If you prefer to have unit tests now that its exported, I can look into adding some. Signed-off-by: Dimitar Dimitrov <dimitar.dimitrov@grafana.com>
3093 lines
95 KiB
Go
3093 lines
95 KiB
Go
// Copyright 2013 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package promql
|
|
|
|
import (
|
|
"bytes"
|
|
"container/heap"
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
"reflect"
|
|
"runtime"
|
|
"sort"
|
|
"strconv"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/go-kit/log"
|
|
"github.com/go-kit/log/level"
|
|
"github.com/grafana/regexp"
|
|
"github.com/prometheus/client_golang/prometheus"
|
|
"github.com/prometheus/common/model"
|
|
"go.opentelemetry.io/otel"
|
|
"go.opentelemetry.io/otel/attribute"
|
|
"go.opentelemetry.io/otel/trace"
|
|
"golang.org/x/exp/slices"
|
|
|
|
"github.com/prometheus/prometheus/model/histogram"
|
|
"github.com/prometheus/prometheus/model/labels"
|
|
"github.com/prometheus/prometheus/model/timestamp"
|
|
"github.com/prometheus/prometheus/model/value"
|
|
"github.com/prometheus/prometheus/promql/parser"
|
|
"github.com/prometheus/prometheus/storage"
|
|
"github.com/prometheus/prometheus/tsdb/chunkenc"
|
|
"github.com/prometheus/prometheus/util/annotations"
|
|
"github.com/prometheus/prometheus/util/stats"
|
|
"github.com/prometheus/prometheus/util/zeropool"
|
|
)
|
|
|
|
const (
|
|
namespace = "prometheus"
|
|
subsystem = "engine"
|
|
queryTag = "query"
|
|
env = "query execution"
|
|
defaultLookbackDelta = 5 * time.Minute
|
|
|
|
// The largest SampleValue that can be converted to an int64 without overflow.
|
|
maxInt64 = 9223372036854774784
|
|
// The smallest SampleValue that can be converted to an int64 without underflow.
|
|
minInt64 = -9223372036854775808
|
|
|
|
// Max initial size for the pooled points slices.
|
|
// The getHPointSlice and getFPointSlice functions are called with an estimated size which often can be
|
|
// over-estimated.
|
|
maxPointsSliceSize = 5000
|
|
)
|
|
|
|
type engineMetrics struct {
|
|
currentQueries prometheus.Gauge
|
|
maxConcurrentQueries prometheus.Gauge
|
|
queryLogEnabled prometheus.Gauge
|
|
queryLogFailures prometheus.Counter
|
|
queryQueueTime prometheus.Observer
|
|
queryPrepareTime prometheus.Observer
|
|
queryInnerEval prometheus.Observer
|
|
queryResultSort prometheus.Observer
|
|
querySamples prometheus.Counter
|
|
}
|
|
|
|
// convertibleToInt64 returns true if v does not over-/underflow an int64.
|
|
func convertibleToInt64(v float64) bool {
|
|
return v <= maxInt64 && v >= minInt64
|
|
}
|
|
|
|
type (
|
|
// ErrQueryTimeout is returned if a query timed out during processing.
|
|
ErrQueryTimeout string
|
|
// ErrQueryCanceled is returned if a query was canceled during processing.
|
|
ErrQueryCanceled string
|
|
// ErrTooManySamples is returned if a query would load more than the maximum allowed samples into memory.
|
|
ErrTooManySamples string
|
|
// ErrStorage is returned if an error was encountered in the storage layer
|
|
// during query handling.
|
|
ErrStorage struct{ Err error }
|
|
)
|
|
|
|
func (e ErrQueryTimeout) Error() string {
|
|
return fmt.Sprintf("query timed out in %s", string(e))
|
|
}
|
|
|
|
func (e ErrQueryCanceled) Error() string {
|
|
return fmt.Sprintf("query was canceled in %s", string(e))
|
|
}
|
|
|
|
func (e ErrTooManySamples) Error() string {
|
|
return fmt.Sprintf("query processing would load too many samples into memory in %s", string(e))
|
|
}
|
|
|
|
func (e ErrStorage) Error() string {
|
|
return e.Err.Error()
|
|
}
|
|
|
|
// QueryLogger is an interface that can be used to log all the queries logged
|
|
// by the engine.
|
|
type QueryLogger interface {
|
|
Log(...interface{}) error
|
|
Close() error
|
|
}
|
|
|
|
// A Query is derived from an a raw query string and can be run against an engine
|
|
// it is associated with.
|
|
type Query interface {
|
|
// Exec processes the query. Can only be called once.
|
|
Exec(ctx context.Context) *Result
|
|
// Close recovers memory used by the query result.
|
|
Close()
|
|
// Statement returns the parsed statement of the query.
|
|
Statement() parser.Statement
|
|
// Stats returns statistics about the lifetime of the query.
|
|
Stats() *stats.Statistics
|
|
// Cancel signals that a running query execution should be aborted.
|
|
Cancel()
|
|
// String returns the original query string.
|
|
String() string
|
|
}
|
|
|
|
type PrometheusQueryOpts struct {
|
|
// Enables recording per-step statistics if the engine has it enabled as well. Disabled by default.
|
|
enablePerStepStats bool
|
|
// Lookback delta duration for this query.
|
|
lookbackDelta time.Duration
|
|
}
|
|
|
|
var _ QueryOpts = &PrometheusQueryOpts{}
|
|
|
|
func NewPrometheusQueryOpts(enablePerStepStats bool, lookbackDelta time.Duration) QueryOpts {
|
|
return &PrometheusQueryOpts{
|
|
enablePerStepStats: enablePerStepStats,
|
|
lookbackDelta: lookbackDelta,
|
|
}
|
|
}
|
|
|
|
func (p *PrometheusQueryOpts) EnablePerStepStats() bool {
|
|
return p.enablePerStepStats
|
|
}
|
|
|
|
func (p *PrometheusQueryOpts) LookbackDelta() time.Duration {
|
|
return p.lookbackDelta
|
|
}
|
|
|
|
type QueryOpts interface {
|
|
// Enables recording per-step statistics if the engine has it enabled as well. Disabled by default.
|
|
EnablePerStepStats() bool
|
|
// Lookback delta duration for this query.
|
|
LookbackDelta() time.Duration
|
|
}
|
|
|
|
// query implements the Query interface.
|
|
type query struct {
|
|
// Underlying data provider.
|
|
queryable storage.Queryable
|
|
// The original query string.
|
|
q string
|
|
// Statement of the parsed query.
|
|
stmt parser.Statement
|
|
// Timer stats for the query execution.
|
|
stats *stats.QueryTimers
|
|
// Sample stats for the query execution.
|
|
sampleStats *stats.QuerySamples
|
|
// Result matrix for reuse.
|
|
matrix Matrix
|
|
// Cancellation function for the query.
|
|
cancel func()
|
|
|
|
// The engine against which the query is executed.
|
|
ng *Engine
|
|
}
|
|
|
|
type QueryOrigin struct{}
|
|
|
|
// Statement implements the Query interface.
|
|
// Calling this after Exec may result in panic,
|
|
// see https://github.com/prometheus/prometheus/issues/8949.
|
|
func (q *query) Statement() parser.Statement {
|
|
return q.stmt
|
|
}
|
|
|
|
// String implements the Query interface.
|
|
func (q *query) String() string {
|
|
return q.q
|
|
}
|
|
|
|
// Stats implements the Query interface.
|
|
func (q *query) Stats() *stats.Statistics {
|
|
return &stats.Statistics{
|
|
Timers: q.stats,
|
|
Samples: q.sampleStats,
|
|
}
|
|
}
|
|
|
|
// Cancel implements the Query interface.
|
|
func (q *query) Cancel() {
|
|
if q.cancel != nil {
|
|
q.cancel()
|
|
}
|
|
}
|
|
|
|
// Close implements the Query interface.
|
|
func (q *query) Close() {
|
|
for _, s := range q.matrix {
|
|
putFPointSlice(s.Floats)
|
|
putHPointSlice(s.Histograms)
|
|
}
|
|
}
|
|
|
|
// Exec implements the Query interface.
|
|
func (q *query) Exec(ctx context.Context) *Result {
|
|
if span := trace.SpanFromContext(ctx); span != nil {
|
|
span.SetAttributes(attribute.String(queryTag, q.stmt.String()))
|
|
}
|
|
|
|
// Exec query.
|
|
res, warnings, err := q.ng.exec(ctx, q)
|
|
return &Result{Err: err, Value: res, Warnings: warnings}
|
|
}
|
|
|
|
// contextDone returns an error if the context was canceled or timed out.
|
|
func contextDone(ctx context.Context, env string) error {
|
|
if err := ctx.Err(); err != nil {
|
|
return contextErr(err, env)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func contextErr(err error, env string) error {
|
|
switch {
|
|
case errors.Is(err, context.Canceled):
|
|
return ErrQueryCanceled(env)
|
|
case errors.Is(err, context.DeadlineExceeded):
|
|
return ErrQueryTimeout(env)
|
|
default:
|
|
return err
|
|
}
|
|
}
|
|
|
|
// QueryTracker provides access to two features:
|
|
//
|
|
// 1) Tracking of active query. If PromQL engine crashes while executing any query, such query should be present
|
|
// in the tracker on restart, hence logged. After the logging on restart, the tracker gets emptied.
|
|
//
|
|
// 2) Enforcement of the maximum number of concurrent queries.
|
|
type QueryTracker interface {
|
|
// GetMaxConcurrent returns maximum number of concurrent queries that are allowed by this tracker.
|
|
GetMaxConcurrent() int
|
|
|
|
// Insert inserts query into query tracker. This call must block if maximum number of queries is already running.
|
|
// If Insert doesn't return error then returned integer value should be used in subsequent Delete call.
|
|
// Insert should return error if context is finished before query can proceed, and integer value returned in this case should be ignored by caller.
|
|
Insert(ctx context.Context, query string) (int, error)
|
|
|
|
// Delete removes query from activity tracker. InsertIndex is value returned by Insert call.
|
|
Delete(insertIndex int)
|
|
}
|
|
|
|
// EngineOpts contains configuration options used when creating a new Engine.
|
|
type EngineOpts struct {
|
|
Logger log.Logger
|
|
Reg prometheus.Registerer
|
|
MaxSamples int
|
|
Timeout time.Duration
|
|
ActiveQueryTracker QueryTracker
|
|
// LookbackDelta determines the time since the last sample after which a time
|
|
// series is considered stale.
|
|
LookbackDelta time.Duration
|
|
|
|
// NoStepSubqueryIntervalFn is the default evaluation interval of
|
|
// a subquery in milliseconds if no step in range vector was specified `[30m:<step>]`.
|
|
NoStepSubqueryIntervalFn func(rangeMillis int64) int64
|
|
|
|
// EnableAtModifier if true enables @ modifier. Disabled otherwise. This
|
|
// is supposed to be enabled for regular PromQL (as of Prometheus v2.33)
|
|
// but the option to disable it is still provided here for those using
|
|
// the Engine outside of Prometheus.
|
|
EnableAtModifier bool
|
|
|
|
// EnableNegativeOffset if true enables negative (-) offset
|
|
// values. Disabled otherwise. This is supposed to be enabled for
|
|
// regular PromQL (as of Prometheus v2.33) but the option to disable it
|
|
// is still provided here for those using the Engine outside of
|
|
// Prometheus.
|
|
EnableNegativeOffset bool
|
|
|
|
// EnablePerStepStats if true allows for per-step stats to be computed on request. Disabled otherwise.
|
|
EnablePerStepStats bool
|
|
}
|
|
|
|
// Engine handles the lifetime of queries from beginning to end.
|
|
// It is connected to a querier.
|
|
type Engine struct {
|
|
logger log.Logger
|
|
metrics *engineMetrics
|
|
timeout time.Duration
|
|
maxSamplesPerQuery int
|
|
activeQueryTracker QueryTracker
|
|
queryLogger QueryLogger
|
|
queryLoggerLock sync.RWMutex
|
|
lookbackDelta time.Duration
|
|
noStepSubqueryIntervalFn func(rangeMillis int64) int64
|
|
enableAtModifier bool
|
|
enableNegativeOffset bool
|
|
enablePerStepStats bool
|
|
}
|
|
|
|
// NewEngine returns a new engine.
|
|
func NewEngine(opts EngineOpts) *Engine {
|
|
if opts.Logger == nil {
|
|
opts.Logger = log.NewNopLogger()
|
|
}
|
|
|
|
queryResultSummary := prometheus.NewSummaryVec(prometheus.SummaryOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "query_duration_seconds",
|
|
Help: "Query timings",
|
|
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
|
|
},
|
|
[]string{"slice"},
|
|
)
|
|
|
|
metrics := &engineMetrics{
|
|
currentQueries: prometheus.NewGauge(prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "queries",
|
|
Help: "The current number of queries being executed or waiting.",
|
|
}),
|
|
queryLogEnabled: prometheus.NewGauge(prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "query_log_enabled",
|
|
Help: "State of the query log.",
|
|
}),
|
|
queryLogFailures: prometheus.NewCounter(prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "query_log_failures_total",
|
|
Help: "The number of query log failures.",
|
|
}),
|
|
maxConcurrentQueries: prometheus.NewGauge(prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "queries_concurrent_max",
|
|
Help: "The max number of concurrent queries.",
|
|
}),
|
|
querySamples: prometheus.NewCounter(prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "query_samples_total",
|
|
Help: "The total number of samples loaded by all queries.",
|
|
}),
|
|
queryQueueTime: queryResultSummary.WithLabelValues("queue_time"),
|
|
queryPrepareTime: queryResultSummary.WithLabelValues("prepare_time"),
|
|
queryInnerEval: queryResultSummary.WithLabelValues("inner_eval"),
|
|
queryResultSort: queryResultSummary.WithLabelValues("result_sort"),
|
|
}
|
|
|
|
if t := opts.ActiveQueryTracker; t != nil {
|
|
metrics.maxConcurrentQueries.Set(float64(t.GetMaxConcurrent()))
|
|
} else {
|
|
metrics.maxConcurrentQueries.Set(-1)
|
|
}
|
|
|
|
if opts.LookbackDelta == 0 {
|
|
opts.LookbackDelta = defaultLookbackDelta
|
|
if l := opts.Logger; l != nil {
|
|
level.Debug(l).Log("msg", "Lookback delta is zero, setting to default value", "value", defaultLookbackDelta)
|
|
}
|
|
}
|
|
|
|
if opts.Reg != nil {
|
|
opts.Reg.MustRegister(
|
|
metrics.currentQueries,
|
|
metrics.maxConcurrentQueries,
|
|
metrics.queryLogEnabled,
|
|
metrics.queryLogFailures,
|
|
metrics.querySamples,
|
|
queryResultSummary,
|
|
)
|
|
}
|
|
|
|
return &Engine{
|
|
timeout: opts.Timeout,
|
|
logger: opts.Logger,
|
|
metrics: metrics,
|
|
maxSamplesPerQuery: opts.MaxSamples,
|
|
activeQueryTracker: opts.ActiveQueryTracker,
|
|
lookbackDelta: opts.LookbackDelta,
|
|
noStepSubqueryIntervalFn: opts.NoStepSubqueryIntervalFn,
|
|
enableAtModifier: opts.EnableAtModifier,
|
|
enableNegativeOffset: opts.EnableNegativeOffset,
|
|
enablePerStepStats: opts.EnablePerStepStats,
|
|
}
|
|
}
|
|
|
|
// SetQueryLogger sets the query logger.
|
|
func (ng *Engine) SetQueryLogger(l QueryLogger) {
|
|
ng.queryLoggerLock.Lock()
|
|
defer ng.queryLoggerLock.Unlock()
|
|
|
|
if ng.queryLogger != nil {
|
|
// An error closing the old file descriptor should
|
|
// not make reload fail; only log a warning.
