prometheus/model/histogram/float_histogram.go

794 lines
24 KiB
Go

// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package histogram
import (
"fmt"
"math"
"strings"
)
// FloatHistogram is similar to Histogram but uses float64 for all
// counts. Additionally, bucket counts are absolute and not deltas.
//
// A FloatHistogram is needed by PromQL to handle operations that might result
// in fractional counts. Since the counts in a histogram are unlikely to be too
// large to be represented precisely by a float64, a FloatHistogram can also be
// used to represent a histogram with integer counts and thus serves as a more
// generalized representation.
type FloatHistogram struct {
// Currently valid schema numbers are -4 <= n <= 8. They are all for
// base-2 bucket schemas, where 1 is a bucket boundary in each case, and
// then each power of two is divided into 2^n logarithmic buckets. Or
// in other words, each bucket boundary is the previous boundary times
// 2^(2^-n).
Schema int32
// Width of the zero bucket.
ZeroThreshold float64
// Observations falling into the zero bucket. Must be zero or positive.
ZeroCount float64
// Total number of observations. Must be zero or positive.
Count float64
// Sum of observations. This is also used as the stale marker.
Sum float64
// Spans for positive and negative buckets (see Span below).
PositiveSpans, NegativeSpans []Span
// Observation counts in buckets. Each represents an absolute count and
// must be zero or positive.
PositiveBuckets, NegativeBuckets []float64
}
// Copy returns a deep copy of the Histogram.
func (h *FloatHistogram) Copy() *FloatHistogram {
c := *h
if h.PositiveSpans != nil {
c.PositiveSpans = make([]Span, len(h.PositiveSpans))
copy(c.PositiveSpans, h.PositiveSpans)
}
if h.NegativeSpans != nil {
c.NegativeSpans = make([]Span, len(h.NegativeSpans))
copy(c.NegativeSpans, h.NegativeSpans)
}
if h.PositiveBuckets != nil {
c.PositiveBuckets = make([]float64, len(h.PositiveBuckets))
copy(c.PositiveBuckets, h.PositiveBuckets)
}
if h.NegativeBuckets != nil {
c.NegativeBuckets = make([]float64, len(h.NegativeBuckets))
copy(c.NegativeBuckets, h.NegativeBuckets)
}
return &c
}
// String returns a string representation of the Histogram.
func (h *FloatHistogram) String() string {
var sb strings.Builder
fmt.Fprintf(&sb, "{count:%g, sum:%g", h.Count, h.Sum)
var nBuckets []FloatBucket
for it := h.NegativeBucketIterator(); it.Next(); {
bucket := it.At()
if bucket.Count != 0 {
nBuckets = append(nBuckets, it.At())
}
}
for i := len(nBuckets) - 1; i >= 0; i-- {
fmt.Fprintf(&sb, ", %s", nBuckets[i].String())
}
if h.ZeroCount != 0 {
fmt.Fprintf(&sb, ", %s", h.ZeroBucket().String())
}
for it := h.PositiveBucketIterator(); it.Next(); {
bucket := it.At()
if bucket.Count != 0 {
fmt.Fprintf(&sb, ", %s", bucket.String())
}
}
sb.WriteRune('}')
return sb.String()
}
// ZeroBucket returns the zero bucket.
func (h *FloatHistogram) ZeroBucket() FloatBucket {
return FloatBucket{
Lower: -h.ZeroThreshold,
Upper: h.ZeroThreshold,
LowerInclusive: true,
UpperInclusive: true,
Count: h.ZeroCount,
}
}
// Scale scales the FloatHistogram by the provided factor, i.e. it scales all
// bucket counts including the zero bucket and the count and the sum of
// observations. The bucket layout stays the same. This method changes the
// receiving histogram directly (rather than acting on a copy). It returns a
// pointer to the receiving histogram for convenience.
func (h *FloatHistogram) Scale(factor float64) *FloatHistogram {
h.ZeroCount *= factor
h.Count *= factor
h.Sum *= factor
for i := range h.PositiveBuckets {
h.PositiveBuckets[i] *= factor
}
for i := range h.NegativeBuckets {
h.NegativeBuckets[i] *= factor
}
return h
}
// Add adds the provided other histogram to the receiving histogram. Count, Sum,
// and buckets from the other histogram are added to the corresponding
// components of the receiving histogram. Buckets in the other histogram that do
// not exist in the receiving histogram are inserted into the latter. The
// resulting histogram might have buckets with a population of zero or directly
// adjacent spans (offset=0). To normalize those, call the Compact method.
