mirror of
https://github.com/prometheus/prometheus
synced 2024-12-28 09:42:22 +00:00
583f3e587c
Optimize histogram iterators Histogram iterators allocate new objects in the AtHistogram and AtFloatHistogram methods, which makes calculating rates over long ranges expensive. In #13215 we allowed an existing object to be reused when converting an integer histogram to a float histogram. This commit follows the same idea and allows injecting an existing object in the AtHistogram and AtFloatHistogram methods. When the injected value is nil, iterators allocate new histograms, otherwise they populate and return the injected object. The commit also adds a CopyTo method to Histogram and FloatHistogram which is used in the BufferedIterator to overwrite items in the ring instead of making new copies. Note that a specialized HPoint pool is needed for all of this to work (`matrixSelectorHPool`). --------- Signed-off-by: Filip Petkovski <filip.petkovsky@gmail.com> Co-authored-by: George Krajcsovits <krajorama@users.noreply.github.com>
755 lines
22 KiB
Go
755 lines
22 KiB
Go
// Copyright 2017 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package chunks
|
|
|
|
import (
|
|
"bufio"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"hash"
|
|
"hash/crc32"
|
|
"io"
|
|
"os"
|
|
"path/filepath"
|
|
"strconv"
|
|
|
|
"github.com/prometheus/prometheus/tsdb/chunkenc"
|
|
tsdb_errors "github.com/prometheus/prometheus/tsdb/errors"
|
|
"github.com/prometheus/prometheus/tsdb/fileutil"
|
|
)
|
|
|
|
// Segment header fields constants.
|
|
const (
|
|
// MagicChunks is 4 bytes at the head of a series file.
|
|
MagicChunks = 0x85BD40DD
|
|
// MagicChunksSize is the size in bytes of MagicChunks.
|
|
MagicChunksSize = 4
|
|
chunksFormatV1 = 1
|
|
ChunksFormatVersionSize = 1
|
|
segmentHeaderPaddingSize = 3
|
|
// SegmentHeaderSize defines the total size of the header part.
|
|
SegmentHeaderSize = MagicChunksSize + ChunksFormatVersionSize + segmentHeaderPaddingSize
|
|
)
|
|
|
|
// Chunk fields constants.
|
|
const (
|
|
// MaxChunkLengthFieldSize defines the maximum size of the data length part.
|
|
MaxChunkLengthFieldSize = binary.MaxVarintLen32
|
|
// ChunkEncodingSize defines the size of the chunk encoding part.
|
|
ChunkEncodingSize = 1
|
|
)
|
|
|
|
// ChunkRef is a generic reference for reading chunk data. In prometheus it
|
|
// is either a HeadChunkRef or BlockChunkRef, though other implementations
|
|
// may have their own reference types.
|
|
type ChunkRef uint64
|
|
|
|
// HeadSeriesRef refers to in-memory series.
|
|
type HeadSeriesRef uint64
|
|
|
|
// HeadChunkRef packs a HeadSeriesRef and a ChunkID into a global 8 Byte ID.
|
|
// The HeadSeriesRef and ChunkID may not exceed 5 and 3 bytes respectively.
|
|
type HeadChunkRef uint64
|
|
|
|
func NewHeadChunkRef(hsr HeadSeriesRef, chunkID HeadChunkID) HeadChunkRef {
|
|
if hsr > (1<<40)-1 {
|
|
panic("series ID exceeds 5 bytes")
|
|
}
|
|
if chunkID > (1<<24)-1 {
|
|
panic("chunk ID exceeds 3 bytes")
|
|
}
|
|
return HeadChunkRef(uint64(hsr<<24) | uint64(chunkID))
|
|
}
|
|
|
|
func (p HeadChunkRef) Unpack() (HeadSeriesRef, HeadChunkID) {
|
|
return HeadSeriesRef(p >> 24), HeadChunkID(p<<40) >> 40
|
|
}
|
|
|
|
// HeadChunkID refers to a specific chunk in a series (memSeries) in the Head.