|
|
err := ng.queryLogger.Close()
|
|
if err != nil {
|
|
level.Warn(ng.logger).Log("msg", "Error while closing the previous query log file", "err", err)
|
|
}
|
|
}
|
|
|
|
ng.queryLogger = l
|
|
|
|
if l != nil {
|
|
ng.metrics.queryLogEnabled.Set(1)
|
|
} else {
|
|
ng.metrics.queryLogEnabled.Set(0)
|
|
}
|
|
}
|
|
|
|
// NewInstantQuery returns an evaluation query for the given expression at the given time.
|
|
func (ng *Engine) NewInstantQuery(ctx context.Context, q storage.Queryable, opts QueryOpts, qs string, ts time.Time) (Query, error) {
|
|
pExpr, qry := ng.newQuery(q, qs, opts, ts, ts, 0)
|
|
finishQueue, err := ng.queueActive(ctx, qry)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer finishQueue()
|
|
expr, err := parser.ParseExpr(qs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if err := ng.validateOpts(expr); err != nil {
|
|
return nil, err
|
|
}
|
|
*pExpr = PreprocessExpr(expr, ts, ts)
|
|
|
|
return qry, nil
|
|
}
|
|
|
|
// NewRangeQuery returns an evaluation query for the given time range and with
|
|
// the resolution set by the interval.
|
|
func (ng *Engine) NewRangeQuery(ctx context.Context, q storage.Queryable, opts QueryOpts, qs string, start, end time.Time, interval time.Duration) (Query, error) {
|
|
pExpr, qry := ng.newQuery(q, qs, opts, start, end, interval)
|
|
finishQueue, err := ng.queueActive(ctx, qry)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer finishQueue()
|
|
expr, err := parser.ParseExpr(qs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if err := ng.validateOpts(expr); err != nil {
|
|
return nil, err
|
|
}
|
|
if expr.Type() != parser.ValueTypeVector && expr.Type() != parser.ValueTypeScalar {
|
|
return nil, fmt.Errorf("invalid expression type %q for range query, must be Scalar or instant Vector", parser.DocumentedType(expr.Type()))
|
|
}
|
|
*pExpr = PreprocessExpr(expr, start, end)
|
|
|
|
return qry, nil
|
|
}
|
|
|
|
func (ng *Engine) newQuery(q storage.Queryable, qs string, opts QueryOpts, start, end time.Time, interval time.Duration) (*parser.Expr, *query) {
|
|
if opts == nil {
|
|
opts = NewPrometheusQueryOpts(false, 0)
|
|
}
|
|
|
|
lookbackDelta := opts.LookbackDelta()
|
|
if lookbackDelta <= 0 {
|
|
lookbackDelta = ng.lookbackDelta
|
|
}
|
|
|
|
es := &parser.EvalStmt{
|
|
Start: start,
|
|
End: end,
|
|
Interval: interval,
|
|
LookbackDelta: lookbackDelta,
|
|
}
|
|
qry := &query{
|
|
q: qs,
|
|
stmt: es,
|
|
ng: ng,
|
|
stats: stats.NewQueryTimers(),
|
|
sampleStats: stats.NewQuerySamples(ng.enablePerStepStats && opts.EnablePerStepStats()),
|
|
queryable: q,
|
|
}
|
|
return &es.Expr, qry
|
|
}
|
|
|
|
var (
|
|
ErrValidationAtModifierDisabled = errors.New("@ modifier is disabled")
|
|
ErrValidationNegativeOffsetDisabled = errors.New("negative offset is disabled")
|
|
)
|
|
|
|
func (ng *Engine) validateOpts(expr parser.Expr) error {
|
|
if ng.enableAtModifier && ng.enableNegativeOffset {
|
|
return nil
|
|
}
|
|
|
|
var atModifierUsed, negativeOffsetUsed bool
|
|
|
|
var validationErr error
|
|
parser.Inspect(expr, func(node parser.Node, path []parser.Node) error {
|
|
switch n := node.(type) {
|
|
case *parser.VectorSelector:
|
|
if n.Timestamp != nil || n.StartOrEnd == parser.START || n.StartOrEnd == parser.END {
|
|
atModifierUsed = true
|
|
}
|
|
if n.OriginalOffset < 0 {
|
|
negativeOffsetUsed = true
|
|
}
|
|
|
|
case *parser.MatrixSelector:
|
|
vs := n.VectorSelector.(*parser.VectorSelector)
|
|
if vs.Timestamp != nil || vs.StartOrEnd == parser.START || vs.StartOrEnd == parser.END {
|
|
atModifierUsed = true
|
|
}
|
|
if vs.OriginalOffset < 0 {
|
|
negativeOffsetUsed = true
|
|
}
|
|
|
|
case *parser.SubqueryExpr:
|
|
if n.Timestamp != nil || n.StartOrEnd == parser.START || n.StartOrEnd == parser.END {
|
|
atModifierUsed = true
|
|
}
|
|
if n.OriginalOffset < 0 {
|
|
negativeOffsetUsed = true
|
|
}
|
|
}
|
|
|
|
if atModifierUsed && !ng.enableAtModifier {
|
|
validationErr = ErrValidationAtModifierDisabled
|
|
return validationErr
|
|
}
|
|
if negativeOffsetUsed && !ng.enableNegativeOffset {
|
|
validationErr = ErrValidationNegativeOffsetDisabled
|
|
return validationErr
|
|
}
|
|
|
|
return nil
|
|
})
|
|
|
|
return validationErr
|
|
}
|
|
|
|
func (ng *Engine) newTestQuery(f func(context.Context) error) Query {
|
|
qry := &query{
|
|
q: "test statement",
|
|
stmt: parser.TestStmt(f),
|
|
ng: ng,
|
|
stats: stats.NewQueryTimers(),
|
|
sampleStats: stats.NewQuerySamples(ng.enablePerStepStats),
|
|
}
|
|
return qry
|
|
}
|
|
|
|
// exec executes the query.
|
|
//
|
|
// At this point per query only one EvalStmt is evaluated. Alert and record
|
|
// statements are not handled by the Engine.
|
|
func (ng *Engine) exec(ctx context.Context, q *query) (v parser.Value, ws annotations.Annotations, err error) {
|
|
ng.metrics.currentQueries.Inc()
|
|
defer func() {
|
|
ng.metrics.currentQueries.Dec()
|
|
ng.metrics.querySamples.Add(float64(q.sampleStats.TotalSamples))
|
|
}()
|
|
|
|
ctx, cancel := context.WithTimeout(ctx, ng.timeout)
|
|
q.cancel = cancel
|
|
|
|
defer func() {
|
|
ng.queryLoggerLock.RLock()
|
|
if l := ng.queryLogger; l != nil {
|
|
params := make(map[string]interface{}, 4)
|
|
params["query"] = q.q
|
|
if eq, ok := q.Statement().(*parser.EvalStmt); ok {
|
|
params["start"] = formatDate(eq.Start)
|
|
params["end"] = formatDate(eq.End)
|
|
// The step provided by the user is in seconds.
|
|
params["step"] = int64(eq.Interval / (time.Second / time.Nanosecond))
|
|
}
|
|
f := []interface{}{"params", params}
|
|
if err != nil {
|
|
f = append(f, "error", err)
|
|
}
|
|
f = append(f, "stats", stats.NewQueryStats(q.Stats()))
|
|
if span := trace.SpanFromContext(ctx); span != nil {
|
|
f = append(f, "spanID", span.SpanContext().SpanID())
|
|
}
|
|
if origin := ctx.Value(QueryOrigin{}); origin != nil {
|
|
for k, v := range origin.(map[string]interface{}) {
|
|
f = append(f, k, v)
|
|
}
|
|
}
|
|
if err := l.Log(f...); err != nil {
|
|
ng.metrics.queryLogFailures.Inc()
|
|
level.Error(ng.logger).Log("msg", "can't log query", "err", err)
|
|
}
|
|
}
|
|
ng.queryLoggerLock.RUnlock()
|
|
}()
|
|
|
|
execSpanTimer, ctx := q.stats.GetSpanTimer(ctx, stats.ExecTotalTime)
|
|
defer execSpanTimer.Finish()
|
|
|
|
finishQueue, err := ng.queueActive(ctx, q)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
defer finishQueue()
|
|
|
|
// Cancel when execution is done or an error was raised.
|
|
defer q.cancel()
|
|
|
|
evalSpanTimer, ctx := q.stats.GetSpanTimer(ctx, stats.EvalTotalTime)
|
|
defer evalSpanTimer.Finish()
|
|
|
|
// The base context might already be canceled on the first iteration (e.g. during shutdown).
|
|
if err := contextDone(ctx, env); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
switch s := q.Statement().(type) {
|
|
case *parser.EvalStmt:
|
|
return ng.execEvalStmt(ctx, q, s)
|
|
case parser.TestStmt:
|
|
return nil, nil, s(ctx)
|
|
}
|
|
|
|
panic(fmt.Errorf("promql.Engine.exec: unhandled statement of type %T", q.Statement()))
|
|
}
|
|
|
|
// Log query in active log. The active log guarantees that we don't run over
|
|
// MaxConcurrent queries.
|
|
func (ng *Engine) queueActive(ctx context.Context, q *query) (func(), error) {
|
|
if ng.activeQueryTracker == nil {
|
|
return func() {}, nil
|
|
}
|
|
queueSpanTimer, _ := q.stats.GetSpanTimer(ctx, stats.ExecQueueTime, ng.metrics.queryQueueTime)
|
|
queryIndex, err := ng.activeQueryTracker.Insert(ctx, q.q)
|
|
queueSpanTimer.Finish()
|
|
return func() { ng.activeQueryTracker.Delete(queryIndex) }, err
|
|
}
|
|
|
|
func timeMilliseconds(t time.Time) int64 {
|
|
return t.UnixNano() / int64(time.Millisecond/time.Nanosecond)
|
|
}
|
|
|
|
func durationMilliseconds(d time.Duration) int64 {
|
|
return int64(d / (time.Millisecond / time.Nanosecond))
|
|
}
|
|
|
|
// execEvalStmt evaluates the expression of an evaluation statement for the given time range.
|
|
func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *parser.EvalStmt) (parser.Value, annotations.Annotations, error) {
|
|
prepareSpanTimer, ctxPrepare := query.stats.GetSpanTimer(ctx, stats.QueryPreparationTime, ng.metrics.queryPrepareTime)
|
|
mint, maxt := FindMinMaxTime(s)
|
|
querier, err := query.queryable.Querier(mint, maxt)
|
|
if err != nil {
|
|
prepareSpanTimer.Finish()
|
|
return nil, nil, err
|
|
}
|
|
defer querier.Close()
|
|
|
|
ng.populateSeries(ctxPrepare, querier, s)
|
|
prepareSpanTimer.Finish()
|
|
|
|
// Modify the offset of vector and matrix selectors for the @ modifier
|
|
// w.r.t. the start time since only 1 evaluation will be done on them.
|
|
setOffsetForAtModifier(timeMilliseconds(s.Start), s.Expr)
|
|
evalSpanTimer, ctxInnerEval := query.stats.GetSpanTimer(ctx, stats.InnerEvalTime, ng.metrics.queryInnerEval)
|
|
// Instant evaluation. This is executed as a range evaluation with one step.
|
|
if s.Start == s.End && s.Interval == 0 {
|
|
start := timeMilliseconds(s.Start)
|
|
evaluator := &evaluator{
|
|
startTimestamp: start,
|
|
endTimestamp: start,
|
|
interval: 1,
|
|
ctx: ctxInnerEval,
|
|
maxSamples: ng.maxSamplesPerQuery,
|
|
logger: ng.logger,
|
|
lookbackDelta: s.LookbackDelta,
|
|
samplesStats: query.sampleStats,
|
|
noStepSubqueryIntervalFn: ng.noStepSubqueryIntervalFn,
|
|
}
|
|
query.sampleStats.InitStepTracking(start, start, 1)
|
|
|
|
val, warnings, err := evaluator.Eval(s.Expr)
|
|
|
|
evalSpanTimer.Finish()
|
|
|
|
if err != nil {
|
|
return nil, warnings, err
|
|
}
|
|
|
|
var mat Matrix
|
|
|
|
switch result := val.(type) {
|
|
case Matrix:
|
|
mat = result
|
|
case String:
|
|
return result, warnings, nil
|
|
default:
|
|
panic(fmt.Errorf("promql.Engine.exec: invalid expression type %q", val.Type()))
|
|
}
|
|
|
|
query.matrix = mat
|
|
switch s.Expr.Type() {
|
|
case parser.ValueTypeVector:
|
|
// Convert matrix with one value per series into vector.
|
|
vector := make(Vector, len(mat))
|
|
for i, s := range mat {
|
|
// Point might have a different timestamp, force it to the evaluation
|
|
// timestamp as that is when we ran the evaluation.
|
|
if len(s.Histograms) > 0 {
|
|
vector[i] = Sample{Metric: s.Metric, H: s.Histograms[0].H, T: start}
|
|
} else {
|
|
vector[i] = Sample{Metric: s.Metric, F: s.Floats[0].F, T: start}
|
|
}
|
|
}
|
|
return vector, warnings, nil
|
|
case parser.ValueTypeScalar:
|
|
return Scalar{V: mat[0].Floats[0].F, T: start}, warnings, nil
|
|
case parser.ValueTypeMatrix:
|
|
return mat, warnings, nil
|
|
default:
|
|
panic(fmt.Errorf("promql.Engine.exec: unexpected expression type %q", s.Expr.Type()))
|
|
}
|
|
}
|
|
|
|
// Range evaluation.
|
|
evaluator := &evaluator{
|
|
startTimestamp: timeMilliseconds(s.Start),
|
|
endTimestamp: timeMilliseconds(s.End),
|
|
interval: durationMilliseconds(s.Interval),
|
|
ctx: ctxInnerEval,
|
|
maxSamples: ng.maxSamplesPerQuery,
|
|
logger: ng.logger,
|
|
lookbackDelta: s.LookbackDelta,
|
|
samplesStats: query.sampleStats,
|
|
noStepSubqueryIntervalFn: ng.noStepSubqueryIntervalFn,
|
|
}
|
|
query.sampleStats.InitStepTracking(evaluator.startTimestamp, evaluator.endTimestamp, evaluator.interval)
|
|
val, warnings, err := evaluator.Eval(s.Expr)
|
|
|
|
evalSpanTimer.Finish()
|
|
|
|
if err != nil {
|
|
return nil, warnings, err
|
|
}
|
|
|
|
mat, ok := val.(Matrix)
|
|
if !ok {
|
|
panic(fmt.Errorf("promql.Engine.exec: invalid expression type %q", val.Type()))
|
|
}
|
|
query.matrix = mat
|
|
|
|
if err := contextDone(ctx, "expression evaluation"); err != nil {
|
|
return nil, warnings, err
|
|
}
|
|
|
|
// TODO(fabxc): where to ensure metric labels are a copy from the storage internals.
|
|
sortSpanTimer, _ := query.stats.GetSpanTimer(ctx, stats.ResultSortTime, ng.metrics.queryResultSort)
|
|
sort.Sort(mat)
|
|
sortSpanTimer.Finish()
|
|
|
|
return mat, warnings, nil
|
|
}
|
|
|
|
// subqueryTimes returns the sum of offsets and ranges of all subqueries in the path.
|
|
// If the @ modifier is used, then the offset and range is w.r.t. that timestamp
|
|
// (i.e. the sum is reset when we have @ modifier).
|
|
// The returned *int64 is the closest timestamp that was seen. nil for no @ modifier.
|
|
func subqueryTimes(path []parser.Node) (time.Duration, time.Duration, *int64) {
|
|
var (
|
|
subqOffset, subqRange time.Duration
|
|
ts int64 = math.MaxInt64
|
|
)
|
|
for _, node := range path {
|
|
if n, ok := node.(*parser.SubqueryExpr); ok {
|
|
subqOffset += n.OriginalOffset
|
|
subqRange += n.Range
|
|
if n.Timestamp != nil {
|
|
// The @ modifier on subquery invalidates all the offset and
|
|
// range till now. Hence resetting it here.
