prometheus/promql/promqltest/testdata/histograms.test

236 lines
9.2 KiB
Plaintext

# Two histograms with 4 buckets each (x_sum and x_count not included,
# only buckets). Lowest bucket for one histogram < 0, for the other >
# 0. They have the same name, just separated by label. Not useful in
# practice, but can happen (if clients change bucketing), and the
# server has to cope with it.
# Test histogram.
load 5m
testhistogram_bucket{le="0.1", start="positive"} 0+5x10
testhistogram_bucket{le=".2", start="positive"} 0+7x10
testhistogram_bucket{le="1e0", start="positive"} 0+11x10
testhistogram_bucket{le="+Inf", start="positive"} 0+12x10
testhistogram_bucket{le="-.2", start="negative"} 0+1x10
testhistogram_bucket{le="-0.1", start="negative"} 0+2x10
testhistogram_bucket{le="0.3", start="negative"} 0+2x10
testhistogram_bucket{le="+Inf", start="negative"} 0+3x10
# Another test histogram, where q(1/6), q(1/2), and q(5/6) are each in
# the middle of a bucket and should therefore be 1, 3, and 5,
# respectively.
load 5m
testhistogram2_bucket{le="0"} 0+0x10
testhistogram2_bucket{le="2"} 0+1x10
testhistogram2_bucket{le="4"} 0+2x10
testhistogram2_bucket{le="6"} 0+3x10
testhistogram2_bucket{le="+Inf"} 0+3x10
# Now a more realistic histogram per job and instance to test aggregation.
load 5m
request_duration_seconds_bucket{job="job1", instance="ins1", le="0.1"} 0+1x10
request_duration_seconds_bucket{job="job1", instance="ins1", le="0.2"} 0+3x10
request_duration_seconds_bucket{job="job1", instance="ins1", le="+Inf"} 0+4x10
request_duration_seconds_bucket{job="job1", instance="ins2", le="0.1"} 0+2x10
request_duration_seconds_bucket{job="job1", instance="ins2", le="0.2"} 0+5x10
request_duration_seconds_bucket{job="job1", instance="ins2", le="+Inf"} 0+6x10
request_duration_seconds_bucket{job="job2", instance="ins1", le="0.1"} 0+3x10
request_duration_seconds_bucket{job="job2", instance="ins1", le="0.2"} 0+4x10
request_duration_seconds_bucket{job="job2", instance="ins1", le="+Inf"} 0+6x10
request_duration_seconds_bucket{job="job2", instance="ins2", le="0.1"} 0+4x10
request_duration_seconds_bucket{job="job2", instance="ins2", le="0.2"} 0+7x10
request_duration_seconds_bucket{job="job2", instance="ins2", le="+Inf"} 0+9x10
# Different le representations in one histogram.
load 5m
mixed_bucket{job="job1", instance="ins1", le="0.1"} 0+1x10
mixed_bucket{job="job1", instance="ins1", le="0.2"} 0+1x10
mixed_bucket{job="job1", instance="ins1", le="2e-1"} 0+1x10
mixed_bucket{job="job1", instance="ins1", le="2.0e-1"} 0+1x10
mixed_bucket{job="job1", instance="ins1", le="+Inf"} 0+4x10
mixed_bucket{job="job1", instance="ins2", le="+inf"} 0+0x10
mixed_bucket{job="job1", instance="ins2", le="+Inf"} 0+0x10
# Quantile too low.
eval instant at 50m histogram_quantile(-0.1, testhistogram_bucket)
{start="positive"} -Inf
{start="negative"} -Inf
# Quantile too high.
eval instant at 50m histogram_quantile(1.01, testhistogram_bucket)
{start="positive"} +Inf
{start="negative"} +Inf
# Quantile invalid.
eval instant at 50m histogram_quantile(NaN, testhistogram_bucket)
{start="positive"} NaN
{start="negative"} NaN
# Quantile value in lowest bucket, which is positive.
eval instant at 50m histogram_quantile(0, testhistogram_bucket{start="positive"})
{start="positive"} 0
# Quantile value in lowest bucket, which is negative.
eval instant at 50m histogram_quantile(0, testhistogram_bucket{start="negative"})
{start="negative"} -0.2
# Quantile value in highest bucket.
eval instant at 50m histogram_quantile(1, testhistogram_bucket)
{start="positive"} 1
{start="negative"} 0.3
# Finally some useful quantiles.
eval instant at 50m histogram_quantile(0.2, testhistogram_bucket)
{start="positive"} 0.048
{start="negative"} -0.2
eval instant at 50m histogram_quantile(0.5, testhistogram_bucket)
{start="positive"} 0.15
{start="negative"} -0.15
eval instant at 50m histogram_quantile(0.8, testhistogram_bucket)
{start="positive"} 0.72
{start="negative"} 0.3
# More realistic with rates.
eval instant at 50m histogram_quantile(0.2, rate(testhistogram_bucket[5m]))
{start="positive"} 0.048
{start="negative"} -0.2
eval instant at 50m histogram_quantile(0.5, rate(testhistogram_bucket[5m]))
{start="positive"} 0.15
{start="negative"} -0.15
eval instant at 50m histogram_quantile(0.8, rate(testhistogram_bucket[5m]))
{start="positive"} 0.72
{start="negative"} 0.3
# Want results exactly in the middle of the bucket.
eval instant at 7m histogram_quantile(1./6., testhistogram2_bucket)
{} 1
eval instant at 7m histogram_quantile(0.5, testhistogram2_bucket)
{} 3
eval instant at 7m histogram_quantile(5./6., testhistogram2_bucket)
{} 5
eval instant at 47m histogram_quantile(1./6., rate(testhistogram2_bucket[15m]))
{} 1
eval instant at 47m histogram_quantile(0.5, rate(testhistogram2_bucket[15m]))
{} 3
eval instant at 47m histogram_quantile(5./6., rate(testhistogram2_bucket[15m]))