//
// This method returns a pointer to the receiving histogram for convenience.
//
// IMPORTANT: This method requires the Schema and the ZeroThreshold to be the
// same in both histograms. Otherwise, its behavior is undefined.
// TODO(beorn7): Change that!
func (h *FloatHistogram) Add(other *FloatHistogram) *FloatHistogram {
h.ZeroCount += other.ZeroCount
h.Count += other.Count
h.Sum += other.Sum
// TODO(beorn7): If needed, this can be optimized by inspecting the
// spans in other and create missing buckets in h in batches.
iSpan, iBucket := -1, -1
var iInSpan, index int32
for it := other.PositiveBucketIterator(); it.Next(); {
b := it.At()
h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket(
b, h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan, index,
)
index = b.Index
}
iSpan, iBucket = -1, -1
for it := other.NegativeBucketIterator(); it.Next(); {
b := it.At()
h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket(
b, h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan, index,
)
index = b.Index
}
return h
}
// Sub works like Add but subtracts the other histogram.
//
// IMPORTANT: This method requires the Schema and the ZeroThreshold to be the
// same in both histograms. Otherwise, its behavior is undefined.
// TODO(beorn7): Change that!
func (h *FloatHistogram) Sub(other *FloatHistogram) *FloatHistogram {
h.ZeroCount -= other.ZeroCount
h.Count -= other.Count
h.Sum -= other.Sum
// TODO(beorn7): If needed, this can be optimized by inspecting the
// spans in other and create missing buckets in h in batches.
iSpan, iBucket := -1, -1
var iInSpan, index int32
for it := other.PositiveBucketIterator(); it.Next(); {
b := it.At()
b.Count *= -1
h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket(
b, h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan, index,
)
index = b.Index
}
iSpan, iBucket = -1, -1
for it := other.NegativeBucketIterator(); it.Next(); {
b := it.At()
b.Count *= -1
h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket(
b, h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan, index,
)
index = b.Index
}
return h
}
// addBucket takes the "coordinates" of the last bucket that was handled and
// adds the provided bucket after it. If a corresponding bucket exists, the
// count is added. If not, the bucket is inserted. The updated slices and the
// coordinates of the inserted or added-to bucket are returned.
func addBucket(
b FloatBucket,
spans []Span, buckets []float64,
iSpan, iBucket int,
iInSpan, index int32,
) (
newSpans []Span, newBuckets []float64,
newISpan, newIBucket int, newIInSpan int32,
) {
if iSpan == -1 {
// First add, check if it is before all spans.
if len(spans) == 0 || spans[0].Offset > b.Index {
// Add bucket before all others.
buckets = append(buckets, 0)
copy(buckets[1:], buckets)
buckets[0] = b.Count
if spans[0].Offset == b.Index+1 {
spans[0].Length++
spans[0].Offset--
return spans, buckets, 0, 0, 0
}
spans = append(spans, Span{})
copy(spans[1:], spans)
spans[0] = Span{Offset: b.Index, Length: 1}
if len(spans) > 1 {
// Convert the absolute offset in the formerly
// first span to a relative offset.
spans[1].Offset -= b.Index + 1
}
return spans, buckets, 0, 0, 0
}
if spans[0].Offset == b.Index {
// Just add to first bucket.
buckets[0] += b.Count
return spans, buckets, 0, 0, 0
}
// We are behind the first bucket, so set everything to the
// first bucket and continue normally.
iSpan, iBucket, iInSpan = 0, 0, 0
index = spans[0].Offset
}
deltaIndex := b.Index - index
for {
remainingInSpan := int32(spans[iSpan].Length) - iInSpan
if deltaIndex < remainingInSpan {
// Bucket is in current span.