|
|
subqOffset = n.OriginalOffset
|
|
subqRange = n.Range
|
|
ts = *n.Timestamp
|
|
}
|
|
}
|
|
}
|
|
var tsp *int64
|
|
if ts != math.MaxInt64 {
|
|
tsp = &ts
|
|
}
|
|
return subqOffset, subqRange, tsp
|
|
}
|
|
|
|
// FindMinMaxTime returns the time in milliseconds of the earliest and latest point in time the statement will try to process.
|
|
// This takes into account offsets, @ modifiers, and range selectors.
|
|
// If the statement does not select series, then FindMinMaxTime returns (0, 0).
|
|
func FindMinMaxTime(s *parser.EvalStmt) (int64, int64) {
|
|
var minTimestamp, maxTimestamp int64 = math.MaxInt64, math.MinInt64
|
|
// Whenever a MatrixSelector is evaluated, evalRange is set to the corresponding range.
|
|
// The evaluation of the VectorSelector inside then evaluates the given range and unsets
|
|
// the variable.
|
|
var evalRange time.Duration
|
|
parser.Inspect(s.Expr, func(node parser.Node, path []parser.Node) error {
|
|
switch n := node.(type) {
|
|
case *parser.VectorSelector:
|
|
start, end := getTimeRangesForSelector(s, n, path, evalRange)
|
|
if start < minTimestamp {
|
|
minTimestamp = start
|
|
}
|
|
if end > maxTimestamp {
|
|
maxTimestamp = end
|
|
}
|
|
evalRange = 0
|
|
case *parser.MatrixSelector:
|
|
evalRange = n.Range
|
|
}
|
|
return nil
|
|
})
|
|
|
|
if maxTimestamp == math.MinInt64 {
|
|
// This happens when there was no selector. Hence no time range to select.
|
|
minTimestamp = 0
|
|
maxTimestamp = 0
|
|
}
|
|
|
|
return minTimestamp, maxTimestamp
|
|
}
|
|
|
|
func getTimeRangesForSelector(s *parser.EvalStmt, n *parser.VectorSelector, path []parser.Node, evalRange time.Duration) (int64, int64) {
|
|
start, end := timestamp.FromTime(s.Start), timestamp.FromTime(s.End)
|
|
subqOffset, subqRange, subqTs := subqueryTimes(path)
|
|
|
|
if subqTs != nil {
|
|
// The timestamp on the subquery overrides the eval statement time ranges.
|
|
start = *subqTs
|
|
end = *subqTs
|
|
}
|
|
|
|
if n.Timestamp != nil {
|
|
// The timestamp on the selector overrides everything.
|
|
start = *n.Timestamp
|
|
end = *n.Timestamp
|
|
} else {
|
|
offsetMilliseconds := durationMilliseconds(subqOffset)
|
|
start = start - offsetMilliseconds - durationMilliseconds(subqRange)
|
|
end -= offsetMilliseconds
|
|
}
|
|
|
|
if evalRange == 0 {
|
|
start -= durationMilliseconds(s.LookbackDelta)
|
|
} else {
|
|
// For all matrix queries we want to ensure that we have (end-start) + range selected
|
|
// this way we have `range` data before the start time
|
|
start -= durationMilliseconds(evalRange)
|
|
}
|
|
|
|
offsetMilliseconds := durationMilliseconds(n.OriginalOffset)
|
|
start -= offsetMilliseconds
|
|
end -= offsetMilliseconds
|
|
|
|
return start, end
|
|
}
|
|
|
|
func (ng *Engine) getLastSubqueryInterval(path []parser.Node) time.Duration {
|
|
var interval time.Duration
|
|
for _, node := range path {
|
|
if n, ok := node.(*parser.SubqueryExpr); ok {
|
|
interval = n.Step
|
|
if n.Step == 0 {
|
|
interval = time.Duration(ng.noStepSubqueryIntervalFn(durationMilliseconds(n.Range))) * time.Millisecond
|
|
}
|
|
}
|
|
}
|
|
return interval
|
|
}
|
|
|
|
func (ng *Engine) populateSeries(ctx context.Context, querier storage.Querier, s *parser.EvalStmt) {
|
|
// Whenever a MatrixSelector is evaluated, evalRange is set to the corresponding range.
|
|
// The evaluation of the VectorSelector inside then evaluates the given range and unsets
|
|
// the variable.
|
|
var evalRange time.Duration
|
|
|
|
parser.Inspect(s.Expr, func(node parser.Node, path []parser.Node) error {
|
|
switch n := node.(type) {
|
|
case *parser.VectorSelector:
|
|
start, end := getTimeRangesForSelector(s, n, path, evalRange)
|
|
interval := ng.getLastSubqueryInterval(path)
|
|
if interval == 0 {
|
|
interval = s.Interval
|
|
}
|
|
hints := &storage.SelectHints{
|
|
Start: start,
|
|
End: end,
|
|
Step: durationMilliseconds(interval),
|
|
Range: durationMilliseconds(evalRange),
|
|
Func: extractFuncFromPath(path),
|
|
}
|
|
evalRange = 0
|
|
hints.By, hints.Grouping = extractGroupsFromPath(path)
|
|
n.UnexpandedSeriesSet = querier.Select(ctx, false, hints, n.LabelMatchers...)
|
|
|
|
case *parser.MatrixSelector:
|
|
evalRange = n.Range
|
|
}
|
|
return nil
|
|
})
|
|
}
|
|
|
|
// extractFuncFromPath walks up the path and searches for the first instance of
|
|
// a function or aggregation.
|
|
func extractFuncFromPath(p []parser.Node) string {
|
|
if len(p) == 0 {
|
|
return ""
|
|
}
|
|
switch n := p[len(p)-1].(type) {
|
|
case *parser.AggregateExpr:
|
|
return n.Op.String()
|
|
case *parser.Call:
|
|
return n.Func.Name
|
|
case *parser.BinaryExpr:
|
|
// If we hit a binary expression we terminate since we only care about functions
|
|
// or aggregations over a single metric.
|
|
return ""
|
|
}
|
|
return extractFuncFromPath(p[:len(p)-1])
|
|
}
|
|
|
|
// extractGroupsFromPath parses vector outer function and extracts grouping information if by or without was used.
|
|
func extractGroupsFromPath(p []parser.Node) (bool, []string) {
|
|
if len(p) == 0 {
|
|
return false, nil
|
|
}
|
|
if n, ok := p[len(p)-1].(*parser.AggregateExpr); ok {
|
|
return !n.Without, n.Grouping
|
|
}
|
|
return false, nil
|
|
}
|
|
|
|
func checkAndExpandSeriesSet(ctx context.Context, expr parser.Expr) (annotations.Annotations, error) {
|
|
switch e := expr.(type) {
|
|
case *parser.MatrixSelector:
|
|
return checkAndExpandSeriesSet(ctx, e.VectorSelector)
|
|
case *parser.VectorSelector:
|
|
if e.Series != nil {
|
|
return nil, nil
|
|
}
|
|
series, ws, err := expandSeriesSet(ctx, e.UnexpandedSeriesSet)
|
|
e.Series = series
|
|
return ws, err
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
func expandSeriesSet(ctx context.Context, it storage.SeriesSet) (res []storage.Series, ws annotations.Annotations, err error) {
|
|
for it.Next() {
|
|
select {
|
|
case <-ctx.Done():
|
|
return nil, nil, ctx.Err()
|
|
default:
|
|
}
|
|
res = append(res, it.At())
|
|
}
|
|
return res, it.Warnings(), it.Err()
|
|
}
|
|
|
|
type errWithWarnings struct {
|
|
err error
|
|
warnings annotations.Annotations
|
|
}
|
|
|
|
func (e errWithWarnings) Error() string { return e.err.Error() }
|
|
|
|
// An evaluator evaluates the given expressions over the given fixed
|
|
// timestamps. It is attached to an engine through which it connects to a
|
|
// querier and reports errors. On timeout or cancellation of its context it
|
|
// terminates.
|
|
type evaluator struct {
|
|
ctx context.Context
|
|
|
|
startTimestamp int64 // Start time in milliseconds.
|
|
endTimestamp int64 // End time in milliseconds.
|
|
interval int64 // Interval in milliseconds.
|
|
|
|
maxSamples int
|
|
currentSamples int
|
|
logger log.Logger
|
|
lookbackDelta time.Duration
|
|
samplesStats *stats.QuerySamples
|
|
noStepSubqueryIntervalFn func(rangeMillis int64) int64
|
|
}
|
|
|
|
// errorf causes a panic with the input formatted into an error.
|
|
func (ev *evaluator) errorf(format string, args ...interface{}) {
|
|
ev.error(fmt.Errorf(format, args...))
|
|
}
|
|
|
|
// error causes a panic with the given error.
|
|
func (ev *evaluator) error(err error) {
|
|
panic(err)
|
|
}
|
|
|
|
// recover is the handler that turns panics into returns from the top level of evaluation.
|
|
func (ev *evaluator) recover(expr parser.Expr, ws *annotations.Annotations, errp *error) {
|
|
e := recover()
|
|
if e == nil {
|
|
return
|
|
}
|
|
|
|
switch err := e.(type) {
|
|
case runtime.Error:
|
|
// Print the stack trace but do not inhibit the running application.
|
|
buf := make([]byte, 64<<10)
|
|
buf = buf[:runtime.Stack(buf, false)]
|
|
|
|
level.Error(ev.logger).Log("msg", "runtime panic in parser", "expr", expr.String(), "err", e, "stacktrace", string(buf))
|
|
*errp = fmt.Errorf("unexpected error: %w", err)
|
|
case errWithWarnings:
|
|
*errp = err.err
|
|
ws.Merge(err.warnings)
|
|
case error:
|
|
*errp = err
|
|
default:
|
|
*errp = fmt.Errorf("%v", err)
|
|
}
|
|
}
|
|
|
|
func (ev *evaluator) Eval(expr parser.Expr) (v parser.Value, ws annotations.Annotations, err error) {
|
|
defer ev.recover(expr, &ws, &err)
|
|
|
|
v, ws = ev.eval(expr)
|
|
return v, ws, nil
|
|
}
|
|
|
|
// EvalSeriesHelper stores extra information about a series.
|
|
type EvalSeriesHelper struct {
|
|
// The grouping key used by aggregation.
|
|
groupingKey uint64
|
|
// Used to map left-hand to right-hand in binary operations.
|
|
signature string
|
|
}
|
|
|
|
// EvalNodeHelper stores extra information and caches for evaluating a single node across steps.
|
|
type EvalNodeHelper struct {
|
|
// Evaluation timestamp.
|
|
Ts int64
|
|
// Vector that can be used for output.
|
|
Out Vector
|
|
|
|
// Caches.
|
|
// DropMetricName and label_*.
|
|
Dmn map[uint64]labels.Labels
|
|
// funcHistogramQuantile for conventional histograms.
|
|
signatureToMetricWithBuckets map[string]*metricWithBuckets
|
|
// label_replace.
|
|
regex *regexp.Regexp
|
|
|
|
lb *labels.Builder
|
|
lblBuf []byte
|
|
lblResultBuf []byte
|
|
|
|
// For binary vector matching.
|
|
rightSigs map[string]Sample
|
|
matchedSigs map[string]map[uint64]struct{}
|
|
resultMetric map[string]labels.Labels
|
|
}
|
|
|
|
func (enh *EvalNodeHelper) resetBuilder(lbls labels.Labels) {
|
|
if enh.lb == nil {
|
|
enh.lb = labels.NewBuilder(lbls)
|
|
} else {
|
|
enh.lb.Reset(lbls)
|
|
}
|
|
}
|
|
|
|
// DropMetricName is a cached version of DropMetricName.
|
|
func (enh *EvalNodeHelper) DropMetricName(l labels.Labels) labels.Labels {
|
|
if enh.Dmn == nil {
|
|
enh.Dmn = make(map[uint64]labels.Labels, len(enh.Out))
|
|
}
|
|
h := l.Hash()
|
|
ret, ok := enh.Dmn[h]
|
|
if ok {
|
|
return ret
|
|
}
|
|
ret = dropMetricName(l)
|
|
enh.Dmn[h] = ret
|
|
return ret
|
|
}
|
|
|
|
// rangeEval evaluates the given expressions, and then for each step calls
|
|
// the given funcCall with the values computed for each expression at that
|
|
// step. The return value is the combination into time series of all the
|
|
// function call results.
|
|
// The prepSeries function (if provided) can be used to prepare the helper
|
|
// for each series, then passed to each call funcCall.
|
|
func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper), funcCall func([]parser.Value, [][]EvalSeriesHelper, *EvalNodeHelper) (Vector, annotations.Annotations), exprs ...parser.Expr) (Matrix, annotations.Annotations) {
|
|
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
|
matrixes := make([]Matrix, len(exprs))
|
|
origMatrixes := make([]Matrix, len(exprs))
|
|
originalNumSamples := ev.currentSamples
|
|
|
|
var warnings annotations.Annotations
|
|
for i, e := range exprs {
|
|
// Functions will take string arguments from the expressions, not the values.
|
|
if e != nil && e.Type() != parser.ValueTypeString {
|
|
// ev.currentSamples will be updated to the correct value within the ev.eval call.
|
|
val, ws := ev.eval(e)
|
|
warnings.Merge(ws)
|
|
matrixes[i] = val.(Matrix)
|
|
|
|
// Keep a copy of the original point slices so that they
|
|
// can be returned to the pool.
|
|
origMatrixes[i] = make(Matrix, len(matrixes[i]))
|
|
copy(origMatrixes[i], matrixes[i])
|
|
}
|
|
}
|
|
|
|
vectors := make([]Vector, len(exprs)) // Input vectors for the function.
|
|
args := make([]parser.Value, len(exprs)) // Argument to function.
|
|
// Create an output vector that is as big as the input matrix with
|
|
// the most time series.
|
|
biggestLen := 1
|
|
for i := range exprs {
|
|
vectors[i] = make(Vector, 0, len(matrixes[i]))
|
|
if len(matrixes[i]) > biggestLen {
|
|
biggestLen = len(matrixes[i])
|
|
}
|
|
}
|
|
enh := &EvalNodeHelper{Out: make(Vector, 0, biggestLen)}
|
|
type seriesAndTimestamp struct {
|
|
Series
|
|
ts int64
|
|
}
|
|
seriess := make(map[uint64]seriesAndTimestamp, biggestLen) // Output series by series hash.
|
|
tempNumSamples := ev.currentSamples
|
|
|
|
var (
|
|
seriesHelpers [][]EvalSeriesHelper
|
|
bufHelpers [][]EvalSeriesHelper // Buffer updated on each step
|
|
)
|
|
|
|
// If the series preparation function is provided, we should run it for
|
|
// every single series in the matrix.
|
|
if prepSeries != nil {
|
|
seriesHelpers = make([][]EvalSeriesHelper, len(exprs))
|
|
bufHelpers = make([][]EvalSeriesHelper, len(exprs))
|
|
|
|
for i := range exprs {
|
|
seriesHelpers[i] = make([]EvalSeriesHelper, len(matrixes[i]))
|
|
bufHelpers[i] = make([]EvalSeriesHelper, len(matrixes[i]))
|
|
|
|
for si, series := range matrixes[i] {
|
|
prepSeries(series.Metric, &seriesHelpers[i][si])
|
|
}
|
|
}
|
|
}
|
|
|
|
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
|
|
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
|
|
ev.error(err)
|
|
}
|
|
// Reset number of samples in memory after each timestamp.
|
|
ev.currentSamples = tempNumSamples
|
|
// Gather input vectors for this timestamp.