|
|
// Each memSeries has its own monotonically increasing number to refer to its chunks.
|
|
// If the HeadChunkID value is...
|
|
// - memSeries.firstChunkID+len(memSeries.mmappedChunks), it's the head chunk.
|
|
// - less than the above, but >= memSeries.firstID, then it's
|
|
// memSeries.mmappedChunks[i] where i = HeadChunkID - memSeries.firstID.
|
|
//
|
|
// If memSeries.headChunks is non-nil it points to a *memChunk that holds the current
|
|
// "open" (accepting appends) instance. *memChunk is a linked list and memChunk.next pointer
|
|
// might link to the older *memChunk instance.
|
|
// If there are multiple *memChunk instances linked to each other from memSeries.headChunks
|
|
// they will be m-mapped as soon as possible leaving only "open" *memChunk instance.
|
|
//
|
|
// Example:
|
|
// assume a memSeries.firstChunkID=7 and memSeries.mmappedChunks=[p5,p6,p7,p8,p9].
|
|
//
|
|
// | HeadChunkID value | refers to ... |
|
|
// |-------------------|----------------------------------------------------------------------------------------|
|
|
// | 0-6 | chunks that have been compacted to blocks, these won't return data for queries in Head |
|
|
// | 7-11 | memSeries.mmappedChunks[i] where i is 0 to 4. |
|
|
// | 12 | *memChunk{next: nil}
|
|
// | 13 | *memChunk{next: ^}
|
|
// | 14 | memSeries.headChunks -> *memChunk{next: ^}
|
|
type HeadChunkID uint64
|
|
|
|
// BlockChunkRef refers to a chunk within a persisted block.
|
|
// The upper 4 bytes are for the segment index and
|
|
// the lower 4 bytes are for the segment offset where the data starts for this chunk.
|
|
type BlockChunkRef uint64
|
|
|
|
// NewBlockChunkRef packs the file index and byte offset into a BlockChunkRef.
|
|
func NewBlockChunkRef(fileIndex, fileOffset uint64) BlockChunkRef {
|
|
return BlockChunkRef(fileIndex<<32 | fileOffset)
|
|
}
|
|
|
|
func (b BlockChunkRef) Unpack() (int, int) {
|
|
sgmIndex := int(b >> 32)
|
|
chkStart := int((b << 32) >> 32)
|
|
return sgmIndex, chkStart
|
|
}
|
|
|
|
// Meta holds information about one or more chunks.
|
|
// For examples of when chunks.Meta could refer to multiple chunks, see
|
|
// ChunkReader.ChunkOrIterable().
|
|
type Meta struct {
|
|
// Ref and Chunk hold either a reference that can be used to retrieve
|
|
// chunk data or the data itself.
|
|
// If Chunk is nil, call ChunkReader.ChunkOrIterable(Meta.Ref) to get the
|
|
// chunk and assign it to the Chunk field. If an iterable is returned from
|
|
// that method, then it may not be possible to set Chunk as the iterable
|
|
// might form several chunks.
|
|
Ref ChunkRef
|
|
Chunk chunkenc.Chunk
|
|
|
|
// Time range the data covers.
|
|
// When MaxTime == math.MaxInt64 the chunk is still open and being appended to.
|
|
MinTime, MaxTime int64
|
|
|
|
// OOOLastRef, OOOLastMinTime and OOOLastMaxTime are kept as markers for
|
|
// overlapping chunks.
|
|
// These fields point to the last created out of order Chunk (the head) that existed
|
|
// when Series() was called and was overlapping.
|
|
// Series() and Chunk() method responses should be consistent for the same
|
|
// query even if new data is added in between the calls.
|
|
OOOLastRef ChunkRef
|
|
OOOLastMinTime, OOOLastMaxTime int64
|
|
}
|
|
|
|
// ChunkFromSamples requires all samples to have the same type.
