mirror of
https://github.com/prometheus/prometheus
synced 2024-12-23 23:13:11 +00:00
9199fcb8d1
This commit adds `@ <timestamp>` modifier as per this design doc: https://docs.google.com/document/d/1uSbD3T2beM-iX4-Hp7V074bzBRiRNlqUdcWP6JTDQSs/edit. An example query: ``` rate(process_cpu_seconds_total[1m]) and topk(7, rate(process_cpu_seconds_total[1h] @ 1234)) ``` which ranks based on last 1h rate and w.r.t. unix timestamp 1234 but actually plots the 1m rate. Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>
167 lines
5.5 KiB
Plaintext
167 lines
5.5 KiB
Plaintext
load 10s
|
|
metric{job="1"} 0+1x1000
|
|
metric{job="2"} 0+2x1000
|
|
|
|
load 1ms
|
|
metric_ms 0+1x10000
|
|
|
|
# Instant vector selectors.
|
|
eval instant at 10s metric @ 100
|
|
metric{job="1"} 10
|
|
metric{job="2"} 20
|
|
|
|
eval instant at 10s metric @ 100 offset 50s
|
|
metric{job="1"} 5
|
|
metric{job="2"} 10
|
|
|
|
eval instant at 10s metric offset 50s @ 100
|
|
metric{job="1"} 5
|
|
metric{job="2"} 10
|
|
|
|
eval instant at 10s -metric @ 100
|
|
{job="1"} -10
|
|
{job="2"} -20
|
|
|
|
eval instant at 10s ---metric @ 100
|
|
{job="1"} -10
|
|
{job="2"} -20
|
|
|
|
# Millisecond precision.
|
|
eval instant at 100s metric_ms @ 1.234
|
|
metric_ms 1234
|
|
|
|
# Range vector selectors.
|
|
eval instant at 25s sum_over_time(metric{job="1"}[100s] @ 100)
|
|
{job="1"} 55
|
|
|
|
eval instant at 25s sum_over_time(metric{job="1"}[100s] @ 100 offset 50s)
|
|
{job="1"} 15
|
|
|
|
eval instant at 25s sum_over_time(metric{job="1"}[100s] offset 50s @ 100)
|
|
{job="1"} 15
|
|
|
|
# Different timestamps.
|
|
eval instant at 25s metric{job="1"} @ 50 + metric{job="1"} @ 100
|
|
{job="1"} 15
|
|
|
|
eval instant at 25s rate(metric{job="1"}[100s] @ 100) + label_replace(rate(metric{job="2"}[123s] @ 200), "job", "1", "", "")
|
|
{job="1"} 0.3
|
|
|
|
eval instant at 25s sum_over_time(metric{job="1"}[100s] @ 100) + label_replace(sum_over_time(metric{job="2"}[100s] @ 100), "job", "1", "", "")
|
|
{job="1"} 165
|
|
|
|
# Subqueries.
|
|
|
|
# 10*(1+2+...+9) + 10.
|
|
eval instant at 25s sum_over_time(metric{job="1"}[100s:1s] @ 100)
|
|
{job="1"} 460
|
|
|
|
# 10*(1+2+...+7) + 8.
|
|
eval instant at 25s sum_over_time(metric{job="1"}[100s:1s] @ 100 offset 20s)
|
|
{job="1"} 288
|
|
|
|
# 10*(1+2+...+7) + 8.
|
|
eval instant at 25s sum_over_time(metric{job="1"}[100s:1s] offset 20s @ 100)
|
|
{job="1"} 288
|
|
|
|
# Subquery with different timestamps.
|
|
|
|
# Since vector selector has timestamp, the result value does not depend on the timestamp of subqueries.
|
|
# Inner most sum=1+2+...+10=55.
|
|
# With [100s:25s] subquery, it's 55*5.
|
|
eval instant at 100s sum_over_time(sum_over_time(metric{job="1"}[100s] @ 100)[100s:25s] @ 50)
|
|
{job="1"} 275
|
|
|
|
# Nested subqueries with different timestamps on both.
|
|
|
|
# Since vector selector has timestamp, the result value does not depend on the timestamp of subqueries.
|
|
# Sum of innermost subquery is 275 as above. The outer subquery repeats it 4 times.
|
|
eval instant at 0s sum_over_time(sum_over_time(sum_over_time(metric{job="1"}[100s] @ 100)[100s:25s] @ 50)[3s:1s] @ 3000)
