mirror of
https://github.com/prometheus/prometheus
synced 2025-01-07 15:11:24 +00:00
162612ea86
Oversight during review of #12525. Signed-off-by: beorn7 <beorn@grafana.com>
410 lines
12 KiB
Go
410 lines
12 KiB
Go
// Copyright 2015 The Prometheus Authors
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
package promql
|
||
|
||
import (
|
||
"math"
|
||
"sort"
|
||
|
||
"golang.org/x/exp/slices"
|
||
|
||
"github.com/prometheus/prometheus/model/histogram"
|
||
"github.com/prometheus/prometheus/model/labels"
|
||
)
|
||
|
||
// Helpers to calculate quantiles.
|
||
|
||
// excludedLabels are the labels to exclude from signature calculation for
|
||
// quantiles.
|
||
var excludedLabels = []string{
|
||
labels.MetricName,
|
||
labels.BucketLabel,
|
||
}
|
||
|
||
type bucket struct {
|
||
upperBound float64
|
||
count float64
|
||
}
|
||
|
||
// buckets implements sort.Interface.
|
||
type buckets []bucket
|
||
|
||
type metricWithBuckets struct {
|
||
metric labels.Labels
|
||
buckets buckets
|
||
}
|
||
|
||
// bucketQuantile calculates the quantile 'q' based on the given buckets. The
|
||
// buckets will be sorted by upperBound by this function (i.e. no sorting
|
||
// needed before calling this function). The quantile value is interpolated
|
||
// assuming a linear distribution within a bucket. However, if the quantile
|
||
// falls into the highest bucket, the upper bound of the 2nd highest bucket is
|
||
// returned. A natural lower bound of 0 is assumed if the upper bound of the
|
||
// lowest bucket is greater 0. In that case, interpolation in the lowest bucket
|
||
// happens linearly between 0 and the upper bound of the lowest bucket.
|
||
// However, if the lowest bucket has an upper bound less or equal 0, this upper
|
||
// bound is returned if the quantile falls into the lowest bucket.
|
||
//
|
||
// There are a number of special cases (once we have a way to report errors
|
||
// happening during evaluations of AST functions, we should report those
|
||
// explicitly):
|
||
//
|
||
// If 'buckets' has 0 observations, NaN is returned.
|
||
//
|
||
// If 'buckets' has fewer than 2 elements, NaN is returned.
|
||
//
|
||
// If the highest bucket is not +Inf, NaN is returned.
|
||
//
|
||
// If q==NaN, NaN is returned.
|
||
//
|
||
// If q<0, -Inf is returned.
|
||
//
|
||
// If q>1, +Inf is returned.
|
||
func bucketQuantile(q float64, buckets buckets) float64 {
|
||
if math.IsNaN(q) {
|
||
return math.NaN()
|
||
}
|
||
if q < 0 {
|
||
return math.Inf(-1)
|
||
}
|
||
if q > 1 {
|
||
return math.Inf(+1)
|
||
}
|
||
slices.SortFunc(buckets, func(a, b bucket) bool {
|
||
return a.upperBound < b.upperBound
|
||
})
|
||
if !math.IsInf(buckets[len(buckets)-1].upperBound, +1) {
|
||
return math.NaN()
|
||
}
|
||
|
||
buckets = coalesceBuckets(buckets)
|
||
ensureMonotonic(buckets)
|
||
|
||
if len(buckets) < 2 {
|
||
return math.NaN()
|
||
}
|
||
observations := buckets[len(buckets)-1].count
|
||
if observations == 0 {
|
||
return math.NaN()
|
||
}
|
||
rank := q * observations
|
||
b := sort.Search(len(buckets)-1, func(i int) bool { return buckets[i].count >= rank })
|
||
|
||
if b == len(buckets)-1 {
|
||
return buckets[len(buckets)-2].upperBound
|
||
}
|
||
if b == 0 && buckets[0].upperBound <= 0 {
|
||
return buckets[0].upperBound
|
||
}
|
||
var (
|
||
bucketStart float64
|
||
bucketEnd = buckets[b].upperBound
|
||
count = buckets[b].count
|
||
)
|
||
if b > 0 {
|
||
bucketStart = buckets[b-1].upperBound
|
||
count -= buckets[b-1].count
|
||
rank -= buckets[b-1].count
|
||
}
|
||
return bucketStart + (bucketEnd-bucketStart)*(rank/count)
|
||
}
|
||
|
||
// histogramQuantile calculates the quantile 'q' based on the given histogram.