|
|
func ChunkFromSamples(s []Sample) (Meta, error) {
|
|
return ChunkFromSamplesGeneric(SampleSlice(s))
|
|
}
|
|
|
|
// ChunkFromSamplesGeneric requires all samples to have the same type.
|
|
func ChunkFromSamplesGeneric(s Samples) (Meta, error) {
|
|
emptyChunk := Meta{Chunk: chunkenc.NewXORChunk()}
|
|
mint, maxt := int64(0), int64(0)
|
|
|
|
if s.Len() > 0 {
|
|
mint, maxt = s.Get(0).T(), s.Get(s.Len()-1).T()
|
|
}
|
|
|
|
if s.Len() == 0 {
|
|
return emptyChunk, nil
|
|
}
|
|
|
|
sampleType := s.Get(0).Type()
|
|
c, err := chunkenc.NewEmptyChunk(sampleType.ChunkEncoding())
|
|
if err != nil {
|
|
return Meta{}, err
|
|
}
|
|
|
|
ca, _ := c.Appender()
|
|
var newChunk chunkenc.Chunk
|
|
|
|
for i := 0; i < s.Len(); i++ {
|
|
switch sampleType {
|
|
case chunkenc.ValFloat:
|
|
ca.Append(s.Get(i).T(), s.Get(i).F())
|
|
case chunkenc.ValHistogram:
|
|
newChunk, _, ca, err = ca.AppendHistogram(nil, s.Get(i).T(), s.Get(i).H(), false)
|
|
if err != nil {
|
|
return emptyChunk, err
|
|
}
|
|
if newChunk != nil {
|
|
return emptyChunk, fmt.Errorf("did not expect to start a second chunk")
|
|
}
|
|
case chunkenc.ValFloatHistogram:
|
|
newChunk, _, ca, err = ca.AppendFloatHistogram(nil, s.Get(i).T(), s.Get(i).FH(), false)
|
|
if err != nil {
|
|
return emptyChunk, err
|
|
}
|
|
if newChunk != nil {
|
|
return emptyChunk, fmt.Errorf("did not expect to start a second chunk")
|
|
}
|
|
default:
|
|
panic(fmt.Sprintf("unknown sample type %s", sampleType.String()))
|
|
}
|
|
}
|
|
return Meta{
|
|
MinTime: mint,
|
|
MaxTime: maxt,
|
|
Chunk: c,
|
|
}, nil
|
|
}
|
|
|
|
// PopulatedChunk creates a chunk populated with samples every second starting at minTime.
|
|
func PopulatedChunk(numSamples int, minTime int64) (Meta, error) {
|
|
samples := make([]Sample, numSamples)
|
|
for i := 0; i < numSamples; i++ {
|
|
samples[i] = sample{t: minTime + int64(i*1000), f: 1.0}
|
|
}
|
|
return ChunkFromSamples(samples)
|
|
}
|
|
|
|
// ChunkMetasToSamples converts a slice of chunk meta data to a slice of samples.
|
|
// Used in tests to compare the content of chunks.
|
|
func ChunkMetasToSamples(chunks []Meta) (result []Sample) {
|
|
if len(chunks) == 0 {
|
|
return
|
|
}
|
|
|
|
for _, chunk := range chunks {
|
|
it := chunk.Chunk.Iterator(nil)
|
|
for vt := it.Next(); vt != chunkenc.ValNone; vt = it.Next() {
|
|
switch vt {
|
|
case chunkenc.ValFloat:
|
|
t, v := it.At()
|
|
result = append(result, sample{t: t, f: v})
|
|
case chunkenc.ValHistogram:
|
|
t, h := it.AtHistogram(nil)
|
|
result = append(result, sample{t: t, h: h})
|
|
case chunkenc.ValFloatHistogram:
|
|
t, fh := it.AtFloatHistogram(nil)
|
|
result = append(result, sample{t: t, fh: fh})
|
|
default:
|
|
panic("unexpected value type")
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Iterator iterates over the chunks of a single time series.