|
|
{job="1"} 1100
|
|
|
|
# Testing the inner subquery timestamp since vector selector does not have @.
|
|
|
|
# Inner sum for subquery [100s:25s] @ 50 are
|
|
# at -50 nothing, at -25 nothing, at 0=0, at 25=2, at 50=4+5=9.
|
|
# This sum of 11 is repeated 4 times by outer subquery.
|
|
eval instant at 0s sum_over_time(sum_over_time(sum_over_time(metric{job="1"}[10s])[100s:25s] @ 50)[3s:1s] @ 200)
|
|
{job="1"} 44
|
|
|
|
# Inner sum for subquery [100s:25s] @ 200 are
|
|
# at 100=9+10, at 125=12, at 150=14+15, at 175=17, at 200=19+20.
|
|
# This sum of 116 is repeated 4 times by outer subquery.
|
|
eval instant at 0s sum_over_time(sum_over_time(sum_over_time(metric{job="1"}[10s])[100s:25s] @ 200)[3s:1s] @ 50)
|
|
{job="1"} 464
|
|
|
|
# Nested subqueries with timestamp only on outer subquery.
|
|
# Outer most subquery:
|
|
# at 900=783
|
|
# inner subquery: at 870=87+86+85, at 880=88+87+86, at 890=89+88+87
|
|
# at 925=537
|
|
# inner subquery: at 895=89+88, at 905=90+89, at 915=90+91
|
|
# at 950=828
|
|
# inner subquery: at 920=92+91+90, at 930=93+92+91, at 940=94+93+92
|
|
# at 975=567
|
|
# inner subquery: at 945=94+93, at 955=95+94, at 965=96+95
|
|
# at 1000=873
|
|
# inner subquery: at 970=97+96+95, at 980=98+97+96, at 990=99+98+97
|
|
eval instant at 0s sum_over_time(sum_over_time(sum_over_time(metric{job="1"}[20s])[20s:10s] offset 10s)[100s:25s] @ 1000)
|
|
{job="1"} 3588
|
|
|
|
# minute is counted on the value of the sample.
|
|
eval instant at 10s minute(metric @ 1500)
|
|
{job="1"} 2
|
|
{job="2"} 5
|
|
|
|
# timestamp() takes the time of the sample and not the evaluation time.
|
|
eval instant at 10m timestamp(metric{job="1"} @ 10)
|
|
{job="1"} 10
|
|
|
|
# The result of inner timestamp() will have the timestamp as the
|
|
# eval time, hence entire expression is not step invariant and depends on eval time.
|
|
eval instant at 10m timestamp(timestamp(metric{job="1"} @ 10))
|
|
{job="1"} 600
|
|
|
|
eval instant at 15m timestamp(timestamp(metric{job="1"} @ 10))
|
|
{job="1"} 900
|
|
|
|
# Time functions inside a subquery.
|
|
|
|
# minute is counted on the value of the sample.
|
|
eval instant at 0s sum_over_time(minute(metric @ 1500)[100s:10s])
|
|
{job="1"} 22
|
|
{job="2"} 55
|
|
|
|
# If nothing passed, minute() takes eval time.
|
|
# Here the eval time is determined by the subquery.
|
|
# [50m:1m] at 6000, i.e. 100m, is 50m to 100m.
|
|
# sum=50+51+52+...+59+0+1+2+...+40.
|
|
eval instant at 0s sum_over_time(minute()[50m:1m] @ 6000)
|
|
{} 1365
|
|
|
|
# sum=45+46+47+...+59+0+1+2+...+35.
|
|
eval instant at 0s sum_over_time(minute()[50m:1m] @ 6000 offset 5m)
|
|
{} 1410
|
|
|
|
# time() is the eval time which is determined by subquery here.
|
|
# 2900+2901+...+3000 = (3000*3001 - 2899*2900)/2.
|
|
eval instant at 0s sum_over_time(vector(time())[100s:1s] @ 3000)
|
|
{} 297950
|
|
|
|
# 2300+2301+...+2400 = (2400*2401 - 2299*2300)/2.
|
|
eval instant at 0s sum_over_time(vector(time())[100s:1s] @ 3000 offset 600s)
|
|
{} 237350
|
|
|
|
# timestamp() takes the time of the sample and not the evaluation time.
|
|
eval instant at 0s sum_over_time(timestamp(metric{job="1"} @ 10)[100s:10s] @ 3000)
|
|
{job="1"} 110
|
|
|
|
# The result of inner timestamp() will have the timestamp as the
|
|
# eval time, hence entire expression is not step invariant and depends on eval time.
|
|
# Here eval time is determined by the subquery.
|
|
eval instant at 0s sum_over_time(timestamp(timestamp(metric{job="1"} @ 999))[10s:1s] @ 10)
|
|
{job="1"} 55
|
|
|
|
|
|
clear
|