// Copyright 2014 Prometheus Team // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package local import ( "reflect" "testing" clientmodel "github.com/prometheus/client_golang/model" "github.com/prometheus/prometheus/storage/local/codable" "github.com/prometheus/prometheus/storage/local/index" "github.com/prometheus/prometheus/storage/metric" "github.com/prometheus/prometheus/utility/test" ) func newTestPersistence(t *testing.T) (Persistence, test.Closer) { dir := test.NewTemporaryDirectory("test_persistence", t) p, err := NewDiskPersistence(dir.Path(), 1024) if err != nil { dir.Close() t.Fatal(err) } return p, test.NewCallbackCloser(func() { p.Close() dir.Close() }) } func buildTestChunks() map[clientmodel.Fingerprint]chunks { fps := clientmodel.Fingerprints{ clientmodel.Metric{ "label": "value1", }.Fingerprint(), clientmodel.Metric{ "label": "value2", }.Fingerprint(), clientmodel.Metric{ "label": "value3", }.Fingerprint(), } fpToChunks := map[clientmodel.Fingerprint]chunks{} for _, fp := range fps { fpToChunks[fp] = make(chunks, 0, 10) for i := 0; i < 10; i++ { fpToChunks[fp] = append(fpToChunks[fp], newDeltaEncodedChunk(d1, d1, true).add(&metric.SamplePair{ Timestamp: clientmodel.Timestamp(i), Value: clientmodel.SampleValue(fp), })[0]) } } return fpToChunks } func chunksEqual(c1, c2 chunk) bool { values2 := c2.values() for v1 := range c1.values() { v2 := <-values2 if !v1.Equal(v2) { return false } } return true } func TestPersistChunk(t *testing.T) { p, closer := newTestPersistence(t) defer closer.Close() fpToChunks := buildTestChunks() for fp, chunks := range fpToChunks { for _, c := range chunks { if err := p.PersistChunk(fp, c); err != nil { t.Fatal(err) } } } for fp, expectedChunks := range fpToChunks { indexes := make([]int, 0, len(expectedChunks)) for i := range expectedChunks { indexes = append(indexes, i) } actualChunks, err := p.LoadChunks(fp, indexes) if err != nil { t.Fatal(err) } for _, i := range indexes { if !chunksEqual(expectedChunks[i], actualChunks[i]) { t.Fatalf("%d. Chunks not equal.", i) } } } } type incrementalBatch struct { fpToMetric index.FingerprintMetricMapping expectedLnToLvs index.LabelNameLabelValuesMapping expectedLpToFps index.LabelPairFingerprintsMapping } func TestIndexing(t *testing.T) { batches := []incrementalBatch{ { fpToMetric: index.FingerprintMetricMapping{ 0: { clientmodel.MetricNameLabel: "metric_0", "label_1": "value_1", }, 1: { clientmodel.MetricNameLabel: "metric_0", "label_2": "value_2", "label_3": "value_3", }, 2: { clientmodel.MetricNameLabel: "metric_1", "label_1": "value_2", }, }, expectedLnToLvs: index.LabelNameLabelValuesMapping{ clientmodel.MetricNameLabel: codable.LabelValueSet{ "metric_0": struct{}{}, "metric_1": struct{}{}, }, "label_1": codable.LabelValueSet{ "value_1": struct{}{}, "value_2": struct{}{}, }, "label_2": codable.LabelValueSet{ "value_2": struct{}{}, }, "label_3": codable.LabelValueSet{ "value_3": struct{}{}, }, }, expectedLpToFps: index.LabelPairFingerprintsMapping{ metric.LabelPair{ Name: clientmodel.MetricNameLabel, Value: "metric_0", }: codable.FingerprintSet{0: struct{}{}, 1: struct{}{}}, metric.LabelPair{ Name: clientmodel.MetricNameLabel, Value: "metric_1", }: codable.FingerprintSet{2: struct{}{}}, metric.LabelPair{ Name: "label_1", Value: "value_1", }: codable.FingerprintSet{0: struct{}{}}, metric.LabelPair{ Name: "label_1", Value: "value_2", }: codable.FingerprintSet{2: struct{}{}}, metric.LabelPair{ Name: "label_2", Value: "value_2", }: codable.FingerprintSet{1: struct{}{}}, metric.LabelPair{ Name: "label_3", Value: "value_3", }: codable.FingerprintSet{1: struct{}{}}, }, }, { fpToMetric: index.FingerprintMetricMapping{ 3: { clientmodel.MetricNameLabel: "metric_0", "label_1": "value_3", }, 4: { clientmodel.MetricNameLabel: "metric_2", "label_2": "value_2", "label_3": "value_1", }, 5: { clientmodel.MetricNameLabel: "metric_1", "label_1": "value_3", }, }, expectedLnToLvs: index.LabelNameLabelValuesMapping{ clientmodel.MetricNameLabel: codable.LabelValueSet{ "metric_0": struct{}{}, "metric_1": struct{}{}, "metric_2": struct{}{}, }, "label_1": codable.LabelValueSet{ "value_1": struct{}{}, "value_2": struct{}{}, "value_3": struct{}{}, }, "label_2": codable.LabelValueSet{ "value_2": struct{}{}, }, "label_3": codable.LabelValueSet{ "value_1": struct{}{}, "value_3": struct{}{}, }, }, expectedLpToFps: index.LabelPairFingerprintsMapping{ metric.LabelPair{ Name: clientmodel.MetricNameLabel, Value: "metric_0", }: codable.FingerprintSet{0: struct{}{}, 1: struct{}{}, 3: struct{}{}}, metric.LabelPair{ Name: clientmodel.MetricNameLabel, Value: "metric_1", }: codable.FingerprintSet{2: struct{}{}, 5: struct{}{}}, metric.LabelPair{ Name: clientmodel.MetricNameLabel, Value: "metric_2", }: codable.FingerprintSet{4: struct{}{}}, metric.LabelPair{ Name: "label_1", Value: "value_1", }: codable.FingerprintSet{0: struct{}{}}, metric.LabelPair{ Name: "label_1", Value: "value_2", }: codable.FingerprintSet{2: struct{}{}}, metric.LabelPair{ Name: "label_1", Value: "value_3", }: codable.FingerprintSet{3: struct{}{}, 5: struct{}{}}, metric.LabelPair{ Name: "label_2", Value: "value_2", }: codable.FingerprintSet{1: struct{}{}, 4: struct{}{}}, metric.LabelPair{ Name: "label_3", Value: "value_1", }: codable.FingerprintSet{4: struct{}{}}, metric.LabelPair{ Name: "label_3", Value: "value_3", }: codable.FingerprintSet{1: struct{}{}}, }, }, } p, closer := newTestPersistence(t) defer closer.Close() indexedFpsToMetrics := index.FingerprintMetricMapping{} for i, b := range batches { for fp, m := range b.fpToMetric { p.IndexMetric(m, fp) if err := p.ArchiveMetric(fp, m, 1, 2); err != nil { t.Fatal(err) } indexedFpsToMetrics[fp] = m } verifyIndexedState(i, t, b, indexedFpsToMetrics, p.(*diskPersistence)) } for i := len(batches) - 1; i >= 0; i-- { b := batches[i] verifyIndexedState(i, t, batches[i], indexedFpsToMetrics, p.(*diskPersistence)) for fp, m := range b.fpToMetric { p.UnindexMetric(m, fp) unarchived, err := p.UnarchiveMetric(fp) if err != nil { t.Fatal(err) } if !unarchived { t.Errorf("%d. metric not unarchived", i) } delete(indexedFpsToMetrics, fp) } } } func verifyIndexedState(i int, t *testing.T, b incrementalBatch, indexedFpsToMetrics index.FingerprintMetricMapping, p *diskPersistence) { p.WaitForIndexing() for fp, m := range indexedFpsToMetrics { // Compare archived metrics with input metrics. mOut, err := p.GetArchivedMetric(fp) if err != nil { t.Fatal(err) } if !mOut.Equal(m) { t.Errorf("%d. %v: Got: %s; want %s", i, fp, mOut, m) } // Check that archived metrics are in membership index. has, first, last, err := p.HasArchivedMetric(fp) if err != nil { t.Fatal(err) } if !has { t.Errorf("%d. fingerprint %v not found", i, fp) } if first != 1 || last != 2 { t.Errorf( "%d. %v: Got first: %d, last %d; want first: %d, last %d", i, fp, first, last, 1, 2, ) } } // Compare label name -> label values mappings. for ln, lvs := range b.expectedLnToLvs { outLvs, err := p.GetLabelValuesForLabelName(ln) if err != nil { t.Fatal(err) } outSet := codable.LabelValueSet{} for _, lv := range outLvs { outSet[lv] = struct{}{} } if !reflect.DeepEqual(lvs, outSet) { t.Errorf("%d. label values don't match. Got: %v; want %v", i, outSet, lvs) } } // Compare label pair -> fingerprints mappings. for lp, fps := range b.expectedLpToFps { outFps, err := p.GetFingerprintsForLabelPair(lp) if err != nil { t.Fatal(err) } outSet := codable.FingerprintSet{} for _, fp := range outFps { outSet[fp] = struct{}{} } if !reflect.DeepEqual(fps, outSet) { t.Errorf("%d. %v: fingerprints don't match. Got: %v; want %v", i, lp, outSet, fps) } } }