package local import ( "encoding/binary" "fmt" "io" "math" "sort" clientmodel "github.com/prometheus/client_golang/model" "github.com/prometheus/prometheus/storage/metric" ) type deltaBytes byte const ( d0 deltaBytes = 0 d1 = 1 d2 = 2 d4 = 4 d8 = 8 ) // The 21-byte header of a delta-encoded chunk looks like: // // - time delta bytes: 1 bytes // - value delta bytes: 1 bytes // - is integer: 1 byte // - base time: 8 bytes // - base value: 8 bytes // - used buf bytes: 2 bytes const ( deltaHeaderBytes = 21 deltaHeaderTimeBytesOffset = 0 deltaHeaderValueBytesOffset = 1 deltaHeaderIsIntOffset = 2 deltaHeaderBaseTimeOffset = 3 deltaHeaderBaseValueOffset = 11 deltaHeaderBufLenOffset = 19 ) // A deltaEncodedChunk adaptively stores sample timestamps and values with a // delta encoding of various types (int, float) and bit width. However, once 8 // bytes would be needed to encode a delta value, a fall-back to the absolute // numbers happens (so that timestamps are saved directly as int64 and values as // float64). It implements the chunk interface. type deltaEncodedChunk struct { buf []byte } // newDeltaEncodedChunk returns a newly allocated deltaEncodedChunk. func newDeltaEncodedChunk(tb, vb deltaBytes, isInt bool) *deltaEncodedChunk { buf := make([]byte, deltaHeaderIsIntOffset+1, 1024) buf[deltaHeaderTimeBytesOffset] = byte(tb) buf[deltaHeaderValueBytesOffset] = byte(vb) if vb < d8 && isInt { // Only use int for fewer than 8 value delta bytes. buf[deltaHeaderIsIntOffset] = 1 } else { buf[deltaHeaderIsIntOffset] = 0 } return &deltaEncodedChunk{ buf: buf, } } func (c *deltaEncodedChunk) newFollowupChunk() chunk { return newDeltaEncodedChunk(d1, d1, true) //return newDeltaEncodedChunk(c.timeBytes(), c.valueBytes(), c.isInt()) } // clone implements chunk. func (c *deltaEncodedChunk) clone() chunk { buf := make([]byte, len(c.buf), 1024) copy(buf, c.buf) return &deltaEncodedChunk{ buf: buf, } } func neededDeltaBytes(deltaT clientmodel.Timestamp, deltaV clientmodel.SampleValue, isInt bool) (dtb, dvb deltaBytes) { dtb = d1 if deltaT > math.MaxUint8 { dtb = d2 } if deltaT > math.MaxUint16 { dtb = d4 } if deltaT > math.MaxUint32 { dtb = d8 } if isInt { dvb = d0 if deltaV != 0 { dvb = d1 } if deltaV < math.MinInt8 || deltaV > math.MaxInt8 { dvb = d2 } if deltaV < math.MinInt16 || deltaV > math.MaxInt16 { dvb = d4 } if deltaV < math.MinInt32 || deltaV > math.MaxInt32 { dvb = d8 } } else { dvb = d4 if clientmodel.SampleValue(float32(deltaV)) != deltaV { dvb = d8 } } return dtb, dvb } func max(a, b deltaBytes) deltaBytes { if a > b { return a } return b } func (c *deltaEncodedChunk) timeBytes() deltaBytes { return deltaBytes(c.buf[deltaHeaderTimeBytesOffset]) } func (c *deltaEncodedChunk) valueBytes() deltaBytes { return deltaBytes(c.buf[deltaHeaderValueBytesOffset]) } func (c *deltaEncodedChunk) isInt() bool { return c.buf[deltaHeaderIsIntOffset] == 1 } func (c *deltaEncodedChunk) baseTime() clientmodel.Timestamp { return clientmodel.Timestamp(binary.LittleEndian.Uint64(c.buf[deltaHeaderBaseTimeOffset:])) } func (c *deltaEncodedChunk) baseValue() clientmodel.SampleValue { return clientmodel.SampleValue(math.Float64frombits(binary.LittleEndian.Uint64(c.buf[deltaHeaderBaseValueOffset:]))) } // add implements chunk. func (c *deltaEncodedChunk) add(s *metric.SamplePair) chunks { if len(c.buf) < deltaHeaderBytes { c.buf = c.buf[:deltaHeaderBytes] binary.LittleEndian.PutUint64(c.buf[deltaHeaderBaseTimeOffset:], uint64(s.Timestamp)) binary.LittleEndian.PutUint64(c.buf[deltaHeaderBaseValueOffset:], math.Float64bits(float64(s.Value))) } remainingBytes := cap(c.buf) - len(c.buf) sampleSize := c.sampleSize() // Do we generally have space for another sample in this chunk? If not, // overflow into a new one. if remainingBytes < sampleSize { //fmt.Println("overflow") overflowChunks := c.newFollowupChunk().add(s) return chunks{c, overflowChunks[0]} } dt := s.Timestamp - c.baseTime() dv := s.Value - c.baseValue() tb := c.timeBytes() vb := c.valueBytes() // If the new sample is incompatible with the current encoding, reencode the // existing chunk data into new chunk(s). // // int->float. // TODO: compare speed with Math.Modf. if c.isInt() && clientmodel.SampleValue(int64(dv)) != dv { //fmt.Println("int->float", len(c.buf), cap(c.buf), dv) return transcodeAndAdd(newDeltaEncodedChunk(tb, d4, false), c, s) } // float32->float64. if !c.isInt() && vb == d4 && clientmodel.SampleValue(float32(dv)) != dv { //fmt.Println("float32->float64", float32(dv), dv, len(c.buf), cap(c.buf)) return transcodeAndAdd(newDeltaEncodedChunk(tb, d8, false), c, s) } if tb < d8 || vb < d8 { // Maybe more bytes per sample. if ntb, nvb := neededDeltaBytes(dt, dv, c.isInt()); ntb > tb || nvb > vb { //fmt.Printf("transcoding T: %v->%v, V: %v->%v, I: %v; len %v, cap %v\n", tb, ntb, vb, nvb, c.isInt(), len(c.buf), cap(c.buf)) ntb = max(ntb, tb) nvb = max(nvb, vb) return transcodeAndAdd(newDeltaEncodedChunk(ntb, nvb, c.isInt()), c, s) } } offset := len(c.buf) c.buf = c.buf[:offset+sampleSize] switch tb { case d1: c.buf[offset] = byte(dt) case d2: binary.LittleEndian.PutUint16(c.buf[offset:], uint16(dt)) case d4: binary.LittleEndian.PutUint32(c.buf[offset:], uint32(dt)) case d8: // Store the absolute value (no delta) in case of d8. binary.LittleEndian.PutUint64(c.buf[offset:], uint64(s.Timestamp)) default: panic("invalid number of bytes for time delta") } offset += int(tb) if c.isInt() { switch vb { case d0: // No-op. Constant value is stored as base value. case d1: c.buf[offset] = byte(dv) case d2: binary.LittleEndian.PutUint16(c.buf[offset:], uint16(dv)) case d4: binary.LittleEndian.PutUint32(c.buf[offset:], uint32(dv)) // d8 must not happen. Those samples are encoded as float64. default: panic("invalid number of bytes for integer delta") } } else { switch vb { case d4: binary.LittleEndian.PutUint32(c.buf[offset:], math.Float32bits(float32(dv))) case d8: // Store the absolute value (no delta) in case of d8. binary.LittleEndian.PutUint64(c.buf[offset:], math.Float64bits(float64(s.Value))) default: panic("invalid number of bytes for floating point delta") } } return chunks{c} } func (c *deltaEncodedChunk) sampleSize() int { return int(c.timeBytes() + c.valueBytes()) } func (c *deltaEncodedChunk) len() int { if len(c.buf) < deltaHeaderBytes { return 0 } return (len(c.buf) - deltaHeaderBytes) / c.sampleSize() } // values implements chunk. func (c *deltaEncodedChunk) values() <-chan *metric.SamplePair { n := c.len() valuesChan := make(chan *metric.SamplePair) go func() { for i := 0; i < n; i++ { valuesChan <- c.valueAtIndex(i) } close(valuesChan) }() return valuesChan } func (c *deltaEncodedChunk) valueAtIndex(idx int) *metric.SamplePair { offset := deltaHeaderBytes + idx*c.sampleSize() var ts clientmodel.Timestamp switch c.timeBytes() { case d1: ts = c.baseTime() + clientmodel.Timestamp(uint8(c.buf[offset])) case d2: ts = c.baseTime() + clientmodel.Timestamp(binary.LittleEndian.Uint16(c.buf[offset:])) case d4: ts = c.baseTime() + clientmodel.Timestamp(binary.LittleEndian.Uint32(c.buf[offset:])) case d8: // Take absolute value for d8. ts = clientmodel.Timestamp(binary.LittleEndian.Uint64(c.buf[offset:])) default: panic("Invalid number of bytes for