|
||
//
|
||
// The quantile value is interpolated assuming a linear distribution within a
|
||
// bucket.
|
||
// TODO(beorn7): Find an interpolation method that is a better fit for
|
||
// exponential buckets (and think about configurable interpolation).
|
||
//
|
||
// A natural lower bound of 0 is assumed if the histogram has only positive
|
||
// buckets. Likewise, a natural upper bound of 0 is assumed if the histogram has
|
||
// only negative buckets.
|
||
// TODO(beorn7): Come to terms if we want that.
|
||
//
|
||
// There are a number of special cases (once we have a way to report errors
|
||
// happening during evaluations of AST functions, we should report those
|
||
// explicitly):
|
||
//
|
||
// If the histogram has 0 observations, NaN is returned.
|
||
//
|
||
// If q<0, -Inf is returned.
|
||
//
|
||
// If q>1, +Inf is returned.
|
||
//
|
||
// If q is NaN, NaN is returned.
|
||
func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
||
if q < 0 {
|
||
return math.Inf(-1)
|
||
}
|
||
if q > 1 {
|
||
return math.Inf(+1)
|
||
}
|
||
|
||
if h.Count == 0 || math.IsNaN(q) {
|
||
return math.NaN()
|
||
}
|
||
|
||
var (
|
||
bucket histogram.Bucket[float64]
|
||
count float64
|
||
it histogram.BucketIterator[float64]
|
||
rank float64
|
||
)
|
||
|
||
// if there are NaN observations in the histogram (h.Sum is NaN), use the forward iterator
|
||
// if the q < 0.5, use the forward iterator
|
||
// if the q >= 0.5, use the reverse iterator
|
||
if math.IsNaN(h.Sum) || q < 0.5 {
|
||
it = h.AllBucketIterator()
|
||
rank = q * h.Count
|
||
} else {
|
||
it = h.AllReverseBucketIterator()
|
||
rank = (1 - q) * h.Count
|
||
}
|
||
|
||
for it.Next() {
|
||
bucket = it.At()
|
||
count += bucket.Count
|
||
if count >= rank {
|
||
break
|
||
}
|
||
}
|
||
if bucket.Lower < 0 && bucket.Upper > 0 {
|
||
switch {
|
||
case len(h.NegativeBuckets) == 0 && len(h.PositiveBuckets) > 0:
|
||
// The result is in the zero bucket and the histogram has only
|
||
// positive buckets. So we consider 0 to be the lower bound.
|
||
bucket.Lower = 0
|
||
case len(h.PositiveBuckets) == 0 && len(h.NegativeBuckets) > 0:
|
||
// The result is in the zero bucket and the histogram has only
|
||
// negative buckets. So we consider 0 to be the upper bound.
|
||
bucket.Upper = 0
|
||
}
|
||
}
|
||
// Due to numerical inaccuracies, we could end up with a higher count
|
||
// than h.Count. Thus, make sure count is never higher than h.Count.
|
||
if count > h.Count {
|
||
count = h.Count
|
||
}
|
||
// We could have hit the highest bucket without even reaching the rank
|
||
// (this should only happen if the histogram contains observations of
|
||
// the value NaN), in which case we simply return the upper limit of the
|
||
// highest explicit bucket.
|
||
if count < rank {
|
||
return bucket.Upper
|
||
}
|
||
|
||
// NaN observations increase h.Count but not the total number of
|
||
// observations in the buckets. Therefore, we have to use the forward
|
||
// iterator to find percentiles. We recognize histograms containing NaN
|
||
// observations by checking if their h.Sum is NaN.
|
||
if math.IsNaN(h.Sum) || q < 0.5 {
|
||
rank -= count - bucket.Count
|
||
} else {
|
||
rank = count - rank
|
||
}
|
||
|
||
// TODO(codesome): Use a better estimation than linear.