|
|
type Iterator interface {
|
|
// At returns the current meta.
|
|
// It depends on implementation if the chunk is populated or not.
|
|
At() Meta
|
|
// Next advances the iterator by one.
|
|
Next() bool
|
|
// Err returns optional error if Next is false.
|
|
Err() error
|
|
}
|
|
|
|
// writeHash writes the chunk encoding and raw data into the provided hash.
|
|
func (cm *Meta) writeHash(h hash.Hash, buf []byte) error {
|
|
buf = append(buf[:0], byte(cm.Chunk.Encoding()))
|
|
if _, err := h.Write(buf[:1]); err != nil {
|
|
return err
|
|
}
|
|
if _, err := h.Write(cm.Chunk.Bytes()); err != nil {
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// OverlapsClosedInterval Returns true if the chunk overlaps [mint, maxt].
|
|
func (cm *Meta) OverlapsClosedInterval(mint, maxt int64) bool {
|
|
// The chunk itself is a closed interval [cm.MinTime, cm.MaxTime].
|
|
return cm.MinTime <= maxt && mint <= cm.MaxTime
|
|
}
|
|
|
|
var errInvalidSize = fmt.Errorf("invalid size")
|
|
|
|
var castagnoliTable *crc32.Table
|
|
|
|
func init() {
|
|
castagnoliTable = crc32.MakeTable(crc32.Castagnoli)
|
|
}
|
|
|
|
// newCRC32 initializes a CRC32 hash with a preconfigured polynomial, so the
|
|
// polynomial may be easily changed in one location at a later time, if necessary.
|
|
func newCRC32() hash.Hash32 {
|
|
return crc32.New(castagnoliTable)
|
|
}
|
|
|
|
// Check if the CRC of data matches that stored in sum, computed when the chunk was stored.
|
|
func checkCRC32(data, sum []byte) error {
|
|
got := crc32.Checksum(data, castagnoliTable)
|
|
// This combination of shifts is the inverse of digest.Sum() in go/src/hash/crc32.
|
|
want := uint32(sum[0])<<24 + uint32(sum[1])<<16 + uint32(sum[2])<<8 + uint32(sum[3])
|
|
if got != want {
|
|
return fmt.Errorf("checksum mismatch expected:%x, actual:%x", want, got)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Writer implements the ChunkWriter interface for the standard
|
|
// serialization format.
|
|
type Writer struct {
|
|
dirFile *os.File
|
|
files []*os.File
|
|
wbuf *bufio.Writer
|
|
n int64
|
|
crc32 hash.Hash
|
|
buf [binary.MaxVarintLen32]byte
|
|
|
|
segmentSize int64
|
|
}
|
|
|
|
const (
|
|
// DefaultChunkSegmentSize is the default chunks segment size.
|
|
DefaultChunkSegmentSize = 512 * 1024 * 1024
|
|
)
|
|
|
|
// NewWriterWithSegSize returns a new writer against the given directory
|
|
// and allows setting a custom size for the segments.
|
|
func NewWriterWithSegSize(dir string, segmentSize int64) (*Writer, error) {
|
|
return newWriter(dir, segmentSize)
|
|
}
|
|
|
|
// NewWriter returns a new writer against the given directory
|
|
// using the default segment size.
|
|
func NewWriter(dir string) (*Writer, error) {
|
|
return newWriter(dir, DefaultChunkSegmentSize)
|
|
}
|
|
|
|
func newWriter(dir string, segmentSize int64) (*Writer, error) {
|
|
if segmentSize <= 0 {
|
|
segmentSize = DefaultChunkSegmentSize
|
|
}
|
|
|
|
if err := os.MkdirAll(dir, 0o777); err != nil {
|
|
return nil, err
|
|
}
|
|
dirFile, err := fileutil.OpenDir(dir)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return &Writer{
|
|
dirFile: dirFile,
|
|
n: 0,
|
|
crc32: newCRC32(),
|
|
segmentSize: segmentSize,
|
|
}, nil
|
|
}
|
|
|
|
func (w *Writer) tail() *os.File {
|
|
if len(w.files) == 0 {
|
|
return nil
|
|
}
|
|
return w.files[len(w.files)-1]
|
|
}
|
|
|
|
// finalizeTail writes all pending data to the current tail file,
|
|
// truncates its size, and closes it.