iBucket += int(deltaIndex)
iInSpan += deltaIndex
buckets[iBucket] += b.Count
return spans, buckets, iSpan, iBucket, iInSpan
}
deltaIndex -= remainingInSpan
iBucket += int(remainingInSpan)
iSpan++
if iSpan == len(spans) || deltaIndex < spans[iSpan].Offset {
// Bucket is in gap behind previous span (or there are no further spans).
buckets = append(buckets, 0)
copy(buckets[iBucket+1:], buckets[iBucket:])
buckets[iBucket] = b.Count
if deltaIndex == 0 {
// Directly after previous span, extend previous span.
if iSpan < len(spans) {
spans[iSpan].Offset--
}
iSpan--
iInSpan = int32(spans[iSpan].Length)
spans[iSpan].Length++
return spans, buckets, iSpan, iBucket, iInSpan
}
if iSpan < len(spans) && deltaIndex == spans[iSpan].Offset-1 {
// Directly before next span, extend next span.
iInSpan = 0
spans[iSpan].Offset--
spans[iSpan].Length++
return spans, buckets, iSpan, iBucket, iInSpan
}
// No next span, or next span is not directly adjacent to new bucket.
// Add new span.
iInSpan = 0
if iSpan < len(spans) {
spans[iSpan].Offset -= deltaIndex + 1
}
spans = append(spans, Span{})
copy(spans[iSpan+1:], spans[iSpan:])
spans[iSpan] = Span{Length: 1, Offset: deltaIndex}
return spans, buckets, iSpan, iBucket, iInSpan
}
// Try start of next span.
deltaIndex -= spans[iSpan].Offset
iInSpan = 0
}
}
// Compact eliminates empty buckets at the beginning and end of each span, then
// merges spans that are consecutive or at most maxEmptyBuckets apart, and
// finally splits spans that contain more than maxEmptyBuckets. The compaction
// happens "in place" in the receiving histogram, but a pointer to it is
// returned for convenience.
func (h *FloatHistogram) Compact(maxEmptyBuckets int) *FloatHistogram {
// TODO(beorn7): Implement.
return h
}
// DetectReset returns true if the receiving histogram is missing any buckets
// that have a non-zero population in the provided previous histogram. It also
// returns true if any count (in any bucket, in the zero count, or in the count
// of observations, but NOT the sum of observations) is smaller in the receiving
// histogram compared to the previous histogram. Otherwise, it returns false.
//
// IMPORTANT: This method requires the Schema and the ZeroThreshold to be the
// same in both histograms. Otherwise, its behavior is undefined.
// TODO(beorn7): Change that!
//
// Note that this kind of reset detection is quite expensive. Ideally, resets
// are detected at ingest time and stored in the TSDB, so that the reset
// information can be read directly from there rather than be detected each time
// again.
func (h *FloatHistogram) DetectReset(previous *FloatHistogram) bool {
if h.Count < previous.Count {
return true
}
if h.ZeroCount < previous.ZeroCount {
return true
}
currIt := h.PositiveBucketIterator()
prevIt := previous.PositiveBucketIterator()
if detectReset(currIt, prevIt) {
return true
}
currIt = h.NegativeBucketIterator()
prevIt = previous.NegativeBucketIterator()
return detectReset(currIt, prevIt)
}
func detectReset(currIt, prevIt FloatBucketIterator) bool {
if !prevIt.Next() {
return false // If no buckets in previous histogram, nothing can be reset.
}
prevBucket := prevIt.At()
if !currIt.Next() {
// No bucket in current, but at least one in previous
// histogram. Check if any of those are non-zero, in which case
// this is a reset.
for {
if prevBucket.Count != 0 {
return true
}
if !prevIt.Next() {
return false
}
}
}
currBucket := currIt.At()
for {
// Forward currIt until we find the bucket corresponding to prevBucket.
for currBucket.Index < prevBucket.Index {
if !currIt.Next() {
// Reached end of currIt early, therefore
// previous histogram has a bucket that the
// current one does not have. Unlass all
// remaining buckets in the previous histogram
// are unpopulated, this is a reset.
for {
if prevBucket.Count != 0 {
return true
}
if !prevIt.Next() {
return false
}
}
}
currBucket = currIt.At()
}
if currBucket.Index > prevBucket.Index {
// Previous histogram has a bucket the current one does
// not have. If it's populated, it's a reset.
if prevBucket.Count != 0 {
return true
}
} else {
// We have reached corresponding buckets in both iterators.