time delta") } offset += int(c.timeBytes()) var v clientmodel.SampleValue if c.isInt() { switch c.valueBytes() { case d0: v = c.baseValue() case d1: v = c.baseValue() + clientmodel.SampleValue(int8(c.buf[offset])) case d2: v = c.baseValue() + clientmodel.SampleValue(int16(binary.LittleEndian.Uint16(c.buf[offset:]))) case d4: v = c.baseValue() + clientmodel.SampleValue(int32(binary.LittleEndian.Uint32(c.buf[offset:]))) // No d8 for ints. default: panic("Invalid number of bytes for integer delta") } } else { switch c.valueBytes() { case d4: v = c.baseValue() + clientmodel.SampleValue(math.Float32frombits(binary.LittleEndian.Uint32(c.buf[offset:]))) case d8: // Take absolute value for d8. v = clientmodel.SampleValue(math.Float64frombits(binary.LittleEndian.Uint64(c.buf[offset:]))) default: panic("Invalid number of bytes for floating point delta") } } return &metric.SamplePair{ Timestamp: ts, Value: v, } } // firstTime implements chunk. func (c *deltaEncodedChunk) firstTime() clientmodel.Timestamp { return c.valueAtIndex(0).Timestamp } // lastTime implements chunk. func (c *deltaEncodedChunk) lastTime() clientmodel.Timestamp { return c.valueAtIndex(c.len() - 1).Timestamp } // marshal implements chunk. func (c *deltaEncodedChunk) marshal(w io.Writer) error { if len(c.buf) > math.MaxUint16 { panic("chunk buffer length would overflow a 16 bit uint.") } binary.LittleEndian.PutUint16(c.buf[deltaHeaderBufLenOffset:], uint16(len(c.buf))) n, err := w.Write(c.buf[:cap(c.buf)]) if err != nil { return err } if n != cap(c.buf) { return fmt.Errorf("wanted to write %d bytes, wrote %d", len(c.buf), n) } return nil } // unmarshal implements chunk. func (c *deltaEncodedChunk) unmarshal(r io.Reader) error { c.buf = c.buf[:cap(c.buf)] readBytes := 0 for readBytes < len(c.buf) { n, err := r.Read(c.buf[readBytes:]) if err != nil { return err } readBytes += n } c.buf = c.buf[:binary.LittleEndian.Uint16(c.buf[deltaHeaderBufLenOffset:])] return nil } // deltaEncodedChunkIterator implements chunkIterator. type deltaEncodedChunkIterator struct { chunk *deltaEncodedChunk // TODO: add more fields here to keep track of last position. } // newIterator implements chunk. func (c *deltaEncodedChunk) newIterator() chunkIterator { return &deltaEncodedChunkIterator{ chunk: c, } } // getValueAtTime implements chunkIterator. func (it *deltaEncodedChunkIterator) getValueAtTime(t clientmodel.Timestamp) metric.Values { i := sort.Search(it.chunk.len(), func(i int) bool { return !it.chunk.valueAtIndex(i).Timestamp.Before(t) }) switch i { case 0: return metric.Values{*it.chunk.valueAtIndex(0)} case it.chunk.len(): return metric.Values{*it.chunk.valueAtIndex(it.chunk.len() - 1)} default: v := it.chunk.valueAtIndex(i) if v.Timestamp.Equal(t) { return metric.Values{*v} } return metric.Values{*it.chunk.valueAtIndex(i - 1), *v} } } // getRangeValues implements chunkIterator. func (it *deltaEncodedChunkIterator) getRangeValues(in metric.Interval) metric.Values { oldest := sort.Search(it.chunk.len(), func(i int) bool { return !it.chunk.valueAtIndex(i).Timestamp.Before(in.OldestInclusive) }) newest := sort.Search(it.chunk.len(), func(i int) bool { return it.chunk.valueAtIndex(i).Timestamp.After(in.NewestInclusive) }) if oldest == it.chunk.len() { return nil } result := make(metric.Values, 0, newest-oldest) for i := oldest; i < newest; i++ { result = append(result, *it.chunk.valueAtIndex(i)) } return result } // contains implements chunkIterator. func (it *deltaEncodedChunkIterator) contains(t clientmodel.Timestamp) bool { return !t.Before(it.chunk.firstTime()) && !t.After(it.chunk.lastTime()) }