|
|
func (w *Writer) finalizeTail() error {
|
|
tf := w.tail()
|
|
if tf == nil {
|
|
return nil
|
|
}
|
|
|
|
if err := w.wbuf.Flush(); err != nil {
|
|
return err
|
|
}
|
|
if err := tf.Sync(); err != nil {
|
|
return err
|
|
}
|
|
// As the file was pre-allocated, we truncate any superfluous zero bytes.
|
|
off, err := tf.Seek(0, io.SeekCurrent)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if err := tf.Truncate(off); err != nil {
|
|
return err
|
|
}
|
|
|
|
return tf.Close()
|
|
}
|
|
|
|
func (w *Writer) cut() error {
|
|
// Sync current tail to disk and close.
|
|
if err := w.finalizeTail(); err != nil {
|
|
return err
|
|
}
|
|
|
|
n, f, _, err := cutSegmentFile(w.dirFile, MagicChunks, chunksFormatV1, w.segmentSize)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
w.n = int64(n)
|
|
|
|
w.files = append(w.files, f)
|
|
if w.wbuf != nil {
|
|
w.wbuf.Reset(f)
|
|
} else {
|
|
w.wbuf = bufio.NewWriterSize(f, 8*1024*1024)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func cutSegmentFile(dirFile *os.File, magicNumber uint32, chunksFormat byte, allocSize int64) (headerSize int, newFile *os.File, seq int, returnErr error) {
|
|
p, seq, err := nextSequenceFile(dirFile.Name())
|
|
if err != nil {
|
|
return 0, nil, 0, fmt.Errorf("next sequence file: %w", err)
|
|
}
|
|
ptmp := p + ".tmp"
|
|
f, err := os.OpenFile(ptmp, os.O_WRONLY|os.O_CREATE, 0o666)
|
|
if err != nil {
|
|
return 0, nil, 0, fmt.Errorf("open temp file: %w", err)
|
|
}
|
|
defer func() {
|
|
if returnErr != nil {
|
|
errs := tsdb_errors.NewMulti(returnErr)
|
|
if f != nil {
|
|
errs.Add(f.Close())
|
|
}
|
|
// Calling RemoveAll on a non-existent file does not return error.
|
|
errs.Add(os.RemoveAll(ptmp))
|
|
returnErr = errs.Err()
|
|
}
|
|
}()
|
|
if allocSize > 0 {
|
|
if err = fileutil.Preallocate(f, allocSize, true); err != nil {
|
|
return 0, nil, 0, fmt.Errorf("preallocate: %w", err)
|
|
}
|
|
}
|
|
if err = dirFile.Sync(); err != nil {
|
|
return 0, nil, 0, fmt.Errorf("sync directory: %w", err)
|
|
}
|
|
|
|
// Write header metadata for new file.
|
|
metab := make([]byte, SegmentHeaderSize)
|
|
binary.BigEndian.PutUint32(metab[:MagicChunksSize], magicNumber)
|
|
metab[4] = chunksFormat
|
|
|
|
n, err := f.Write(metab)
|
|
if err != nil {
|
|
return 0, nil, 0, fmt.Errorf("write header: %w", err)
|
|
}
|
|
if err := f.Close(); err != nil {
|
|
return 0, nil, 0, fmt.Errorf("close temp file: %w", err)
|
|
}
|
|
f = nil
|
|
|
|
if err := fileutil.Rename(ptmp, p); err != nil {
|
|
return 0, nil, 0, fmt.Errorf("replace file: %w", err)
|
|
}
|
|
|
|
f, err = os.OpenFile(p, os.O_WRONLY, 0o666)
|
|
if err != nil {
|
|
return 0, nil, 0, fmt.Errorf("open final file: %w", err)
|
|
}
|
|
// Skip header for further writes.