|
||
return bucket.Lower + (bucket.Upper-bucket.Lower)*(rank/bucket.Count)
|
||
}
|
||
|
||
// histogramFraction calculates the fraction of observations between the
|
||
// provided lower and upper bounds, based on the provided histogram.
|
||
//
|
||
// histogramFraction is in a certain way the inverse of histogramQuantile. If
|
||
// histogramQuantile(0.9, h) returns 123.4, then histogramFraction(-Inf, 123.4, h)
|
||
// returns 0.9.
|
||
//
|
||
// The same notes (and TODOs) with regard to interpolation and assumptions about
|
||
// the zero bucket boundaries apply as for histogramQuantile.
|
||
//
|
||
// Whether either boundary is inclusive or exclusive doesn’t actually matter as
|
||
// long as interpolation has to be performed anyway. In the case of a boundary
|
||
// coinciding with a bucket boundary, the inclusive or exclusive nature of the
|
||
// boundary determines the exact behavior of the threshold. With the current
|
||
// implementation, that means that lower is exclusive for positive values and
|
||
// inclusive for negative values, while upper is inclusive for positive values
|
||
// and exclusive for negative values.
|
||
//
|
||
// Special cases:
|
||
//
|
||
// If the histogram has 0 observations, NaN is returned.
|
||
//
|
||
// Use a lower bound of -Inf to get the fraction of all observations below the
|
||
// upper bound.
|
||
//
|
||
// Use an upper bound of +Inf to get the fraction of all observations above the
|
||
// lower bound.
|
||
//
|
||
// If lower or upper is NaN, NaN is returned.
|
||
//
|
||
// If lower >= upper and the histogram has at least 1 observation, zero is returned.
|
||
func histogramFraction(lower, upper float64, h *histogram.FloatHistogram) float64 {
|
||
if h.Count == 0 || math.IsNaN(lower) || math.IsNaN(upper) {
|
||
return math.NaN()
|
||
}
|
||
if lower >= upper {
|
||
return 0
|
||
}
|
||
|
||
var (
|
||
rank, lowerRank, upperRank float64
|
||
lowerSet, upperSet bool
|
||
it = h.AllBucketIterator()
|
||
)
|
||
for it.Next() {
|
||
b := it.At()
|
||
if b.Lower < 0 && b.Upper > 0 {
|
||
switch {
|
||
case len(h.NegativeBuckets) == 0 && len(h.PositiveBuckets) > 0:
|
||
// This is the zero bucket and the histogram has only
|
||
// positive buckets. So we consider 0 to be the lower
|
||
// bound.
|
||
b.Lower = 0
|
||
case len(h.PositiveBuckets) == 0 && len(h.NegativeBuckets) > 0:
|
||
// This is in the zero bucket and the histogram has only
|
||
// negative buckets. So we consider 0 to be the upper
|
||
// bound.
|
||
b.Upper = 0
|
||
}
|
||
}
|
||
if !lowerSet && b.Lower >= lower {
|
||
lowerRank = rank
|
||
lowerSet = true
|
||
}
|
||
if !upperSet && b.Lower >= upper {
|
||
upperRank = rank
|
||
upperSet = true
|
||
}
|
||
if lowerSet && upperSet {
|
||
break
|
||
}
|
||
if !lowerSet && b.Lower < lower && b.Upper > lower {
|
||
lowerRank = rank + b.Count*(lower-b.Lower)/(b.Upper-b.Lower)
|
||
lowerSet = true
|
||
}
|
||
if !upperSet && b.Lower < upper && b.Upper > upper {
|
||
upperRank = rank + b.Count*(upper-b.Lower)/(b.Upper-b.Lower)
|
||
upperSet = true
|
||
}
|
||
if lowerSet && upperSet {
|
||
break
|
||
}
|
||
rank += b.Count
|
||
}
|
||
if !lowerSet || lowerRank > h.Count {
|
||
lowerRank = h.Count
|
||
}
|
||
if !upperSet || upperRank > h.Count {
|
||
upperRank = h.Count
|
||
}
|
||
|
||
return (upperRank - lowerRank) / h.Count
|
||
}
|
||
|
||
// coalesceBuckets merges buckets with the same upper bound.