|
|
for i := range exprs {
|
|
vectors[i] = vectors[i][:0]
|
|
|
|
if prepSeries != nil {
|
|
bufHelpers[i] = bufHelpers[i][:0]
|
|
}
|
|
|
|
for si, series := range matrixes[i] {
|
|
switch {
|
|
case len(series.Floats) > 0 && series.Floats[0].T == ts:
|
|
vectors[i] = append(vectors[i], Sample{Metric: series.Metric, F: series.Floats[0].F, T: ts})
|
|
// Move input vectors forward so we don't have to re-scan the same
|
|
// past points at the next step.
|
|
matrixes[i][si].Floats = series.Floats[1:]
|
|
case len(series.Histograms) > 0 && series.Histograms[0].T == ts:
|
|
vectors[i] = append(vectors[i], Sample{Metric: series.Metric, H: series.Histograms[0].H, T: ts})
|
|
matrixes[i][si].Histograms = series.Histograms[1:]
|
|
default:
|
|
continue
|
|
}
|
|
if prepSeries != nil {
|
|
bufHelpers[i] = append(bufHelpers[i], seriesHelpers[i][si])
|
|
}
|
|
ev.currentSamples++
|
|
if ev.currentSamples > ev.maxSamples {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
}
|
|
args[i] = vectors[i]
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
}
|
|
|
|
// Make the function call.
|
|
enh.Ts = ts
|
|
result, ws := funcCall(args, bufHelpers, enh)
|
|
enh.Out = result[:0] // Reuse result vector.
|
|
warnings.Merge(ws)
|
|
|
|
vecNumSamples := result.TotalSamples()
|
|
ev.currentSamples += vecNumSamples
|
|
// When we reset currentSamples to tempNumSamples during the next iteration of the loop it also
|
|
// needs to include the samples from the result here, as they're still in memory.
|
|
tempNumSamples += vecNumSamples
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
|
|
if ev.currentSamples > ev.maxSamples {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
|
|
// If this could be an instant query, shortcut so as not to change sort order.
|
|
if ev.endTimestamp == ev.startTimestamp {
|
|
if result.ContainsSameLabelset() {
|
|
ev.errorf("vector cannot contain metrics with the same labelset")
|
|
}
|
|
mat := make(Matrix, len(result))
|
|
for i, s := range result {
|
|
if s.H == nil {
|
|
mat[i] = Series{Metric: s.Metric, Floats: []FPoint{{T: ts, F: s.F}}}
|
|
} else {
|
|
mat[i] = Series{Metric: s.Metric, Histograms: []HPoint{{T: ts, H: s.H}}}
|
|
}
|
|
}
|
|
ev.currentSamples = originalNumSamples + mat.TotalSamples()
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
return mat, warnings
|
|
}
|
|
|
|
// Add samples in output vector to output series.
|
|
for _, sample := range result {
|
|
h := sample.Metric.Hash()
|
|
ss, ok := seriess[h]
|
|
if ok {
|
|
if ss.ts == ts { // If we've seen this output series before at this timestamp, it's a duplicate.
|
|
ev.errorf("vector cannot contain metrics with the same labelset")
|
|
}
|
|
ss.ts = ts
|
|
} else {
|
|
ss = seriesAndTimestamp{Series{Metric: sample.Metric}, ts}
|
|
}
|
|
if sample.H == nil {
|
|
if ss.Floats == nil {
|
|
ss.Floats = getFPointSlice(numSteps)
|
|
}
|
|
ss.Floats = append(ss.Floats, FPoint{T: ts, F: sample.F})
|
|
} else {
|
|
if ss.Histograms == nil {
|
|
ss.Histograms = getHPointSlice(numSteps)
|
|
}
|
|
ss.Histograms = append(ss.Histograms, HPoint{T: ts, H: sample.H})
|
|
}
|
|
seriess[h] = ss
|
|
}
|
|
}
|
|
|
|
// Reuse the original point slices.
|
|
for _, m := range origMatrixes {
|
|
for _, s := range m {
|
|
putFPointSlice(s.Floats)
|
|
putHPointSlice(s.Histograms)
|
|
}
|
|
}
|
|
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
|
|
mat := make(Matrix, 0, len(seriess))
|
|
for _, ss := range seriess {
|
|
mat = append(mat, ss.Series)
|
|
}
|
|
ev.currentSamples = originalNumSamples + mat.TotalSamples()
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
return mat, warnings
|
|
}
|
|
|
|
// evalSubquery evaluates given SubqueryExpr and returns an equivalent
|
|
// evaluated MatrixSelector in its place. Note that the Name and LabelMatchers are not set.
|
|
func (ev *evaluator) evalSubquery(subq *parser.SubqueryExpr) (*parser.MatrixSelector, int, annotations.Annotations) {
|
|
samplesStats := ev.samplesStats
|
|
// Avoid double counting samples when running a subquery, those samples will be counted in later stage.
|
|
ev.samplesStats = ev.samplesStats.NewChild()
|
|
val, ws := ev.eval(subq)
|
|
// But do incorporate the peak from the subquery
|
|
samplesStats.UpdatePeakFromSubquery(ev.samplesStats)
|
|
ev.samplesStats = samplesStats
|
|
mat := val.(Matrix)
|
|
vs := &parser.VectorSelector{
|
|
OriginalOffset: subq.OriginalOffset,
|
|
Offset: subq.Offset,
|
|
Series: make([]storage.Series, 0, len(mat)),
|
|
Timestamp: subq.Timestamp,
|
|
}
|
|
if subq.Timestamp != nil {
|
|
// The offset of subquery is not modified in case of @ modifier.
|
|
// Hence we take care of that here for the result.
|
|
vs.Offset = subq.OriginalOffset + time.Duration(ev.startTimestamp-*subq.Timestamp)*time.Millisecond
|
|
}
|
|
ms := &parser.MatrixSelector{
|
|
Range: subq.Range,
|
|
VectorSelector: vs,
|
|
}
|
|
for _, s := range mat {
|
|
vs.Series = append(vs.Series, NewStorageSeries(s))
|
|
}
|
|
return ms, mat.TotalSamples(), ws
|
|
}
|
|
|
|
// eval evaluates the given expression as the given AST expression node requires.
|
|
func (ev *evaluator) eval(expr parser.Expr) (parser.Value, annotations.Annotations) {
|
|
// This is the top-level evaluation method.
|
|
// Thus, we check for timeout/cancellation here.
|
|
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
|
|
ev.error(err)
|
|
}
|
|
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
|
|
|
// Create a new span to help investigate inner evaluation performances.
|
|
ctxWithSpan, span := otel.Tracer("").Start(ev.ctx, stats.InnerEvalTime.SpanOperation()+" eval "+reflect.TypeOf(expr).String())
|
|
ev.ctx = ctxWithSpan
|
|
defer span.End()
|
|
|
|
switch e := expr.(type) {
|
|
case *parser.AggregateExpr:
|
|
// Grouping labels must be sorted (expected both by generateGroupingKey() and aggregation()).
|
|
sortedGrouping := e.Grouping
|
|
slices.Sort(sortedGrouping)
|
|
|
|
// Prepare a function to initialise series helpers with the grouping key.
|
|
buf := make([]byte, 0, 1024)
|
|
initSeries := func(series labels.Labels, h *EvalSeriesHelper) {
|
|
h.groupingKey, buf = generateGroupingKey(series, sortedGrouping, e.Without, buf)
|
|
}
|
|
|
|
unwrapParenExpr(&e.Param)
|
|
param := unwrapStepInvariantExpr(e.Param)
|
|
unwrapParenExpr(¶m)
|
|
if s, ok := param.(*parser.StringLiteral); ok {
|
|
return ev.rangeEval(initSeries, func(v []parser.Value, sh [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
return ev.aggregation(e, sortedGrouping, s.Val, v[0].(Vector), sh[0], enh)
|
|
}, e.Expr)
|
|
}
|
|
|
|
return ev.rangeEval(initSeries, func(v []parser.Value, sh [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
var param float64
|
|
if e.Param != nil {
|
|
param = v[0].(Vector)[0].F
|
|
}
|
|
return ev.aggregation(e, sortedGrouping, param, v[1].(Vector), sh[1], enh)
|
|
}, e.Param, e.Expr)
|
|
|
|
case *parser.Call:
|
|
call := FunctionCalls[e.Func.Name]
|
|
if e.Func.Name == "timestamp" {
|
|
// Matrix evaluation always returns the evaluation time,
|
|
// so this function needs special handling when given
|
|
// a vector selector.
|
|
unwrapParenExpr(&e.Args[0])
|
|
arg := unwrapStepInvariantExpr(e.Args[0])
|
|
unwrapParenExpr(&arg)
|
|
vs, ok := arg.(*parser.VectorSelector)
|
|
if ok {
|
|
return ev.rangeEvalTimestampFunctionOverVectorSelector(vs, call, e)
|
|
}
|
|
}
|
|
|
|
// Check if the function has a matrix argument.
|
|
var (
|
|
matrixArgIndex int
|
|
matrixArg bool
|
|
warnings annotations.Annotations
|
|
)
|
|
for i := range e.Args {
|
|
unwrapParenExpr(&e.Args[i])
|
|
a := unwrapStepInvariantExpr(e.Args[i])
|
|
unwrapParenExpr(&a)
|
|
if _, ok := a.(*parser.MatrixSelector); ok {
|
|
matrixArgIndex = i
|
|
matrixArg = true
|
|
break
|
|
}
|
|
// parser.SubqueryExpr can be used in place of parser.MatrixSelector.
|
|
if subq, ok := a.(*parser.SubqueryExpr); ok {
|
|
matrixArgIndex = i
|
|
matrixArg = true
|
|
// Replacing parser.SubqueryExpr with parser.MatrixSelector.
|
|
val, totalSamples, ws := ev.evalSubquery(subq)
|
|
e.Args[i] = val
|
|
warnings.Merge(ws)
|
|
defer func() {
|
|
// subquery result takes space in the memory. Get rid of that at the end.
|
|
val.VectorSelector.(*parser.VectorSelector).Series = nil
|
|
ev.currentSamples -= totalSamples
|
|
}()
|
|
break
|
|
}
|
|
}
|
|
if !matrixArg {
|
|
// Does not have a matrix argument.
|
|
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
vec, annos := call(v, e.Args, enh)
|
|
return vec, warnings.Merge(annos)
|
|
}, e.Args...)
|
|
}
|
|
|
|
inArgs := make([]parser.Value, len(e.Args))
|
|
// Evaluate any non-matrix arguments.
|
|
otherArgs := make([]Matrix, len(e.Args))
|
|
otherInArgs := make([]Vector, len(e.Args))
|
|
for i, e := range e.Args {
|
|
if i != matrixArgIndex {
|
|
val, ws := ev.eval(e)
|
|
otherArgs[i] = val.(Matrix)
|
|
otherInArgs[i] = Vector{Sample{}}
|
|
inArgs[i] = otherInArgs[i]
|
|
warnings.Merge(ws)
|
|
}
|
|
}
|
|
|
|
unwrapParenExpr(&e.Args[matrixArgIndex])
|
|
arg := unwrapStepInvariantExpr(e.Args[matrixArgIndex])
|
|
unwrapParenExpr(&arg)
|
|
sel := arg.(*parser.MatrixSelector)
|
|
selVS := sel.VectorSelector.(*parser.VectorSelector)
|
|
|
|
ws, err := checkAndExpandSeriesSet(ev.ctx, sel)
|
|
warnings.Merge(ws)
|
|
if err != nil {
|
|
ev.error(errWithWarnings{fmt.Errorf("expanding series: %w", err), warnings})
|
|
}
|
|
mat := make(Matrix, 0, len(selVS.Series)) // Output matrix.
|
|
offset := durationMilliseconds(selVS.Offset)
|
|
selRange := durationMilliseconds(sel.Range)
|
|
stepRange := selRange
|
|
if stepRange > ev.interval {
|
|
stepRange = ev.interval
|
|
}
|
|
// Reuse objects across steps to save memory allocations.
|
|
var floats []FPoint
|
|
var histograms []HPoint
|
|
inMatrix := make(Matrix, 1)
|
|
inArgs[matrixArgIndex] = inMatrix
|
|
enh := &EvalNodeHelper{Out: make(Vector, 0, 1)}
|
|
// Process all the calls for one time series at a time.
|
|
it := storage.NewBuffer(selRange)
|
|
var chkIter chunkenc.Iterator
|
|
for i, s := range selVS.Series {
|
|
ev.currentSamples -= len(floats) + totalHPointSize(histograms)
|
|
if floats != nil {
|
|
floats = floats[:0]
|
|
}
|
|
if histograms != nil {
|
|
histograms = histograms[:0]
|
|
}
|
|
chkIter = s.Iterator(chkIter)
|
|
it.Reset(chkIter)
|
|
metric := selVS.Series[i].Labels()
|
|
// The last_over_time function acts like offset; thus, it
|
|
// should keep the metric name. For all the other range
|
|
// vector functions, the only change needed is to drop the
|
|
// metric name in the output.
|
|
if e.Func.Name != "last_over_time" {
|
|
metric = dropMetricName(metric)
|
|
}
|
|
ss := Series{
|
|
Metric: metric,
|
|
}
|
|
inMatrix[0].Metric = selVS.Series[i].Labels()
|
|
for ts, step := ev.startTimestamp, -1; ts <= ev.endTimestamp; ts += ev.interval {
|
|
step++
|
|
// Set the non-matrix arguments.
|
|
// They are scalar, so it is safe to use the step number
|
|
// when looking up the argument, as there will be no gaps.
|
|
for j := range e.Args {
|
|
if j != matrixArgIndex {
|
|
otherInArgs[j][0].F = otherArgs[j][0].Floats[step].F
|
|
}
|
|
}
|
|
maxt := ts - offset
|
|
mint := maxt - selRange
|
|
// Evaluate the matrix selector for this series for this step.
|
|
floats, histograms = ev.matrixIterSlice(it, mint, maxt, floats, histograms)
|
|
if len(floats)+len(histograms) == 0 {
|
|
continue
|
|
}
|
|
inMatrix[0].Floats = floats
|
|
inMatrix[0].Histograms = histograms
|
|
enh.Ts = ts
|
|
// Make the function call.
|
|
outVec, annos := call(inArgs, e.Args, enh)
|
|
warnings.Merge(annos)
|
|
ev.samplesStats.IncrementSamplesAtStep(step, int64(len(floats)+totalHPointSize(histograms)))
|
|
|
|
enh.Out = outVec[:0]
|
|
if len(outVec) > 0 {
|
|
if outVec[0].H == nil {
|
|
if ss.Floats == nil {
|
|
ss.Floats = getFPointSlice(numSteps)
|
|
}
|
|
ss.Floats = append(ss.Floats, FPoint{F: outVec[0].F, T: ts})
|
|
} else {
|
|
if ss.Histograms == nil {
|
|
ss.Histograms = getHPointSlice(numSteps)
|
|
}
|
|
ss.Histograms = append(ss.Histograms, HPoint{H: outVec[0].H, T: ts})
|
|
}
|
|
}
|
|
// Only buffer stepRange milliseconds from the second step on.
|
|
it.ReduceDelta(stepRange)
|
|
}
|
|
histSamples := totalHPointSize(ss.Histograms)
|
|
if len(ss.Floats)+histSamples > 0 {
|
|
if ev.currentSamples+len(ss.Floats)+histSamples <= ev.maxSamples {
|
|
mat = append(mat, ss)
|
|
ev.currentSamples += len(ss.Floats) + histSamples
|
|
} else {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
}
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
}
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
|
|
ev.currentSamples -= len(floats) + totalHPointSize(histograms)
|
|
putFPointSlice(floats)
|
|
putHPointSlice(histograms)
|
|
|
|
// The absent_over_time function returns 0 or 1 series. So far, the matrix
|
|
// contains multiple series. The following code will create a new series
|
|
// with values of 1 for the timestamps where no series has value.
|
|
if e.Func.Name == "absent_over_time" {
|
|
steps := int(1 + (ev.endTimestamp-ev.startTimestamp)/ev.interval)
|
|
// Iterate once to look for a complete series.