// We can finally compare the counts.
if currBucket.Count < prevBucket.Count {
return true
}
}
if !prevIt.Next() {
// Reached end of prevIt without finding offending buckets.
return false
}
prevBucket = prevIt.At()
}
}
// PositiveBucketIterator returns a FloatBucketIterator to iterate over all
// positive buckets in ascending order (starting next to the zero bucket and
// going up).
func (h *FloatHistogram) PositiveBucketIterator() FloatBucketIterator {
return newFloatBucketIterator(h, true)
}
// NegativeBucketIterator returns a FloatBucketIterator to iterate over all
// negative buckets in descending order (starting next to the zero bucket and
// going down).
func (h *FloatHistogram) NegativeBucketIterator() FloatBucketIterator {
return newFloatBucketIterator(h, false)
}
// PositiveReverseBucketIterator returns a FloatBucketIterator to iterate over all
// positive buckets in decending order (starting at the highest bucket and going
// down upto zero bucket).
func (h *FloatHistogram) PositiveReverseBucketIterator() FloatBucketIterator {
return newReverseFloatBucketIterator(h, true)
}
// NegativeReverseBucketIterator returns a FloatBucketIterator to iterate over all
// negative buckets in ascending order (starting at the lowest bucket and doing up
// upto zero bucket).
func (h *FloatHistogram) NegativeReverseBucketIterator() FloatBucketIterator {
return newReverseFloatBucketIterator(h, false)
}
// AllFloatBucketIterator returns a FloatBucketIterator to iterate over all
// negative, zero, and positive buckets in ascending order (starting at the
// lowest bucket and going up).
func (h *FloatHistogram) AllFloatBucketIterator() FloatBucketIterator {
return newAllFloatBucketIterator(h)
}
// CumulativeBucketIterator returns a FloatBucketIterator to iterate over a
// cumulative view of the buckets. This method currently only supports
// FloatHistograms without negative buckets and panics if the FloatHistogram has
// negative buckets. It is currently only used for testing.
func (h *FloatHistogram) CumulativeBucketIterator() FloatBucketIterator {
if len(h.NegativeBuckets) > 0 {
panic("CumulativeBucketIterator called on FloatHistogram with negative buckets")
}
return &cumulativeFloatBucketIterator{h: h, posSpansIdx: -1}
}
// FloatBucketIterator iterates over the buckets of a FloatHistogram, returning
// decoded buckets.
type FloatBucketIterator interface {
// Next advances the iterator by one.
Next() bool
// At returns the current bucket.
At() FloatBucket
}
// FloatBucket represents a bucket with lower and upper limit and the count of
// samples in the bucket as a float64. It also specifies if each limit is
// inclusive or not. (Mathematically, inclusive limits create a closed interval,
// and non-inclusive limits an open interval.)
//
// To represent cumulative buckets, Lower is set to -Inf, and the Count is then
// cumulative (including the counts of all buckets for smaller values).
type FloatBucket struct {
Lower, Upper float64
LowerInclusive, UpperInclusive bool
Count float64
Index int32 // Index within schema. To easily compare buckets that share the same schema.
}
// String returns a string representation of a FloatBucket, using the usual
// mathematical notation of '['/']' for inclusive bounds and '('/')' for
// non-inclusive bounds.
func (b FloatBucket) String() string {
var sb strings.Builder
if b.LowerInclusive {
sb.WriteRune('[')
} else {
sb.WriteRune('(')
}
fmt.Fprintf(&sb, "%g,%g", b.Lower, b.Upper)
if b.UpperInclusive {
sb.WriteRune(']')
} else {
sb.WriteRune(')')
}
fmt.Fprintf(&sb, ":%g", b.Count)
return sb.String()
}
type floatBucketIterator struct {
schema int32
spans []Span
buckets []float64
positive bool // Whether this is for positive buckets.
spansIdx int // Current span within spans slice.
idxInSpan uint32 // Index in the current span. 0 <= idxInSpan < span.Length.
bucketsIdx int // Current bucket within buckets slice.
currCount float64 // Count in the current bucket.
currIdx int32 // The actual bucket index.
currLower, currUpper float64 // Limits of the current bucket.