|
|
if _, err := f.Seek(int64(n), 0); err != nil {
|
|
return 0, nil, 0, fmt.Errorf("seek in final file: %w", err)
|
|
}
|
|
return n, f, seq, nil
|
|
}
|
|
|
|
func (w *Writer) write(b []byte) error {
|
|
n, err := w.wbuf.Write(b)
|
|
w.n += int64(n)
|
|
return err
|
|
}
|
|
|
|
// WriteChunks writes as many chunks as possible to the current segment,
|
|
// cuts a new segment when the current segment is full and
|
|
// writes the rest of the chunks in the new segment.
|
|
func (w *Writer) WriteChunks(chks ...Meta) error {
|
|
var (
|
|
batchSize = int64(0)
|
|
batchStart = 0
|
|
batches = make([][]Meta, 1)
|
|
batchID = 0
|
|
firstBatch = true
|
|
)
|
|
|
|
for i, chk := range chks {
|
|
// Each chunk contains: data length + encoding + the data itself + crc32
|
|
chkSize := int64(MaxChunkLengthFieldSize) // The data length is a variable length field so use the maximum possible value.
|
|
chkSize += ChunkEncodingSize // The chunk encoding.
|
|
chkSize += int64(len(chk.Chunk.Bytes())) // The data itself.
|
|
chkSize += crc32.Size // The 4 bytes of crc32.
|
|
batchSize += chkSize
|
|
|
|
// Cut a new batch when it is not the first chunk(to avoid empty segments) and
|
|
// the batch is too large to fit in the current segment.
|
|
cutNewBatch := (i != 0) && (batchSize+SegmentHeaderSize > w.segmentSize)
|
|
|
|
// When the segment already has some data than
|
|
// the first batch size calculation should account for that.
|
|
if firstBatch && w.n > SegmentHeaderSize {
|
|
cutNewBatch = batchSize+w.n > w.segmentSize
|
|
if cutNewBatch {
|
|
firstBatch = false
|
|
}
|
|
}
|
|
|
|
if cutNewBatch {
|
|
batchStart = i
|
|
batches = append(batches, []Meta{})
|
|
batchID++
|
|
batchSize = chkSize
|
|
}
|
|
batches[batchID] = chks[batchStart : i+1]
|
|
}
|
|
|
|
// Create a new segment when one doesn't already exist.
|
|
if w.n == 0 {
|
|
if err := w.cut(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
for i, chks := range batches {
|
|
if err := w.writeChunks(chks); err != nil {
|
|
return err
|
|
}
|
|
// Cut a new segment only when there are more chunks to write.
|
|
// Avoid creating a new empty segment at the end of the write.
|
|
if i < len(batches)-1 {
|
|
if err := w.cut(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// writeChunks writes the chunks into the current segment irrespective
|
|
// of the configured segment size limit. A segment should have been already
|
|
// started before calling this.
|
|
func (w *Writer) writeChunks(chks []Meta) error {
|
|
if len(chks) == 0 {
|
|
return nil
|
|
}
|
|
|
|
seq := uint64(w.seq())
|
|
for i := range chks {
|
|
chk := &chks[i]
|
|
|
|
chk.Ref = ChunkRef(NewBlockChunkRef(seq, uint64(w.n)))
|
|
|
|
n := binary.PutUvarint(w.buf[:], uint64(len(chk.Chunk.Bytes())))
|
|
|
|
if err := w.write(w.buf[:n]); err != nil {
|
|
return err
|
|
}
|
|
w.buf[0] = byte(chk.Chunk.Encoding())
|
|
if err := w.write(w.buf[:1]); err != nil {
|
|
return err
|
|
}
|
|
if err := w.write(chk.Chunk.Bytes()); err != nil {
|
|
return err
|
|
}
|
|
|
|
w.crc32.Reset()
|
|
if err := chk.writeHash(w.crc32, w.buf[:]); err != nil {
|
|
return err
|
|
}
|
|
if err := w.write(w.crc32.Sum(w.buf[:0])); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (w *Writer) seq() int {
|
|
return len(w.files) - 1
|
|
}
|
|
|
|
func (w *Writer) Close() error {
|
|
if err := w.finalizeTail(); err != nil {
|
|
return err
|
|
}
|
|
|
|
// close dir file (if not windows platform will fail on rename)
|
|
return w.dirFile.Close()
|
|
}
|
|
|
|
// ByteSlice abstracts a byte slice.