{} 5
# Aggregated histogram: Everything in one.
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le))
{} 0.075
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le))
{} 0.1277777777777778
# Aggregated histogram: Everything in one. Now with avg, which does not change anything.
eval instant at 50m histogram_quantile(0.3, avg(rate(request_duration_seconds_bucket[5m])) by (le))
{} 0.075
eval instant at 50m histogram_quantile(0.5, avg(rate(request_duration_seconds_bucket[5m])) by (le))
{} 0.12777777777777778
# Aggregated histogram: By instance.
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, instance))
{instance="ins1"} 0.075
{instance="ins2"} 0.075
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, instance))
{instance="ins1"} 0.1333333333
{instance="ins2"} 0.125
# Aggregated histogram: By job.
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, job))
{job="job1"} 0.1
{job="job2"} 0.0642857142857143
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, job))
{job="job1"} 0.14
{job="job2"} 0.1125
# Aggregated histogram: By job and instance.
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, job, instance))
{instance="ins1", job="job1"} 0.11
{instance="ins2", job="job1"} 0.09
{instance="ins1", job="job2"} 0.06
{instance="ins2", job="job2"} 0.0675
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, job, instance))
{instance="ins1", job="job1"} 0.15
{instance="ins2", job="job1"} 0.1333333333333333
{instance="ins1", job="job2"} 0.1
{instance="ins2", job="job2"} 0.1166666666666667
# The unaggregated histogram for comparison. Same result as the previous one.
eval instant at 50m histogram_quantile(0.3, rate(request_duration_seconds_bucket[5m]))
{instance="ins1", job="job1"} 0.11
{instance="ins2", job="job1"} 0.09
{instance="ins1", job="job2"} 0.06
{instance="ins2", job="job2"} 0.0675
eval instant at 50m histogram_quantile(0.5, rate(request_duration_seconds_bucket[5m]))
{instance="ins1", job="job1"} 0.15
{instance="ins2", job="job1"} 0.13333333333333333
{instance="ins1", job="job2"} 0.1
{instance="ins2", job="job2"} 0.11666666666666667
# A histogram with nonmonotonic bucket counts. This may happen when recording
# rule evaluation or federation races scrape ingestion, causing some buckets
# counts to be derived from fewer samples.
load 5m
nonmonotonic_bucket{le="0.1"} 0+2x10
nonmonotonic_bucket{le="1"} 0+1x10
nonmonotonic_bucket{le="10"} 0+5x10
nonmonotonic_bucket{le="100"} 0+4x10
nonmonotonic_bucket{le="1000"} 0+9x10
nonmonotonic_bucket{le="+Inf"} 0+8x10
# Nonmonotonic buckets
eval instant at 50m histogram_quantile(0.01, nonmonotonic_bucket)
{} 0.0045
eval instant at 50m histogram_quantile(0.5, nonmonotonic_bucket)
{} 8.5
eval instant at 50m histogram_quantile(0.99, nonmonotonic_bucket)
{} 979.75
# Buckets with different representations of the same upper bound.
eval instant at 50m histogram_quantile(0.5, rate(mixed_bucket[5m]))
{instance="ins1", job="job1"} 0.15
{instance="ins2", job="job1"} NaN
eval instant at 50m histogram_quantile(0.75, rate(mixed_bucket[5m]))
{instance="ins1", job="job1"} 0.2
{instance="ins2", job="job1"} NaN
eval instant at 50m histogram_quantile(1, rate(mixed_bucket[5m]))
{instance="ins1", job="job1"} 0.2
{instance="ins2", job="job1"} NaN
load 5m
empty_bucket{le="0.1", job="job1", instance="ins1"} 0x10
empty_bucket{le="0.2", job="job1", instance="ins1"} 0x10
empty_bucket{le="+Inf", job="job1", instance="ins1"} 0x10
eval instant at 50m histogram_quantile(0.2, rate(empty_bucket[5m]))
{instance="ins1", job="job1"} NaN
# Load a duplicate histogram with a different name to test failure scenario on multiple histograms with the same label set
# https://github.com/prometheus/prometheus/issues/9910
load 5m
request_duration_seconds2_bucket{job="job1", instance="ins1", le="0.1"} 0+1x10
request_duration_seconds2_bucket{job="job1", instance="ins1", le="0.2"} 0+3x10
request_duration_seconds2_bucket{job="job1", instance="ins1", le="+Inf"} 0+4x10
eval_fail instant at 50m histogram_quantile(0.99, {__name__=~"request_duration.*"})