|
|
for _, s := range mat {
|
|
if len(s.Floats)+len(s.Histograms) == steps {
|
|
return Matrix{}, warnings
|
|
}
|
|
}
|
|
|
|
found := map[int64]struct{}{}
|
|
|
|
for i, s := range mat {
|
|
for _, p := range s.Floats {
|
|
found[p.T] = struct{}{}
|
|
}
|
|
for _, p := range s.Histograms {
|
|
found[p.T] = struct{}{}
|
|
}
|
|
if i > 0 && len(found) == steps {
|
|
return Matrix{}, warnings
|
|
}
|
|
}
|
|
|
|
newp := make([]FPoint, 0, steps-len(found))
|
|
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
|
|
if _, ok := found[ts]; !ok {
|
|
newp = append(newp, FPoint{T: ts, F: 1})
|
|
}
|
|
}
|
|
|
|
return Matrix{
|
|
Series{
|
|
Metric: createLabelsForAbsentFunction(e.Args[0]),
|
|
Floats: newp,
|
|
},
|
|
}, warnings
|
|
}
|
|
|
|
if mat.ContainsSameLabelset() {
|
|
ev.errorf("vector cannot contain metrics with the same labelset")
|
|
}
|
|
|
|
return mat, warnings
|
|
|
|
case *parser.ParenExpr:
|
|
return ev.eval(e.Expr)
|
|
|
|
case *parser.UnaryExpr:
|
|
val, ws := ev.eval(e.Expr)
|
|
mat := val.(Matrix)
|
|
if e.Op == parser.SUB {
|
|
for i := range mat {
|
|
mat[i].Metric = dropMetricName(mat[i].Metric)
|
|
for j := range mat[i].Floats {
|
|
mat[i].Floats[j].F = -mat[i].Floats[j].F
|
|
}
|
|
}
|
|
if mat.ContainsSameLabelset() {
|
|
ev.errorf("vector cannot contain metrics with the same labelset")
|
|
}
|
|
}
|
|
return mat, ws
|
|
|
|
case *parser.BinaryExpr:
|
|
switch lt, rt := e.LHS.Type(), e.RHS.Type(); {
|
|
case lt == parser.ValueTypeScalar && rt == parser.ValueTypeScalar:
|
|
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
val := scalarBinop(e.Op, v[0].(Vector)[0].F, v[1].(Vector)[0].F)
|
|
return append(enh.Out, Sample{F: val}), nil
|
|
}, e.LHS, e.RHS)
|
|
case lt == parser.ValueTypeVector && rt == parser.ValueTypeVector:
|
|
// Function to compute the join signature for each series.
|
|
buf := make([]byte, 0, 1024)
|
|
sigf := signatureFunc(e.VectorMatching.On, buf, e.VectorMatching.MatchingLabels...)
|
|
initSignatures := func(series labels.Labels, h *EvalSeriesHelper) {
|
|
h.signature = sigf(series)
|
|
}
|
|
switch e.Op {
|
|
case parser.LAND:
|
|
return ev.rangeEval(initSignatures, func(v []parser.Value, sh [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
return ev.VectorAnd(v[0].(Vector), v[1].(Vector), e.VectorMatching, sh[0], sh[1], enh), nil
|
|
}, e.LHS, e.RHS)
|
|
case parser.LOR:
|
|
return ev.rangeEval(initSignatures, func(v []parser.Value, sh [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
return ev.VectorOr(v[0].(Vector), v[1].(Vector), e.VectorMatching, sh[0], sh[1], enh), nil
|
|
}, e.LHS, e.RHS)
|
|
case parser.LUNLESS:
|
|
return ev.rangeEval(initSignatures, func(v []parser.Value, sh [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
return ev.VectorUnless(v[0].(Vector), v[1].(Vector), e.VectorMatching, sh[0], sh[1], enh), nil
|
|
}, e.LHS, e.RHS)
|
|
default:
|
|
return ev.rangeEval(initSignatures, func(v []parser.Value, sh [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
return ev.VectorBinop(e.Op, v[0].(Vector), v[1].(Vector), e.VectorMatching, e.ReturnBool, sh[0], sh[1], enh), nil
|
|
}, e.LHS, e.RHS)
|
|
}
|
|
|
|
case lt == parser.ValueTypeVector && rt == parser.ValueTypeScalar:
|
|
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
return ev.VectorscalarBinop(e.Op, v[0].(Vector), Scalar{V: v[1].(Vector)[0].F}, false, e.ReturnBool, enh), nil
|
|
}, e.LHS, e.RHS)
|
|
|
|
case lt == parser.ValueTypeScalar && rt == parser.ValueTypeVector:
|
|
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
return ev.VectorscalarBinop(e.Op, v[1].(Vector), Scalar{V: v[0].(Vector)[0].F}, true, e.ReturnBool, enh), nil
|
|
}, e.LHS, e.RHS)
|
|
}
|
|
|
|
case *parser.NumberLiteral:
|
|
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
return append(enh.Out, Sample{F: e.Val, Metric: labels.EmptyLabels()}), nil
|
|
})
|
|
|
|
case *parser.StringLiteral:
|
|
return String{V: e.Val, T: ev.startTimestamp}, nil
|
|
|
|
case *parser.VectorSelector:
|
|
ws, err := checkAndExpandSeriesSet(ev.ctx, e)
|
|
if err != nil {
|
|
ev.error(errWithWarnings{fmt.Errorf("expanding series: %w", err), ws})
|
|
}
|
|
mat := make(Matrix, 0, len(e.Series))
|
|
it := storage.NewMemoizedEmptyIterator(durationMilliseconds(ev.lookbackDelta))
|
|
var chkIter chunkenc.Iterator
|
|
for i, s := range e.Series {
|
|
chkIter = s.Iterator(chkIter)
|
|
it.Reset(chkIter)
|
|
ss := Series{
|
|
Metric: e.Series[i].Labels(),
|
|
}
|
|
|
|
for ts, step := ev.startTimestamp, -1; ts <= ev.endTimestamp; ts += ev.interval {
|
|
step++
|
|
_, f, h, ok := ev.vectorSelectorSingle(it, e, ts)
|
|
if ok {
|
|
if ev.currentSamples < ev.maxSamples {
|
|
if h == nil {
|
|
if ss.Floats == nil {
|
|
ss.Floats = getFPointSlice(numSteps)
|
|
}
|
|
ss.Floats = append(ss.Floats, FPoint{F: f, T: ts})
|
|
ev.currentSamples++
|
|
ev.samplesStats.IncrementSamplesAtStep(step, 1)
|
|
} else {
|
|
if ss.Histograms == nil {
|
|
ss.Histograms = getHPointSlice(numSteps)
|
|
}
|
|
point := HPoint{H: h, T: ts}
|
|
ss.Histograms = append(ss.Histograms, point)
|
|
histSize := point.size()
|
|
ev.currentSamples += histSize
|
|
ev.samplesStats.IncrementSamplesAtStep(step, int64(histSize))
|
|
}
|
|
} else {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
}
|
|
}
|
|
|
|
if len(ss.Floats)+len(ss.Histograms) > 0 {
|
|
mat = append(mat, ss)
|
|
}
|
|
}
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
return mat, ws
|
|
|
|
case *parser.MatrixSelector:
|
|
if ev.startTimestamp != ev.endTimestamp {
|
|
panic(errors.New("cannot do range evaluation of matrix selector"))
|
|
}
|
|
return ev.matrixSelector(e)
|
|
|
|
case *parser.SubqueryExpr:
|
|
offsetMillis := durationMilliseconds(e.Offset)
|
|
rangeMillis := durationMilliseconds(e.Range)
|
|
newEv := &evaluator{
|
|
endTimestamp: ev.endTimestamp - offsetMillis,
|
|
ctx: ev.ctx,
|
|
currentSamples: ev.currentSamples,
|
|
maxSamples: ev.maxSamples,
|
|
logger: ev.logger,
|
|
lookbackDelta: ev.lookbackDelta,
|
|
samplesStats: ev.samplesStats.NewChild(),
|
|
noStepSubqueryIntervalFn: ev.noStepSubqueryIntervalFn,
|
|
}
|
|
|
|
if e.Step != 0 {
|
|
newEv.interval = durationMilliseconds(e.Step)
|
|
} else {
|
|
newEv.interval = ev.noStepSubqueryIntervalFn(rangeMillis)
|
|
}
|
|
|
|
// Start with the first timestamp after (ev.startTimestamp - offset - range)
|
|
// that is aligned with the step (multiple of 'newEv.interval').
|
|
newEv.startTimestamp = newEv.interval * ((ev.startTimestamp - offsetMillis - rangeMillis) / newEv.interval)
|
|
if newEv.startTimestamp < (ev.startTimestamp - offsetMillis - rangeMillis) {
|
|
newEv.startTimestamp += newEv.interval
|
|
}
|
|
|
|
if newEv.startTimestamp != ev.startTimestamp {
|
|
// Adjust the offset of selectors based on the new
|
|
// start time of the evaluator since the calculation
|
|
// of the offset with @ happens w.r.t. the start time.
|
|
setOffsetForAtModifier(newEv.startTimestamp, e.Expr)
|
|
}
|
|
|
|
res, ws := newEv.eval(e.Expr)
|
|
ev.currentSamples = newEv.currentSamples
|
|
ev.samplesStats.UpdatePeakFromSubquery(newEv.samplesStats)
|
|
ev.samplesStats.IncrementSamplesAtTimestamp(ev.endTimestamp, newEv.samplesStats.TotalSamples)
|
|
return res, ws
|
|
case *parser.StepInvariantExpr:
|
|
switch ce := e.Expr.(type) {
|
|
case *parser.StringLiteral, *parser.NumberLiteral:
|
|
return ev.eval(ce)
|
|
}
|
|
|
|
newEv := &evaluator{
|
|
startTimestamp: ev.startTimestamp,
|
|
endTimestamp: ev.startTimestamp, // Always a single evaluation.
|
|
interval: ev.interval,
|
|
ctx: ev.ctx,
|
|
currentSamples: ev.currentSamples,
|
|
maxSamples: ev.maxSamples,
|
|
logger: ev.logger,
|
|
lookbackDelta: ev.lookbackDelta,
|
|
samplesStats: ev.samplesStats.NewChild(),
|
|
noStepSubqueryIntervalFn: ev.noStepSubqueryIntervalFn,
|
|
}
|
|
res, ws := newEv.eval(e.Expr)
|
|
ev.currentSamples = newEv.currentSamples
|
|
ev.samplesStats.UpdatePeakFromSubquery(newEv.samplesStats)
|
|
for ts, step := ev.startTimestamp, -1; ts <= ev.endTimestamp; ts += ev.interval {
|
|
step++
|
|
ev.samplesStats.IncrementSamplesAtStep(step, newEv.samplesStats.TotalSamples)
|
|
}
|
|
switch e.Expr.(type) {
|
|
case *parser.MatrixSelector, *parser.SubqueryExpr:
|
|
// We do not duplicate results for range selectors since result is a matrix
|
|
// with their unique timestamps which does not depend on the step.
|
|
return res, ws
|
|
}
|
|
|
|
// For every evaluation while the value remains same, the timestamp for that
|
|
// value would change for different eval times. Hence we duplicate the result
|
|
// with changed timestamps.
|
|
mat, ok := res.(Matrix)
|
|
if !ok {
|
|
panic(fmt.Errorf("unexpected result in StepInvariantExpr evaluation: %T", expr))
|
|
}
|
|
for i := range mat {
|
|
if len(mat[i].Floats)+len(mat[i].Histograms) != 1 {
|
|
panic(fmt.Errorf("unexpected number of samples"))
|
|
}
|
|
for ts := ev.startTimestamp + ev.interval; ts <= ev.endTimestamp; ts += ev.interval {
|
|
if len(mat[i].Floats) > 0 {
|
|
mat[i].Floats = append(mat[i].Floats, FPoint{
|
|
T: ts,
|
|
F: mat[i].Floats[0].F,
|
|
})
|
|
ev.currentSamples++
|
|
} else {
|
|
point := HPoint{
|
|
T: ts,
|
|
H: mat[i].Histograms[0].H,
|
|
}
|
|
mat[i].Histograms = append(mat[i].Histograms, point)
|
|
ev.currentSamples += point.size()
|
|
}
|
|
if ev.currentSamples > ev.maxSamples {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
}
|
|
}
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
return res, ws
|
|
}
|
|
|
|
panic(fmt.Errorf("unhandled expression of type: %T", expr))
|
|
}
|
|
|
|
func (ev *evaluator) rangeEvalTimestampFunctionOverVectorSelector(vs *parser.VectorSelector, call FunctionCall, e *parser.Call) (parser.Value, annotations.Annotations) {
|
|
ws, err := checkAndExpandSeriesSet(ev.ctx, vs)
|
|
if err != nil {
|
|
ev.error(errWithWarnings{fmt.Errorf("expanding series: %w", err), ws})
|
|
}
|
|
|
|
seriesIterators := make([]*storage.MemoizedSeriesIterator, len(vs.Series))
|
|
for i, s := range vs.Series {
|
|
it := s.Iterator(nil)
|
|
seriesIterators[i] = storage.NewMemoizedIterator(it, durationMilliseconds(ev.lookbackDelta))
|
|
}
|
|
|
|
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
if vs.Timestamp != nil {
|
|
// This is a special case for "timestamp()" when the @ modifier is used, to ensure that
|
|
// we return a point for each time step in this case.
|
|
// See https://github.com/prometheus/prometheus/issues/8433.
|
|
vs.Offset = time.Duration(enh.Ts-*vs.Timestamp) * time.Millisecond
|
|
}
|
|
|
|
vec := make(Vector, 0, len(vs.Series))
|
|
for i, s := range vs.Series {
|
|
it := seriesIterators[i]
|
|
t, f, h, ok := ev.vectorSelectorSingle(it, vs, enh.Ts)
|
|
if ok {
|
|
vec = append(vec, Sample{
|
|
Metric: s.Labels(),
|
|
T: t,
|
|
F: f,
|
|
H: h,
|
|
})
|
|
histSize := 0
|
|
if h != nil {
|
|
histSize := h.Size() / 16 // 16 bytes per sample.
|
|
ev.currentSamples += histSize
|
|
}
|
|
ev.currentSamples++
|
|
|
|
ev.samplesStats.IncrementSamplesAtTimestamp(enh.Ts, int64(1+histSize))
|
|
if ev.currentSamples > ev.maxSamples {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
}
|
|
}
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
vec, annos := call([]parser.Value{vec}, e.Args, enh)
|
|
return vec, ws.Merge(annos)
|
|
})
|
|
}
|
|
|
|
// vectorSelectorSingle evaluates an instant vector for the iterator of one time series.
|
|
func (ev *evaluator) vectorSelectorSingle(it *storage.MemoizedSeriesIterator, node *parser.VectorSelector, ts int64) (
|
|
int64, float64, *histogram.FloatHistogram, bool,
|
|
) {
|
|
refTime := ts - durationMilliseconds(node.Offset)
|
|
var t int64
|
|
var v float64
|
|
var h *histogram.FloatHistogram
|
|
|
|
valueType := it.Seek(refTime)
|
|
switch valueType {
|
|
case chunkenc.ValNone:
|
|
if it.Err() != nil {
|
|
ev.error(it.Err())
|
|
}
|
|
case chunkenc.ValFloat:
|
|
t, v = it.At()
|
|
case chunkenc.ValFloatHistogram:
|
|
t, h = it.AtFloatHistogram()
|
|
default:
|
|
panic(fmt.Errorf("unknown value type %v", valueType))
|
|
}
|
|
if valueType == chunkenc.ValNone || t > refTime {
|
|
var ok bool
|
|
t, v, h, ok = it.PeekPrev()
|
|
if !ok || t < refTime-durationMilliseconds(ev.lookbackDelta) {
|
|
return 0, 0, nil, false
|
|
}
|
|
}
|
|
if value.IsStaleNaN(v) || (h != nil && value.IsStaleNaN(h.Sum)) {
|
|
return 0, 0, nil, false
|
|
}
|
|
return t, v, h, true
|
|
}
|
|
|
|
var (
|
|
fPointPool zeropool.Pool[[]FPoint]
|
|
hPointPool zeropool.Pool[[]HPoint]
|
|
)
|
|
|
|
func getFPointSlice(sz int) []FPoint {
|
|
if p := fPointPool.Get(); p != nil {
|
|
return p
|
|
}
|
|
|
|
if sz > maxPointsSliceSize {
|
|
sz = maxPointsSliceSize
|
|
}
|
|
|
|
return make([]FPoint, 0, sz)
|
|
}
|
|
|
|
// putFPointSlice will return a FPoint slice of size max(maxPointsSliceSize, sz).