}
func newFloatBucketIterator(h *FloatHistogram, positive bool) *floatBucketIterator {
r := &floatBucketIterator{schema: h.Schema, positive: positive}
if positive {
r.spans = h.PositiveSpans
r.buckets = h.PositiveBuckets
} else {
r.spans = h.NegativeSpans
r.buckets = h.NegativeBuckets
}
return r
}
func (r *floatBucketIterator) Next() bool {
if r.spansIdx >= len(r.spans) {
return false
}
span := r.spans[r.spansIdx]
// Seed currIdx for the first bucket.
if r.bucketsIdx == 0 {
r.currIdx = span.Offset
} else {
r.currIdx++
}
for r.idxInSpan >= span.Length {
// We have exhausted the current span and have to find a new
// one. We'll even handle pathologic spans of length 0.
r.idxInSpan = 0
r.spansIdx++
if r.spansIdx >= len(r.spans) {
return false
}
span = r.spans[r.spansIdx]
r.currIdx += span.Offset
}
r.currCount = r.buckets[r.bucketsIdx]
if r.positive {
r.currUpper = getBound(r.currIdx, r.schema)
r.currLower = getBound(r.currIdx-1, r.schema)
} else {
r.currLower = -getBound(r.currIdx, r.schema)
r.currUpper = -getBound(r.currIdx-1, r.schema)
}
r.idxInSpan++
r.bucketsIdx++
return true
}
func (r *floatBucketIterator) At() FloatBucket {
return FloatBucket{
Count: r.currCount,
Lower: r.currLower,
Upper: r.currUpper,
LowerInclusive: r.currLower < 0,
UpperInclusive: r.currUpper > 0,
Index: r.currIdx,
}
}
type reverseFloatBucketIterator struct {
schema int32
spans []Span
buckets []float64
positive bool // Whether this is for positive buckets.
spansIdx int // Current span within spans slice.
idxInSpan int32 // Index in the current span. 0 <= idxInSpan < span.Length.
bucketsIdx int // Current bucket within buckets slice.
currCount float64 // Count in the current bucket.
currIdx int32 // The actual bucket index.
currLower, currUpper float64 // Limits of the current bucket.
initiated bool
}
func newReverseFloatBucketIterator(h *FloatHistogram, positive bool) *reverseFloatBucketIterator {
r := &reverseFloatBucketIterator{schema: h.Schema, positive: positive}
if positive {
r.spans = h.PositiveSpans
r.buckets = h.PositiveBuckets
} else {
r.spans = h.NegativeSpans
r.buckets = h.NegativeBuckets
}
return r
}
func (r *reverseFloatBucketIterator) Next() bool {
if !r.initiated {
r.initiated = true
r.spansIdx = len(r.spans) - 1
r.bucketsIdx = len(r.buckets) - 1
if r.spansIdx >= 0 {
r.idxInSpan = int32(r.spans[r.spansIdx].Length) - 1
}
r.currIdx = 0
for _, s := range r.spans {
r.currIdx += s.Offset + int32(s.Length)
}
}
r.currIdx--
if r.bucketsIdx < 0 {
return false
}
for r.idxInSpan < 0 {
// We have exhausted the current span and have to find a new
// one. We'll even handle pathologic spans of length 0.
r.spansIdx--
r.idxInSpan = int32(r.spans[r.spansIdx].Length) - 1
r.currIdx -= r.spans[r.spansIdx+1].Offset
}
r.currCount = r.buckets[r.bucketsIdx]
if r.positive {
r.currUpper = getBound(r.currIdx, r.schema)
r.currLower = getBound(r.currIdx-1, r.schema)
} else {
r.currLower = -getBound(r.currIdx, r.schema)
r.currUpper = -getBound(r.currIdx-1, r.schema)
}
r.bucketsIdx--
r.idxInSpan--
return true
}
func (r *reverseFloatBucketIterator) At() FloatBucket {
return FloatBucket{
Count: r.currCount,
Lower: r.currLower,
Upper: r.currUpper,
LowerInclusive: r.currLower < 0,
UpperInclusive: r.currUpper > 0,
Index: r.currIdx,
}
}
type allFloatBucketIterator struct {
h *FloatHistogram
negIter, posIter FloatBucketIterator
// -1 means we are iterating negative buckets.