|
|
type ByteSlice interface {
|
|
Len() int
|
|
Range(start, end int) []byte
|
|
}
|
|
|
|
type realByteSlice []byte
|
|
|
|
func (b realByteSlice) Len() int {
|
|
return len(b)
|
|
}
|
|
|
|
func (b realByteSlice) Range(start, end int) []byte {
|
|
return b[start:end]
|
|
}
|
|
|
|
// Reader implements a ChunkReader for a serialized byte stream
|
|
// of series data.
|
|
type Reader struct {
|
|
// The underlying bytes holding the encoded series data.
|
|
// Each slice holds the data for a different segment.
|
|
bs []ByteSlice
|
|
cs []io.Closer // Closers for resources behind the byte slices.
|
|
size int64 // The total size of bytes in the reader.
|
|
pool chunkenc.Pool
|
|
}
|
|
|
|
func newReader(bs []ByteSlice, cs []io.Closer, pool chunkenc.Pool) (*Reader, error) {
|
|
cr := Reader{pool: pool, bs: bs, cs: cs}
|
|
for i, b := range cr.bs {
|
|
if b.Len() < SegmentHeaderSize {
|
|
return nil, fmt.Errorf("invalid segment header in segment %d: %w", i, errInvalidSize)
|
|
}
|
|
// Verify magic number.
|
|
if m := binary.BigEndian.Uint32(b.Range(0, MagicChunksSize)); m != MagicChunks {
|
|
return nil, fmt.Errorf("invalid magic number %x", m)
|
|
}
|
|
|
|
// Verify chunk format version.
|
|
if v := int(b.Range(MagicChunksSize, MagicChunksSize+ChunksFormatVersionSize)[0]); v != chunksFormatV1 {
|
|
return nil, fmt.Errorf("invalid chunk format version %d", v)
|
|
}
|
|
cr.size += int64(b.Len())
|
|
}
|
|
return &cr, nil
|
|
}
|
|
|
|
// NewDirReader returns a new Reader against sequentially numbered files in the
|
|
// given directory.
|
|
func NewDirReader(dir string, pool chunkenc.Pool) (*Reader, error) {
|
|
files, err := sequenceFiles(dir)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if pool == nil {
|
|
pool = chunkenc.NewPool()
|
|
}
|
|
|
|
var (
|
|
bs []ByteSlice
|
|
cs []io.Closer
|
|
)
|
|
for _, fn := range files {
|
|
f, err := fileutil.OpenMmapFile(fn)
|
|
if err != nil {
|
|
return nil, tsdb_errors.NewMulti(
|
|
fmt.Errorf("mmap files: %w", err),
|
|
tsdb_errors.CloseAll(cs),
|
|
).Err()
|
|
}
|
|
cs = append(cs, f)
|
|
bs = append(bs, realByteSlice(f.Bytes()))
|
|
}
|
|
|
|
reader, err := newReader(bs, cs, pool)
|
|
if err != nil {
|
|
return nil, tsdb_errors.NewMulti(
|
|
err,
|
|
tsdb_errors.CloseAll(cs),
|
|
).Err()
|
|
}
|
|
return reader, nil
|
|
}
|
|
|
|
func (s *Reader) Close() error {
|
|
return tsdb_errors.CloseAll(s.cs)
|
|
}
|
|
|
|
// Size returns the size of the chunks.