|
|
// This function is called with an estimated size which often can be over-estimated.
|
|
func putFPointSlice(p []FPoint) {
|
|
if p != nil {
|
|
fPointPool.Put(p[:0])
|
|
}
|
|
}
|
|
|
|
// getHPointSlice will return a HPoint slice of size max(maxPointsSliceSize, sz).
|
|
// This function is called with an estimated size which often can be over-estimated.
|
|
func getHPointSlice(sz int) []HPoint {
|
|
if p := hPointPool.Get(); p != nil {
|
|
return p
|
|
}
|
|
|
|
if sz > maxPointsSliceSize {
|
|
sz = maxPointsSliceSize
|
|
}
|
|
|
|
return make([]HPoint, 0, sz)
|
|
}
|
|
|
|
func putHPointSlice(p []HPoint) {
|
|
if p != nil {
|
|
hPointPool.Put(p[:0])
|
|
}
|
|
}
|
|
|
|
// matrixSelector evaluates a *parser.MatrixSelector expression.
|
|
func (ev *evaluator) matrixSelector(node *parser.MatrixSelector) (Matrix, annotations.Annotations) {
|
|
var (
|
|
vs = node.VectorSelector.(*parser.VectorSelector)
|
|
|
|
offset = durationMilliseconds(vs.Offset)
|
|
maxt = ev.startTimestamp - offset
|
|
mint = maxt - durationMilliseconds(node.Range)
|
|
matrix = make(Matrix, 0, len(vs.Series))
|
|
|
|
it = storage.NewBuffer(durationMilliseconds(node.Range))
|
|
)
|
|
ws, err := checkAndExpandSeriesSet(ev.ctx, node)
|
|
if err != nil {
|
|
ev.error(errWithWarnings{fmt.Errorf("expanding series: %w", err), ws})
|
|
}
|
|
|
|
var chkIter chunkenc.Iterator
|
|
series := vs.Series
|
|
for i, s := range series {
|
|
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
|
|
ev.error(err)
|
|
}
|
|
chkIter = s.Iterator(chkIter)
|
|
it.Reset(chkIter)
|
|
ss := Series{
|
|
Metric: series[i].Labels(),
|
|
}
|
|
|
|
ss.Floats, ss.Histograms = ev.matrixIterSlice(it, mint, maxt, nil, nil)
|
|
totalSize := int64(len(ss.Floats)) + int64(totalHPointSize(ss.Histograms))
|
|
ev.samplesStats.IncrementSamplesAtTimestamp(ev.startTimestamp, totalSize)
|
|
|
|
if totalSize > 0 {
|
|
matrix = append(matrix, ss)
|
|
} else {
|
|
putFPointSlice(ss.Floats)
|
|
putHPointSlice(ss.Histograms)
|
|
}
|
|
}
|
|
return matrix, ws
|
|
}
|
|
|
|
// matrixIterSlice populates a matrix vector covering the requested range for a
|
|
// single time series, with points retrieved from an iterator.
|
|
//
|
|
// As an optimization, the matrix vector may already contain points of the same
|
|
// time series from the evaluation of an earlier step (with lower mint and maxt
|
|
// values). Any such points falling before mint are discarded; points that fall
|
|
// into the [mint, maxt] range are retained; only points with later timestamps
|
|
// are populated from the iterator.
|
|
func (ev *evaluator) matrixIterSlice(
|
|
it *storage.BufferedSeriesIterator, mint, maxt int64,
|
|
floats []FPoint, histograms []HPoint,
|
|
) ([]FPoint, []HPoint) {
|
|
mintFloats, mintHistograms := mint, mint
|
|
|
|
// First floats...
|
|
if len(floats) > 0 && floats[len(floats)-1].T >= mint {
|
|
// There is an overlap between previous and current ranges, retain common
|
|
// points. In most such cases:
|
|
// (a) the overlap is significantly larger than the eval step; and/or
|
|
// (b) the number of samples is relatively small.
|
|
// so a linear search will be as fast as a binary search.
|
|
var drop int
|
|
for drop = 0; floats[drop].T < mint; drop++ {
|
|
}
|
|
ev.currentSamples -= drop
|
|
copy(floats, floats[drop:])
|
|
floats = floats[:len(floats)-drop]
|
|
// Only append points with timestamps after the last timestamp we have.
|
|
mintFloats = floats[len(floats)-1].T + 1
|
|
} else {
|
|
ev.currentSamples -= len(floats)
|
|
if floats != nil {
|
|
floats = floats[:0]
|
|
}
|
|
}
|
|
|
|
// ...then the same for histograms. TODO(beorn7): Use generics?
|
|
if len(histograms) > 0 && histograms[len(histograms)-1].T >= mint {
|
|
// There is an overlap between previous and current ranges, retain common
|
|
// points. In most such cases:
|
|
// (a) the overlap is significantly larger than the eval step; and/or
|
|
// (b) the number of samples is relatively small.
|
|
// so a linear search will be as fast as a binary search.
|
|
var drop int
|
|
for drop = 0; histograms[drop].T < mint; drop++ {
|
|
}
|
|
copy(histograms, histograms[drop:])
|
|
histograms = histograms[:len(histograms)-drop]
|
|
ev.currentSamples -= totalHPointSize(histograms)
|
|
// Only append points with timestamps after the last timestamp we have.
|
|
mintHistograms = histograms[len(histograms)-1].T + 1
|
|
} else {
|
|
ev.currentSamples -= totalHPointSize(histograms)
|
|
if histograms != nil {
|
|
histograms = histograms[:0]
|
|
}
|
|
}
|
|
|
|
soughtValueType := it.Seek(maxt)
|
|
if soughtValueType == chunkenc.ValNone {
|
|
if it.Err() != nil {
|
|
ev.error(it.Err())
|
|
}
|
|
}
|
|
|
|
buf := it.Buffer()
|
|
loop:
|
|
for {
|
|
switch buf.Next() {
|
|
case chunkenc.ValNone:
|
|
break loop
|
|
case chunkenc.ValFloatHistogram, chunkenc.ValHistogram:
|
|
t, h := buf.AtFloatHistogram()
|
|
if value.IsStaleNaN(h.Sum) {
|
|
continue loop
|
|
}
|
|
// Values in the buffer are guaranteed to be smaller than maxt.
|
|
if t >= mintHistograms {
|
|
if ev.currentSamples >= ev.maxSamples {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
point := HPoint{T: t, H: h}
|
|
if histograms == nil {
|
|
histograms = getHPointSlice(16)
|
|
}
|
|
histograms = append(histograms, point)
|
|
ev.currentSamples += point.size()
|
|
}
|
|
case chunkenc.ValFloat:
|
|
t, f := buf.At()
|
|
if value.IsStaleNaN(f) {
|
|
continue loop
|
|
}
|
|
// Values in the buffer are guaranteed to be smaller than maxt.
|
|
if t >= mintFloats {
|
|
if ev.currentSamples >= ev.maxSamples {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
ev.currentSamples++
|
|
if floats == nil {
|
|
floats = getFPointSlice(16)
|
|
}
|
|
floats = append(floats, FPoint{T: t, F: f})
|
|
}
|
|
}
|
|
}
|
|
// The sought sample might also be in the range.
|
|
switch soughtValueType {
|
|
case chunkenc.ValFloatHistogram, chunkenc.ValHistogram:
|
|
t, h := it.AtFloatHistogram()
|
|
if t == maxt && !value.IsStaleNaN(h.Sum) {
|
|
if ev.currentSamples >= ev.maxSamples {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
if histograms == nil {
|
|
histograms = getHPointSlice(16)
|
|
}
|
|
point := HPoint{T: t, H: h}
|
|
histograms = append(histograms, point)
|
|
ev.currentSamples += point.size()
|
|
}
|
|
case chunkenc.ValFloat:
|
|
t, f := it.At()
|
|
if t == maxt && !value.IsStaleNaN(f) {
|
|
if ev.currentSamples >= ev.maxSamples {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
if floats == nil {
|
|
floats = getFPointSlice(16)
|
|
}
|
|
floats = append(floats, FPoint{T: t, F: f})
|
|
ev.currentSamples++
|
|
}
|
|
}
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
return floats, histograms
|
|
}
|
|
|
|
func (ev *evaluator) VectorAnd(lhs, rhs Vector, matching *parser.VectorMatching, lhsh, rhsh []EvalSeriesHelper, enh *EvalNodeHelper) Vector {
|
|
if matching.Card != parser.CardManyToMany {
|
|
panic("set operations must only use many-to-many matching")
|
|
}
|
|
if len(lhs) == 0 || len(rhs) == 0 {
|
|
return nil // Short-circuit: AND with nothing is nothing.
|
|
}
|
|
|
|
// The set of signatures for the right-hand side Vector.
|
|
rightSigs := map[string]struct{}{}
|
|
// Add all rhs samples to a map so we can easily find matches later.
|
|
for _, sh := range rhsh {
|
|
rightSigs[sh.signature] = struct{}{}
|
|
}
|
|
|
|
for i, ls := range lhs {
|
|
// If there's a matching entry in the right-hand side Vector, add the sample.
|
|
if _, ok := rightSigs[lhsh[i].signature]; ok {
|
|
enh.Out = append(enh.Out, ls)
|
|
}
|
|
}
|
|
return enh.Out
|
|
}
|
|
|
|
func (ev *evaluator) VectorOr(lhs, rhs Vector, matching *parser.VectorMatching, lhsh, rhsh []EvalSeriesHelper, enh *EvalNodeHelper) Vector {
|
|
switch {
|
|
case matching.Card != parser.CardManyToMany:
|
|
panic("set operations must only use many-to-many matching")
|
|
case len(lhs) == 0: // Short-circuit.
|
|
enh.Out = append(enh.Out, rhs...)
|
|
return enh.Out
|
|
case len(rhs) == 0:
|
|
enh.Out = append(enh.Out, lhs...)
|
|
return enh.Out
|
|
}
|
|
|
|
leftSigs := map[string]struct{}{}
|
|
// Add everything from the left-hand-side Vector.
|
|
for i, ls := range lhs {
|
|
leftSigs[lhsh[i].signature] = struct{}{}
|
|
enh.Out = append(enh.Out, ls)
|
|
}
|
|
// Add all right-hand side elements which have not been added from the left-hand side.
|
|
for j, rs := range rhs {
|
|
if _, ok := leftSigs[rhsh[j].signature]; !ok {
|
|
enh.Out = append(enh.Out, rs)
|
|
}
|
|
}
|
|
return enh.Out
|
|
}
|
|
|
|
func (ev *evaluator) VectorUnless(lhs, rhs Vector, matching *parser.VectorMatching, lhsh, rhsh []EvalSeriesHelper, enh *EvalNodeHelper) Vector {
|
|
if matching.Card != parser.CardManyToMany {
|
|
panic("set operations must only use many-to-many matching")
|
|
}
|
|
// Short-circuit: empty rhs means we will return everything in lhs;
|
|
// empty lhs means we will return empty - don't need to build a map.
|
|
if len(lhs) == 0 || len(rhs) == 0 {
|
|
enh.Out = append(enh.Out, lhs...)
|
|
return enh.Out
|
|
}
|
|
|
|
rightSigs := map[string]struct{}{}
|
|
for _, sh := range rhsh {
|
|
rightSigs[sh.signature] = struct{}{}
|
|
}
|
|
|
|
for i, ls := range lhs {
|
|
if _, ok := rightSigs[lhsh[i].signature]; !ok {
|
|
enh.Out = append(enh.Out, ls)
|
|
}
|
|
}
|
|
return enh.Out
|
|
}
|
|
|
|
// VectorBinop evaluates a binary operation between two Vectors, excluding set operators.
|
|
func (ev *evaluator) VectorBinop(op parser.ItemType, lhs, rhs Vector, matching *parser.VectorMatching, returnBool bool, lhsh, rhsh []EvalSeriesHelper, enh *EvalNodeHelper) Vector {
|
|
if matching.Card == parser.CardManyToMany {
|
|
panic("many-to-many only allowed for set operators")
|
|
}
|
|
if len(lhs) == 0 || len(rhs) == 0 {
|
|
return nil // Short-circuit: nothing is going to match.
|
|
}
|
|
|
|
// The control flow below handles one-to-one or many-to-one matching.
|
|
// For one-to-many, swap sidedness and account for the swap when calculating
|
|
// values.
|
|
if matching.Card == parser.CardOneToMany {
|
|
lhs, rhs = rhs, lhs
|
|
lhsh, rhsh = rhsh, lhsh
|
|
}
|
|
|
|
// All samples from the rhs hashed by the matching label/values.
|
|
if enh.rightSigs == nil {
|
|
enh.rightSigs = make(map[string]Sample, len(enh.Out))
|
|
} else {
|
|
for k := range enh.rightSigs {
|
|
delete(enh.rightSigs, k)
|
|
}
|
|
}
|
|
rightSigs := enh.rightSigs
|
|
|
|
// Add all rhs samples to a map so we can easily find matches later.
|
|
for i, rs := range rhs {
|
|
sig := rhsh[i].signature
|
|
// The rhs is guaranteed to be the 'one' side. Having multiple samples
|
|
// with the same signature means that the matching is many-to-many.
|
|
if duplSample, found := rightSigs[sig]; found {
|
|
// oneSide represents which side of the vector represents the 'one' in the many-to-one relationship.
|
|
oneSide := "right"
|
|
if matching.Card == parser.CardOneToMany {
|
|
oneSide = "left"
|
|
}
|
|
matchedLabels := rs.Metric.MatchLabels(matching.On, matching.MatchingLabels...)
|
|
// Many-to-many matching not allowed.
|
|
ev.errorf("found duplicate series for the match group %s on the %s hand-side of the operation: [%s, %s]"+
|
|
";many-to-many matching not allowed: matching labels must be unique on one side", matchedLabels.String(), oneSide, rs.Metric.String(), duplSample.Metric.String())
|
|
}
|
|
rightSigs[sig] = rs
|
|
}
|
|
|
|
// Tracks the match-signature. For one-to-one operations the value is nil. For many-to-one
|
|
// the value is a set of signatures to detect duplicated result elements.
|
|
if enh.matchedSigs == nil {
|
|
enh.matchedSigs = make(map[string]map[uint64]struct{}, len(rightSigs))
|
|
} else {
|
|
for k := range enh.matchedSigs {
|
|
delete(enh.matchedSigs, k)
|
|
}
|
|
}
|
|
matchedSigs := enh.matchedSigs
|
|
|
|
// For all lhs samples find a respective rhs sample and perform
|
|
// the binary operation.
|
|
for i, ls := range lhs {
|
|
sig := lhsh[i].signature
|
|
|
|
rs, found := rightSigs[sig] // Look for a match in the rhs Vector.
|
|
if !found {
|
|
continue
|
|
}
|
|
|
|
// Account for potentially swapped sidedness.