// 0 means it is time for zero bucket.
// 1 means we are iterating positive buckets.
// Anything else means iteration is over.
state int8
currBucket FloatBucket
}
func newAllFloatBucketIterator(h *FloatHistogram) *allFloatBucketIterator {
return &allFloatBucketIterator{
h: h,
negIter: h.NegativeReverseBucketIterator(),
posIter: h.PositiveBucketIterator(),
state: -1,
}
}
func (r *allFloatBucketIterator) Next() bool {
switch r.state {
case -1:
if r.negIter.Next() {
r.currBucket = r.negIter.At()
return true
}
r.state = 0
return r.Next()
case 0:
r.state = 1
if r.h.ZeroCount > 0 {
r.currBucket = FloatBucket{
Lower: -r.h.ZeroThreshold,
Upper: r.h.ZeroThreshold,
LowerInclusive: true,
UpperInclusive: true,
Count: r.h.ZeroCount,
Index: math.MinInt32, // TODO(codesome): What is the index for this?
}
return true
}
return r.Next()
case 1:
if r.posIter.Next() {
r.currBucket = r.posIter.At()
return true
}
r.state = 42
return false
}
return false
}
func (r *allFloatBucketIterator) At() FloatBucket {
return r.currBucket
}
type cumulativeFloatBucketIterator struct {
h *FloatHistogram
posSpansIdx int // Index in h.PositiveSpans we are in. -1 means 0 bucket.
posBucketsIdx int // Index in h.PositiveBuckets.
idxInSpan uint32 // Index in the current span. 0 <= idxInSpan < span.Length.
initialized bool
currIdx int32 // The actual bucket index after decoding from spans.
currUpper float64 // The upper boundary of the current bucket.
currCumulativeCount float64 // Current "cumulative" count for the current bucket.
// Between 2 spans there could be some empty buckets which
// still needs to be counted for cumulative buckets.
// When we hit the end of a span, we use this to iterate
// through the empty buckets.
emptyBucketCount int32
}
func (c *cumulativeFloatBucketIterator) Next() bool {
if c.posSpansIdx == -1 {
// Zero bucket.
c.posSpansIdx++
if c.h.ZeroCount == 0 {
return c.Next()
}
c.currUpper = c.h.ZeroThreshold
c.currCumulativeCount = c.h.ZeroCount
return true
}
if c.posSpansIdx >= len(c.h.PositiveSpans) {
return false
}
if c.emptyBucketCount > 0 {
// We are traversing through empty buckets at the moment.
c.currUpper = getBound(c.currIdx, c.h.Schema)
c.currIdx++
c.emptyBucketCount--
return true
}
span := c.h.PositiveSpans[c.posSpansIdx]
if c.posSpansIdx == 0 && !c.initialized {
// Initializing.
c.currIdx = span.Offset
c.initialized = true
}
c.currCumulativeCount += c.h.PositiveBuckets[c.posBucketsIdx]
c.currUpper = getBound(c.currIdx, c.h.Schema)
c.posBucketsIdx++
c.idxInSpan++
c.currIdx++
if c.idxInSpan >= span.Length {
// Move to the next span. This one is done.
c.posSpansIdx++
c.idxInSpan = 0
if c.posSpansIdx < len(c.h.PositiveSpans) {
c.emptyBucketCount = c.h.PositiveSpans[c.posSpansIdx].Offset
}
}
return true
}
func (c *cumulativeFloatBucketIterator) At() FloatBucket {
return FloatBucket{
Upper: c.currUpper,
Lower: math.Inf(-1),
UpperInclusive: true,
LowerInclusive: true,
Count: c.currCumulativeCount,
Index: c.currIdx - 1,
}
}