|
|
func (s *Reader) Size() int64 {
|
|
return s.size
|
|
}
|
|
|
|
// ChunkOrIterable returns a chunk from a given reference.
|
|
func (s *Reader) ChunkOrIterable(meta Meta) (chunkenc.Chunk, chunkenc.Iterable, error) {
|
|
sgmIndex, chkStart := BlockChunkRef(meta.Ref).Unpack()
|
|
|
|
if sgmIndex >= len(s.bs) {
|
|
return nil, nil, fmt.Errorf("segment index %d out of range", sgmIndex)
|
|
}
|
|
|
|
sgmBytes := s.bs[sgmIndex]
|
|
|
|
if chkStart+MaxChunkLengthFieldSize > sgmBytes.Len() {
|
|
return nil, nil, fmt.Errorf("segment doesn't include enough bytes to read the chunk size data field - required:%v, available:%v", chkStart+MaxChunkLengthFieldSize, sgmBytes.Len())
|
|
}
|
|
// With the minimum chunk length this should never cause us reading
|
|
// over the end of the slice.
|
|
c := sgmBytes.Range(chkStart, chkStart+MaxChunkLengthFieldSize)
|
|
chkDataLen, n := binary.Uvarint(c)
|
|
if n <= 0 {
|
|
return nil, nil, fmt.Errorf("reading chunk length failed with %d", n)
|
|
}
|
|
|
|
chkEncStart := chkStart + n
|
|
chkEnd := chkEncStart + ChunkEncodingSize + int(chkDataLen) + crc32.Size
|
|
chkDataStart := chkEncStart + ChunkEncodingSize
|
|
chkDataEnd := chkEnd - crc32.Size
|
|
|
|
if chkEnd > sgmBytes.Len() {
|
|
return nil, nil, fmt.Errorf("segment doesn't include enough bytes to read the chunk - required:%v, available:%v", chkEnd, sgmBytes.Len())
|
|
}
|
|
|
|
sum := sgmBytes.Range(chkDataEnd, chkEnd)
|
|
if err := checkCRC32(sgmBytes.Range(chkEncStart, chkDataEnd), sum); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
chkData := sgmBytes.Range(chkDataStart, chkDataEnd)
|
|
chkEnc := sgmBytes.Range(chkEncStart, chkEncStart+ChunkEncodingSize)[0]
|
|
chk, err := s.pool.Get(chunkenc.Encoding(chkEnc), chkData)
|
|
return chk, nil, err
|
|
}
|
|
|
|
func nextSequenceFile(dir string) (string, int, error) {
|
|
files, err := os.ReadDir(dir)
|
|
if err != nil {
|
|
return "", 0, err
|
|
}
|
|
|
|
i := uint64(0)
|
|
for _, f := range files {
|
|
j, err := strconv.ParseUint(f.Name(), 10, 64)
|
|
if err != nil {
|
|
continue
|
|
}
|
|
// It is not necessary that we find the files in number order,
|
|
// for example with '1000000' and '200000', '1000000' would come first.
|
|
// Though this is a very very race case, we check anyway for the max id.
|
|
if j > i {
|
|
i = j
|
|
}
|
|
}
|
|
return segmentFile(dir, int(i+1)), int(i + 1), nil
|
|
}
|
|
|
|
func segmentFile(baseDir string, index int) string {
|
|
return filepath.Join(baseDir, fmt.Sprintf("%0.6d", index))
|
|
}
|
|
|
|
func sequenceFiles(dir string) ([]string, error) {
|
|
files, err := os.ReadDir(dir)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var res []string
|
|
for _, fi := range files {
|
|
if _, err := strconv.ParseUint(fi.Name(), 10, 64); err != nil {
|
|
continue
|
|
}
|
|
res = append(res, filepath.Join(dir, fi.Name()))
|
|
}
|
|
return res, nil
|
|
}
|