|
|
fl, fr := ls.F, rs.F
|
|
hl, hr := ls.H, rs.H
|
|
if matching.Card == parser.CardOneToMany {
|
|
fl, fr = fr, fl
|
|
hl, hr = hr, hl
|
|
}
|
|
floatValue, histogramValue, keep := vectorElemBinop(op, fl, fr, hl, hr)
|
|
switch {
|
|
case returnBool:
|
|
if keep {
|
|
floatValue = 1.0
|
|
} else {
|
|
floatValue = 0.0
|
|
}
|
|
case !keep:
|
|
continue
|
|
}
|
|
metric := resultMetric(ls.Metric, rs.Metric, op, matching, enh)
|
|
if returnBool {
|
|
metric = enh.DropMetricName(metric)
|
|
}
|
|
insertedSigs, exists := matchedSigs[sig]
|
|
if matching.Card == parser.CardOneToOne {
|
|
if exists {
|
|
ev.errorf("multiple matches for labels: many-to-one matching must be explicit (group_left/group_right)")
|
|
}
|
|
matchedSigs[sig] = nil // Set existence to true.
|
|
} else {
|
|
// In many-to-one matching the grouping labels have to ensure a unique metric
|
|
// for the result Vector. Check whether those labels have already been added for
|
|
// the same matching labels.
|
|
insertSig := metric.Hash()
|
|
|
|
if !exists {
|
|
insertedSigs = map[uint64]struct{}{}
|
|
matchedSigs[sig] = insertedSigs
|
|
} else if _, duplicate := insertedSigs[insertSig]; duplicate {
|
|
ev.errorf("multiple matches for labels: grouping labels must ensure unique matches")
|
|
}
|
|
insertedSigs[insertSig] = struct{}{}
|
|
}
|
|
|
|
enh.Out = append(enh.Out, Sample{
|
|
Metric: metric,
|
|
F: floatValue,
|
|
H: histogramValue,
|
|
})
|
|
}
|
|
return enh.Out
|
|
}
|
|
|
|
func signatureFunc(on bool, b []byte, names ...string) func(labels.Labels) string {
|
|
if on {
|
|
slices.Sort(names)
|
|
return func(lset labels.Labels) string {
|
|
return string(lset.BytesWithLabels(b, names...))
|
|
}
|
|
}
|
|
names = append([]string{labels.MetricName}, names...)
|
|
slices.Sort(names)
|
|
return func(lset labels.Labels) string {
|
|
return string(lset.BytesWithoutLabels(b, names...))
|
|
}
|
|
}
|
|
|
|
// resultMetric returns the metric for the given sample(s) based on the Vector
|
|
// binary operation and the matching options.
|
|
func resultMetric(lhs, rhs labels.Labels, op parser.ItemType, matching *parser.VectorMatching, enh *EvalNodeHelper) labels.Labels {
|
|
if enh.resultMetric == nil {
|
|
enh.resultMetric = make(map[string]labels.Labels, len(enh.Out))
|
|
}
|
|
|
|
enh.resetBuilder(lhs)
|
|
buf := bytes.NewBuffer(enh.lblResultBuf[:0])
|
|
enh.lblBuf = lhs.Bytes(enh.lblBuf)
|
|
buf.Write(enh.lblBuf)
|
|
enh.lblBuf = rhs.Bytes(enh.lblBuf)
|
|
buf.Write(enh.lblBuf)
|
|
enh.lblResultBuf = buf.Bytes()
|
|
|
|
if ret, ok := enh.resultMetric[string(enh.lblResultBuf)]; ok {
|
|
return ret
|
|
}
|
|
str := string(enh.lblResultBuf)
|
|
|
|
if shouldDropMetricName(op) {
|
|
enh.lb.Del(labels.MetricName)
|
|
}
|
|
|
|
if matching.Card == parser.CardOneToOne {
|
|
if matching.On {
|
|
enh.lb.Keep(matching.MatchingLabels...)
|
|
} else {
|
|
enh.lb.Del(matching.MatchingLabels...)
|
|
}
|
|
}
|
|
for _, ln := range matching.Include {
|
|
// Included labels from the `group_x` modifier are taken from the "one"-side.
|
|
if v := rhs.Get(ln); v != "" {
|
|
enh.lb.Set(ln, v)
|
|
} else {
|
|
enh.lb.Del(ln)
|
|
}
|
|
}
|
|
|
|
ret := enh.lb.Labels()
|
|
enh.resultMetric[str] = ret
|
|
return ret
|
|
}
|
|
|
|
// VectorscalarBinop evaluates a binary operation between a Vector and a Scalar.
|
|
func (ev *evaluator) VectorscalarBinop(op parser.ItemType, lhs Vector, rhs Scalar, swap, returnBool bool, enh *EvalNodeHelper) Vector {
|
|
for _, lhsSample := range lhs {
|
|
lf, rf := lhsSample.F, rhs.V
|
|
var rh *histogram.FloatHistogram
|
|
lh := lhsSample.H
|
|
// lhs always contains the Vector. If the original position was different
|
|
// swap for calculating the value.
|
|
if swap {
|
|
lf, rf = rf, lf
|
|
lh, rh = rh, lh
|
|
}
|
|
float, histogram, keep := vectorElemBinop(op, lf, rf, lh, rh)
|
|
// Catch cases where the scalar is the LHS in a scalar-vector comparison operation.
|
|
// We want to always keep the vector element value as the output value, even if it's on the RHS.
|
|
if op.IsComparisonOperator() && swap {
|
|
float = rf
|
|
histogram = rh
|
|
}
|
|
if returnBool {
|
|
if keep {
|
|
float = 1.0
|
|
} else {
|
|
float = 0.0
|
|
}
|
|
keep = true
|
|
}
|
|
if keep {
|
|
lhsSample.F = float
|
|
lhsSample.H = histogram
|
|
if shouldDropMetricName(op) || returnBool {
|
|
lhsSample.Metric = enh.DropMetricName(lhsSample.Metric)
|
|
}
|
|
enh.Out = append(enh.Out, lhsSample)
|
|
}
|
|
}
|
|
return enh.Out
|
|
}
|
|
|
|
func dropMetricName(l labels.Labels) labels.Labels {
|
|
return labels.NewBuilder(l).Del(labels.MetricName).Labels()
|
|
}
|
|
|
|
// scalarBinop evaluates a binary operation between two Scalars.
|
|
func scalarBinop(op parser.ItemType, lhs, rhs float64) float64 {
|
|
switch op {
|
|
case parser.ADD:
|
|
return lhs + rhs
|
|
case parser.SUB:
|
|
return lhs - rhs
|
|
case parser.MUL:
|
|
return lhs * rhs
|
|
case parser.DIV:
|
|
return lhs / rhs
|
|
case parser.POW:
|
|
return math.Pow(lhs, rhs)
|
|
case parser.MOD:
|
|
return math.Mod(lhs, rhs)
|
|
case parser.EQLC:
|
|
return btos(lhs == rhs)
|
|
case parser.NEQ:
|
|
return btos(lhs != rhs)
|
|
case parser.GTR:
|
|
return btos(lhs > rhs)
|
|
case parser.LSS:
|
|
return btos(lhs < rhs)
|
|
case parser.GTE:
|
|
return btos(lhs >= rhs)
|
|
case parser.LTE:
|
|
return btos(lhs <= rhs)
|
|
case parser.ATAN2:
|
|
return math.Atan2(lhs, rhs)
|
|
}
|
|
panic(fmt.Errorf("operator %q not allowed for Scalar operations", op))
|
|
}
|
|
|
|
// vectorElemBinop evaluates a binary operation between two Vector elements.
|
|
func vectorElemBinop(op parser.ItemType, lhs, rhs float64, hlhs, hrhs *histogram.FloatHistogram) (float64, *histogram.FloatHistogram, bool) {
|
|
switch op {
|
|
case parser.ADD:
|
|
if hlhs != nil && hrhs != nil {
|
|
// The histogram being added must have the larger schema
|
|
// code (i.e. the higher resolution).
|
|
if hrhs.Schema >= hlhs.Schema {
|
|
return 0, hlhs.Copy().Add(hrhs).Compact(0), true
|
|
}
|
|
return 0, hrhs.Copy().Add(hlhs).Compact(0), true
|
|
}
|
|
return lhs + rhs, nil, true
|
|
case parser.SUB:
|
|
if hlhs != nil && hrhs != nil {
|
|
// The histogram being subtracted must have the larger schema
|
|
// code (i.e. the higher resolution).
|
|
if hrhs.Schema >= hlhs.Schema {
|
|
return 0, hlhs.Copy().Sub(hrhs).Compact(0), true
|
|
}
|
|
return 0, hrhs.Copy().Mul(-1).Add(hlhs).Compact(0), true
|
|
}
|
|
return lhs - rhs, nil, true
|
|
case parser.MUL:
|
|
if hlhs != nil && hrhs == nil {
|
|
return 0, hlhs.Copy().Mul(rhs), true
|
|
}
|
|
if hlhs == nil && hrhs != nil {
|
|
return 0, hrhs.Copy().Mul(lhs), true
|
|
}
|
|
return lhs * rhs, nil, true
|
|
case parser.DIV:
|
|
if hlhs != nil && hrhs == nil {
|
|
return 0, hlhs.Copy().Div(rhs), true
|
|
}
|
|
return lhs / rhs, nil, true
|
|
case parser.POW:
|
|
return math.Pow(lhs, rhs), nil, true
|
|
case parser.MOD:
|
|
return math.Mod(lhs, rhs), nil, true
|
|
case parser.EQLC:
|
|
return lhs, nil, lhs == rhs
|
|
case parser.NEQ:
|
|
return lhs, nil, lhs != rhs
|
|
case parser.GTR:
|
|
return lhs, nil, lhs > rhs
|
|
case parser.LSS:
|
|
return lhs, nil, lhs < rhs
|
|
case parser.GTE:
|
|
return lhs, nil, lhs >= rhs
|
|
case parser.LTE:
|
|
return lhs, nil, lhs <= rhs
|
|
case parser.ATAN2:
|
|
return math.Atan2(lhs, rhs), nil, true
|
|
}
|
|
panic(fmt.Errorf("operator %q not allowed for operations between Vectors", op))
|
|
}
|
|
|
|
type groupedAggregation struct {
|
|
hasFloat bool // Has at least 1 float64 sample aggregated.
|
|
hasHistogram bool // Has at least 1 histogram sample aggregated.
|
|
labels labels.Labels
|
|
floatValue float64
|
|
histogramValue *histogram.FloatHistogram
|
|
floatMean float64
|
|
histogramMean *histogram.FloatHistogram
|
|
groupCount int
|
|
heap vectorByValueHeap
|
|
reverseHeap vectorByReverseValueHeap
|
|
}
|
|
|
|
// aggregation evaluates an aggregation operation on a Vector. The provided grouping labels
|
|
// must be sorted.
|
|
func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, param interface{}, vec Vector, seriesHelper []EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
|
op := e.Op
|
|
without := e.Without
|
|
var annos annotations.Annotations
|
|
result := map[uint64]*groupedAggregation{}
|
|
orderedResult := []*groupedAggregation{}
|
|
var k int64
|
|
if op == parser.TOPK || op == parser.BOTTOMK {
|
|
f := param.(float64)
|
|
if !convertibleToInt64(f) {
|
|
ev.errorf("Scalar value %v overflows int64", f)
|
|
}
|
|
k = int64(f)
|
|
if k < 1 {
|
|
return Vector{}, annos
|
|
}
|
|
}
|
|
var q float64
|
|
if op == parser.QUANTILE {
|
|
q = param.(float64)
|
|
}
|
|
var valueLabel string
|
|
var recomputeGroupingKey bool
|
|
if op == parser.COUNT_VALUES {
|
|
valueLabel = param.(string)
|
|
if !model.LabelName(valueLabel).IsValid() {
|
|
ev.errorf("invalid label name %q", valueLabel)
|
|
}
|
|
if !without {
|
|
// We're changing the grouping labels so we have to ensure they're still sorted
|
|
// and we have to flag to recompute the grouping key. Considering the count_values()
|
|
// operator is less frequently used than other aggregations, we're fine having to
|
|
// re-compute the grouping key on each step for this case.
|
|
grouping = append(grouping, valueLabel)
|
|
slices.Sort(grouping)
|
|
recomputeGroupingKey = true
|
|
}
|
|
}
|
|
|
|
var buf []byte
|
|
for si, s := range vec {
|
|
metric := s.Metric
|
|
|
|
if op == parser.COUNT_VALUES {
|
|
enh.resetBuilder(metric)
|
|
enh.lb.Set(valueLabel, strconv.FormatFloat(s.F, 'f', -1, 64))
|
|
metric = enh.lb.Labels()
|
|
|
|
// We've changed the metric so we have to recompute the grouping key.
|
|
recomputeGroupingKey = true
|
|
}
|
|
|
|
// We can use the pre-computed grouping key unless grouping labels have changed.
|
|
var groupingKey uint64
|
|
if !recomputeGroupingKey {
|
|
groupingKey = seriesHelper[si].groupingKey
|
|
} else {
|
|
groupingKey, buf = generateGroupingKey(metric, grouping, without, buf)
|
|
}
|
|
|
|
group, ok := result[groupingKey]
|
|
// Add a new group if it doesn't exist.
|
|
if !ok {
|
|
var m labels.Labels
|
|
enh.resetBuilder(metric)
|
|
switch {
|
|
case without:
|
|
enh.lb.Del(grouping...)
|
|
enh.lb.Del(labels.MetricName)
|
|
m = enh.lb.Labels()
|
|
case len(grouping) > 0:
|
|
enh.lb.Keep(grouping...)
|
|
m = enh.lb.Labels()
|
|
default:
|
|
m = labels.EmptyLabels()
|
|
}
|
|
newAgg := &groupedAggregation{
|
|
labels: m,
|
|
floatValue: s.F,
|
|
floatMean: s.F,
|
|
groupCount: 1,
|
|
}
|
|
switch {
|
|
case s.H == nil:
|
|
newAgg.hasFloat = true
|
|
case op == parser.SUM:
|
|
newAgg.histogramValue = s.H.Copy()
|
|
newAgg.hasHistogram = true
|
|
case op == parser.AVG:
|
|
newAgg.histogramMean = s.H.Copy()
|
|
newAgg.hasHistogram = true
|
|
case op == parser.STDVAR || op == parser.STDDEV:
|
|
newAgg.groupCount = 0
|
|
}
|
|
|
|
result[groupingKey] = newAgg
|
|
orderedResult = append(orderedResult, newAgg)
|
|
|
|
inputVecLen := int64(len(vec))
|
|
resultSize := k
|
|
switch {
|
|
case k > inputVecLen:
|
|
resultSize = inputVecLen
|
|
case k == 0:
|
|
resultSize = 1
|
|
}
|
|
switch op {
|
|
case parser.STDVAR, parser.STDDEV:
|
|
result[groupingKey].floatValue = 0
|
|
case parser.TOPK, parser.QUANTILE:
|
|
result[groupingKey].heap = make(vectorByValueHeap, 1, resultSize)
|
|
result[groupingKey].heap[0] = Sample{
|
|
F: s.F,
|
|
Metric: s.Metric,
|
|
}
|
|
case parser.BOTTOMK:
|
|
result[groupingKey].reverseHeap = make(vectorByReverseValueHeap, 1, resultSize)
|
|
result[groupingKey].reverseHeap[0] = Sample{
|
|
F: s.F,
|
|
Metric: s.Metric,
|
|
}
|
|
case parser.GROUP:
|
|
result[groupingKey].floatValue = 1
|
|
}
|
|
continue
|
|
}
|
|
|
|
switch op {
|
|
case parser.SUM:
|
|
if s.H != nil {
|
|
group.hasHistogram = true
|
|
if group.histogramValue != nil {
|
|
// The histogram being added must have
|
|
// an equal or larger schema.
|
|
if s.H.Schema >= group.histogramValue.Schema {
|
|
group.histogramValue.Add(s.H)
|
|
} else {
|
|
group.histogramValue = s.H.Copy().Add(group.histogramValue)
|
|
}
|
|
}
|
|
// Otherwise the aggregation contained floats
|
|
// previously and will be invalid anyway. No
|
|
// point in copying the histogram in that case.