|
||
//
|
||
// The input buckets must be sorted.
|
||
func coalesceBuckets(buckets buckets) buckets {
|
||
last := buckets[0]
|
||
i := 0
|
||
for _, b := range buckets[1:] {
|
||
if b.upperBound == last.upperBound {
|
||
last.count += b.count
|
||
} else {
|
||
buckets[i] = last
|
||
last = b
|
||
i++
|
||
}
|
||
}
|
||
buckets[i] = last
|
||
return buckets[:i+1]
|
||
}
|
||
|
||
// The assumption that bucket counts increase monotonically with increasing
|
||
// upperBound may be violated during:
|
||
//
|
||
// * Recording rule evaluation of histogram_quantile, especially when rate()
|
||
// has been applied to the underlying bucket timeseries.
|
||
// * Evaluation of histogram_quantile computed over federated bucket
|
||
// timeseries, especially when rate() has been applied.
|
||
//
|
||
// This is because scraped data is not made available to rule evaluation or
|
||
// federation atomically, so some buckets are computed with data from the
|
||
// most recent scrapes, but the other buckets are missing data from the most
|
||
// recent scrape.
|
||
//
|
||
// Monotonicity is usually guaranteed because if a bucket with upper bound
|
||
// u1 has count c1, then any bucket with a higher upper bound u > u1 must
|
||
// have counted all c1 observations and perhaps more, so that c >= c1.
|
||
//
|
||
// Randomly interspersed partial sampling breaks that guarantee, and rate()
|
||
// exacerbates it. Specifically, suppose bucket le=1000 has a count of 10 from
|
||
// 4 samples but the bucket with le=2000 has a count of 7 from 3 samples. The
|
||
// monotonicity is broken. It is exacerbated by rate() because under normal
|
||
// operation, cumulative counting of buckets will cause the bucket counts to
|
||
// diverge such that small differences from missing samples are not a problem.
|
||
// rate() removes this divergence.)
|
||
//
|
||
// bucketQuantile depends on that monotonicity to do a binary search for the
|
||
// bucket with the φ-quantile count, so breaking the monotonicity
|
||
// guarantee causes bucketQuantile() to return undefined (nonsense) results.
|
||
//
|
||
// As a somewhat hacky solution until ingestion is atomic per scrape, we
|
||
// calculate the "envelope" of the histogram buckets, essentially removing
|
||
// any decreases in the count between successive buckets.
|
||
|
||
func ensureMonotonic(buckets buckets) {
|
||
max := buckets[0].count
|
||
for i := 1; i < len(buckets); i++ {
|
||
switch {
|
||
case buckets[i].count > max:
|
||
max = buckets[i].count
|
||
case buckets[i].count < max:
|
||
buckets[i].count = max
|
||
}
|
||
}
|
||
}
|
||
|
||
// quantile calculates the given quantile of a vector of samples.
|
||
//
|
||
// The Vector will be sorted.
|
||
// If 'values' has zero elements, NaN is returned.
|
||
// If q==NaN, NaN is returned.
|
||
// If q<0, -Inf is returned.
|
||
// If q>1, +Inf is returned.
|
||
func quantile(q float64, values vectorByValueHeap) float64 {
|
||
if len(values) == 0 || math.IsNaN(q) {
|
||
return math.NaN()
|
||
}
|
||
if q < 0 {
|
||
return math.Inf(-1)
|
||
}
|
||
if q > 1 {
|
||
return math.Inf(+1)
|
||
}
|
||
sort.Sort(values)
|
||
|
||
n := float64(len(values))
|
||
// When the quantile lies between two samples,
|
||
// we use a weighted average of the two samples.
|
||
rank := q * (n - 1)
|
||
|
||
lowerIndex := math.Max(0, math.Floor(rank))
|
||
upperIndex := math.Min(n-1, lowerIndex+1)
|
||
|
||
weight := rank - math.Floor(rank)
|
||
return values[int(lowerIndex)].F*(1-weight) + values[int(upperIndex)].F*weight
|
||
}
|