|
|
} else {
|
|
group.hasFloat = true
|
|
group.floatValue += s.F
|
|
}
|
|
|
|
case parser.AVG:
|
|
group.groupCount++
|
|
if s.H != nil {
|
|
group.hasHistogram = true
|
|
if group.histogramMean != nil {
|
|
left := s.H.Copy().Div(float64(group.groupCount))
|
|
right := group.histogramMean.Copy().Div(float64(group.groupCount))
|
|
// The histogram being added/subtracted must have
|
|
// an equal or larger schema.
|
|
if s.H.Schema >= group.histogramMean.Schema {
|
|
toAdd := right.Mul(-1).Add(left)
|
|
group.histogramMean.Add(toAdd)
|
|
} else {
|
|
toAdd := left.Sub(right)
|
|
group.histogramMean = toAdd.Add(group.histogramMean)
|
|
}
|
|
}
|
|
// Otherwise the aggregation contained floats
|
|
// previously and will be invalid anyway. No
|
|
// point in copying the histogram in that case.
|
|
} else {
|
|
group.hasFloat = true
|
|
if math.IsInf(group.floatMean, 0) {
|
|
if math.IsInf(s.F, 0) && (group.floatMean > 0) == (s.F > 0) {
|
|
// The `floatMean` and `s.F` values are `Inf` of the same sign. They
|
|
// can't be subtracted, but the value of `floatMean` is correct
|
|
// already.
|
|
break
|
|
}
|
|
if !math.IsInf(s.F, 0) && !math.IsNaN(s.F) {
|
|
// At this stage, the mean is an infinite. If the added
|
|
// value is neither an Inf or a Nan, we can keep that mean
|
|
// value.
|
|
// This is required because our calculation below removes
|
|
// the mean value, which would look like Inf += x - Inf and
|
|
// end up as a NaN.
|
|
break
|
|
}
|
|
}
|
|
// Divide each side of the `-` by `group.groupCount` to avoid float64 overflows.
|
|
group.floatMean += s.F/float64(group.groupCount) - group.floatMean/float64(group.groupCount)
|
|
}
|
|
|
|
case parser.GROUP:
|
|
// Do nothing. Required to avoid the panic in `default:` below.
|
|
|
|
case parser.MAX:
|
|
if group.floatValue < s.F || math.IsNaN(group.floatValue) {
|
|
group.floatValue = s.F
|
|
}
|
|
|
|
case parser.MIN:
|
|
if group.floatValue > s.F || math.IsNaN(group.floatValue) {
|
|
group.floatValue = s.F
|
|
}
|
|
|
|
case parser.COUNT, parser.COUNT_VALUES:
|
|
group.groupCount++
|
|
|
|
case parser.STDVAR, parser.STDDEV:
|
|
if s.H == nil { // Ignore native histograms.
|
|
group.groupCount++
|
|
delta := s.F - group.floatMean
|
|
group.floatMean += delta / float64(group.groupCount)
|
|
group.floatValue += delta * (s.F - group.floatMean)
|
|
}
|
|
|
|
case parser.TOPK:
|
|
// We build a heap of up to k elements, with the smallest element at heap[0].
|
|
switch {
|
|
case int64(len(group.heap)) < k:
|
|
heap.Push(&group.heap, &Sample{
|
|
F: s.F,
|
|
Metric: s.Metric,
|
|
})
|
|
case group.heap[0].F < s.F || (math.IsNaN(group.heap[0].F) && !math.IsNaN(s.F)):
|
|
// This new element is bigger than the previous smallest element - overwrite that.
|
|
group.heap[0] = Sample{
|
|
F: s.F,
|
|
Metric: s.Metric,
|
|
}
|
|
if k > 1 {
|
|
heap.Fix(&group.heap, 0) // Maintain the heap invariant.
|
|
}
|
|
}
|
|
|
|
case parser.BOTTOMK:
|
|
// We build a heap of up to k elements, with the biggest element at heap[0].
|
|
switch {
|
|
case int64(len(group.reverseHeap)) < k:
|
|
heap.Push(&group.reverseHeap, &Sample{
|
|
F: s.F,
|
|
Metric: s.Metric,
|
|
})
|
|
case group.reverseHeap[0].F > s.F || (math.IsNaN(group.reverseHeap[0].F) && !math.IsNaN(s.F)):
|
|
// This new element is smaller than the previous biggest element - overwrite that.
|
|
group.reverseHeap[0] = Sample{
|
|
F: s.F,
|
|
Metric: s.Metric,
|
|
}
|
|
if k > 1 {
|
|
heap.Fix(&group.reverseHeap, 0) // Maintain the heap invariant.
|
|
}
|
|
}
|
|
|
|
case parser.QUANTILE:
|
|
group.heap = append(group.heap, s)
|
|
|
|
default:
|
|
panic(fmt.Errorf("expected aggregation operator but got %q", op))
|
|
}
|
|
}
|
|
|
|
// Construct the result Vector from the aggregated groups.
|
|
for _, aggr := range orderedResult {
|
|
switch op {
|
|
case parser.AVG:
|
|
if aggr.hasFloat && aggr.hasHistogram {
|
|
// We cannot aggregate histogram sample with a float64 sample.
|
|
metricName := aggr.labels.Get(labels.MetricName)
|
|
annos.Add(annotations.NewMixedFloatsHistogramsWarning(metricName, e.Expr.PositionRange()))
|
|
continue
|
|
}
|
|
if aggr.hasHistogram {
|
|
aggr.histogramValue = aggr.histogramMean.Compact(0)
|
|
} else {
|
|
aggr.floatValue = aggr.floatMean
|
|
}
|
|
|
|
case parser.COUNT, parser.COUNT_VALUES:
|
|
aggr.floatValue = float64(aggr.groupCount)
|
|
|
|
case parser.STDVAR:
|
|
aggr.floatValue /= float64(aggr.groupCount)
|
|
|
|
case parser.STDDEV:
|
|
aggr.floatValue = math.Sqrt(aggr.floatValue / float64(aggr.groupCount))
|
|
|
|
case parser.TOPK:
|
|
// The heap keeps the lowest value on top, so reverse it.
|
|
if len(aggr.heap) > 1 {
|
|
sort.Sort(sort.Reverse(aggr.heap))
|
|
}
|
|
for _, v := range aggr.heap {
|
|
enh.Out = append(enh.Out, Sample{
|
|
Metric: v.Metric,
|
|
F: v.F,
|
|
})
|
|
}
|
|
continue // Bypass default append.
|
|
|
|
case parser.BOTTOMK:
|
|
// The heap keeps the highest value on top, so reverse it.
|
|
if len(aggr.reverseHeap) > 1 {
|
|
sort.Sort(sort.Reverse(aggr.reverseHeap))
|
|
}
|
|
for _, v := range aggr.reverseHeap {
|
|
enh.Out = append(enh.Out, Sample{
|
|
Metric: v.Metric,
|
|
F: v.F,
|
|
})
|
|
}
|
|
continue // Bypass default append.
|
|
|
|
case parser.QUANTILE:
|
|
if math.IsNaN(q) || q < 0 || q > 1 {
|
|
annos.Add(annotations.NewInvalidQuantileWarning(q, e.Param.PositionRange()))
|
|
}
|
|
aggr.floatValue = quantile(q, aggr.heap)
|
|
|
|
case parser.SUM:
|
|
if aggr.hasFloat && aggr.hasHistogram {
|
|
// We cannot aggregate histogram sample with a float64 sample.
|
|
metricName := aggr.labels.Get(labels.MetricName)
|
|
annos.Add(annotations.NewMixedFloatsHistogramsWarning(metricName, e.Expr.PositionRange()))
|
|
continue
|
|
}
|
|
if aggr.hasHistogram {
|
|
aggr.histogramValue.Compact(0)
|
|
}
|
|
default:
|
|
// For other aggregations, we already have the right value.
|
|
}
|
|
|
|
enh.Out = append(enh.Out, Sample{
|
|
Metric: aggr.labels,
|
|
F: aggr.floatValue,
|
|
H: aggr.histogramValue,
|
|
})
|
|
}
|
|
return enh.Out, annos
|
|
}
|
|
|
|
// groupingKey builds and returns the grouping key for the given metric and
|
|
// grouping labels.
|
|
func generateGroupingKey(metric labels.Labels, grouping []string, without bool, buf []byte) (uint64, []byte) {
|
|
if without {
|
|
return metric.HashWithoutLabels(buf, grouping...)
|
|
}
|
|
|
|
if len(grouping) == 0 {
|
|
// No need to generate any hash if there are no grouping labels.
|
|
return 0, buf
|
|
}
|
|
|
|
return metric.HashForLabels(buf, grouping...)
|
|
}
|
|
|
|
// btos returns 1 if b is true, 0 otherwise.
|
|
func btos(b bool) float64 {
|
|
if b {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// shouldDropMetricName returns whether the metric name should be dropped in the
|
|
// result of the op operation.
|
|
func shouldDropMetricName(op parser.ItemType) bool {
|
|
switch op {
|
|
case parser.ADD, parser.SUB, parser.DIV, parser.MUL, parser.POW, parser.MOD, parser.ATAN2:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// NewOriginContext returns a new context with data about the origin attached.
|
|
func NewOriginContext(ctx context.Context, data map[string]interface{}) context.Context {
|
|
return context.WithValue(ctx, QueryOrigin{}, data)
|
|
}
|
|
|
|
func formatDate(t time.Time) string {
|
|
return t.UTC().Format("2006-01-02T15:04:05.000Z07:00")
|
|
}
|
|
|
|
// unwrapParenExpr does the AST equivalent of removing parentheses around a expression.
|
|
func unwrapParenExpr(e *parser.Expr) {
|
|
for {
|
|
if p, ok := (*e).(*parser.ParenExpr); ok {
|
|
*e = p.Expr
|
|
} else {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
func unwrapStepInvariantExpr(e parser.Expr) parser.Expr {
|
|
if p, ok := e.(*parser.StepInvariantExpr); ok {
|
|
return p.Expr
|
|
}
|
|
return e
|
|
}
|
|
|
|
// PreprocessExpr wraps all possible step invariant parts of the given expression with
|
|
// StepInvariantExpr. It also resolves the preprocessors.
|
|
func PreprocessExpr(expr parser.Expr, start, end time.Time) parser.Expr {
|
|
isStepInvariant := preprocessExprHelper(expr, start, end)
|
|
if isStepInvariant {
|
|
return newStepInvariantExpr(expr)
|
|
}
|
|
return expr
|
|
}
|
|
|
|
// preprocessExprHelper wraps the child nodes of the expression
|
|
// with a StepInvariantExpr wherever it's step invariant. The returned boolean is true if the
|
|
// passed expression qualifies to be wrapped by StepInvariantExpr.
|
|
// It also resolves the preprocessors.
|
|
func preprocessExprHelper(expr parser.Expr, start, end time.Time) bool {
|
|
switch n := expr.(type) {
|
|
case *parser.VectorSelector:
|
|
switch n.StartOrEnd {
|
|
case parser.START:
|
|
n.Timestamp = makeInt64Pointer(timestamp.FromTime(start))
|
|
case parser.END:
|
|
n.Timestamp = makeInt64Pointer(timestamp.FromTime(end))
|
|
}
|
|
return n.Timestamp != nil
|
|
|
|
case *parser.AggregateExpr:
|
|
return preprocessExprHelper(n.Expr, start, end)
|
|
|
|
case *parser.BinaryExpr:
|
|
isInvariant1, isInvariant2 := preprocessExprHelper(n.LHS, start, end), preprocessExprHelper(n.RHS, start, end)
|
|
if isInvariant1 && isInvariant2 {
|
|
return true
|
|
}
|
|
|
|
if isInvariant1 {
|
|
n.LHS = newStepInvariantExpr(n.LHS)
|
|
}
|
|
if isInvariant2 {
|
|
n.RHS = newStepInvariantExpr(n.RHS)
|
|
}
|
|
|
|
return false
|
|
|
|
case *parser.Call:
|
|
_, ok := AtModifierUnsafeFunctions[n.Func.Name]
|
|
isStepInvariant := !ok
|
|
isStepInvariantSlice := make([]bool, len(n.Args))
|
|
for i := range n.Args {
|
|
isStepInvariantSlice[i] = preprocessExprHelper(n.Args[i], start, end)
|
|
isStepInvariant = isStepInvariant && isStepInvariantSlice[i]
|
|
}
|
|
|
|
if isStepInvariant {
|
|
// The function and all arguments are step invariant.
|
|
return true
|
|
}
|
|
|
|
for i, isi := range isStepInvariantSlice {
|
|
if isi {
|
|
n.Args[i] = newStepInvariantExpr(n.Args[i])
|
|
}
|
|
}
|
|
return false
|
|
|
|
case *parser.MatrixSelector:
|
|
return preprocessExprHelper(n.VectorSelector, start, end)
|
|
|
|
case *parser.SubqueryExpr:
|
|
// Since we adjust offset for the @ modifier evaluation,
|
|
// it gets tricky to adjust it for every subquery step.
|
|
// Hence we wrap the inside of subquery irrespective of
|
|
// @ on subquery (given it is also step invariant) so that
|
|
// it is evaluated only once w.r.t. the start time of subquery.
|
|
isInvariant := preprocessExprHelper(n.Expr, start, end)
|
|
if isInvariant {
|
|
n.Expr = newStepInvariantExpr(n.Expr)
|
|
}
|
|
switch n.StartOrEnd {
|
|
case parser.START:
|
|
n.Timestamp = makeInt64Pointer(timestamp.FromTime(start))
|
|
case parser.END:
|
|
n.Timestamp = makeInt64Pointer(timestamp.FromTime(end))
|
|
}
|
|
return n.Timestamp != nil
|
|
|
|
case *parser.ParenExpr:
|
|
return preprocessExprHelper(n.Expr, start, end)
|
|
|
|
case *parser.UnaryExpr:
|
|
return preprocessExprHelper(n.Expr, start, end)
|
|
|
|
case *parser.StringLiteral, *parser.NumberLiteral:
|
|
return true
|
|
}
|
|
|
|
panic(fmt.Sprintf("found unexpected node %#v", expr))
|
|
}
|
|
|
|
func newStepInvariantExpr(expr parser.Expr) parser.Expr {
|
|
return &parser.StepInvariantExpr{Expr: expr}
|
|
}
|
|
|
|
// setOffsetForAtModifier modifies the offset of vector and matrix selector
|
|
// and subquery in the tree to accommodate the timestamp of @ modifier.
|
|
// The offset is adjusted w.r.t. the given evaluation time.
|
|
func setOffsetForAtModifier(evalTime int64, expr parser.Expr) {
|
|
getOffset := func(ts *int64, originalOffset time.Duration, path []parser.Node) time.Duration {
|
|
if ts == nil {
|
|
return originalOffset
|
|
}
|
|
|
|
subqOffset, _, subqTs := subqueryTimes(path)
|
|
if subqTs != nil {
|
|
subqOffset += time.Duration(evalTime-*subqTs) * time.Millisecond
|
|
}
|
|
|
|
offsetForTs := time.Duration(evalTime-*ts) * time.Millisecond
|
|
offsetDiff := offsetForTs - subqOffset
|
|
return originalOffset + offsetDiff
|
|
}
|
|
|
|
parser.Inspect(expr, func(node parser.Node, path []parser.Node) error {
|
|
switch n := node.(type) {
|
|
case *parser.VectorSelector:
|
|
n.Offset = getOffset(n.Timestamp, n.OriginalOffset, path)
|
|
|
|
case *parser.MatrixSelector:
|
|
vs := n.VectorSelector.(*parser.VectorSelector)
|
|
vs.Offset = getOffset(vs.Timestamp, vs.OriginalOffset, path)
|
|
|
|
case *parser.SubqueryExpr:
|
|
n.Offset = getOffset(n.Timestamp, n.OriginalOffset, path)
|
|
}
|
|
return nil
|
|
})
|
|
}
|
|
|
|
func makeInt64Pointer(val int64) *int64 {
|
|
valp := new(int64)
|
|
*valp = val
|
|
return valp
|
|
}
|