// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package chunks import ( "bufio" "bytes" "encoding/binary" "fmt" "hash" "hash/crc32" "io" "io/ioutil" "os" "path/filepath" "strconv" "github.com/pkg/errors" "github.com/prometheus/prometheus/tsdb/chunkenc" tsdb_errors "github.com/prometheus/prometheus/tsdb/errors" "github.com/prometheus/prometheus/tsdb/fileutil" ) // Segment header fields constants. const ( // MagicChunks is 4 bytes at the head of a series file. MagicChunks = 0x85BD40DD // MagicChunksSize is the size in bytes of MagicChunks. MagicChunksSize = 4 chunksFormatV1 = 1 ChunksFormatVersionSize = 1 segmentHeaderPaddingSize = 3 // SegmentHeaderSize defines the total size of the header part. SegmentHeaderSize = MagicChunksSize + ChunksFormatVersionSize + segmentHeaderPaddingSize ) // Chunk fields constants. const ( // MaxChunkLengthFieldSize defines the maximum size of the data length part. MaxChunkLengthFieldSize = binary.MaxVarintLen32 // ChunkEncodingSize defines the size of the chunk encoding part. ChunkEncodingSize = 1 ) // Meta holds information about a chunk of data. type Meta struct { // Ref and Chunk hold either a reference that can be used to retrieve // chunk data or the data itself. // When it is a reference it is the segment offset at which the chunk bytes start. // Generally, only one of them is set. Ref uint64 Chunk chunkenc.Chunk // Time range the data covers. // When MaxTime == math.MaxInt64 the chunk is still open and being appended to. MinTime, MaxTime int64 } // Iterator iterates over the chunk of a time series. type Iterator interface { // At returns the current meta. // It depends on implementation if the chunk is populated or not. At() Meta // Next advances the iterator by one. Next() bool // Err returns optional error if Next is false. Err() error } // writeHash writes the chunk encoding and raw data into the provided hash. func (cm *Meta) writeHash(h hash.Hash, buf []byte) error { buf = append(buf[:0], byte(cm.Chunk.Encoding())) if _, err := h.Write(buf[:1]); err != nil { return err } if _, err := h.Write(cm.Chunk.Bytes()); err != nil { return err } return nil } // OverlapsClosedInterval Returns true if the chunk overlaps [mint, maxt]. func (cm *Meta) OverlapsClosedInterval(mint, maxt int64) bool { // The chunk itself is a closed interval [cm.MinTime, cm.MaxTime]. return cm.MinTime <= maxt && mint <= cm.MaxTime } var ( errInvalidSize = fmt.Errorf("invalid size") ) var castagnoliTable *crc32.Table func init() { castagnoliTable = crc32.MakeTable(crc32.Castagnoli) } // newCRC32 initializes a CRC32 hash with a preconfigured polynomial, so the // polynomial may be easily changed in one location at a later time, if necessary. func newCRC32() hash.Hash32 { return crc32.New(castagnoliTable) } // Writer implements the ChunkWriter interface for the standard // serialization format. type Writer struct { dirFile *os.File files []*os.File wbuf *bufio.Writer n int64 crc32 hash.Hash buf [binary.MaxVarintLen32]byte segmentSize int64 } const ( // DefaultChunkSegmentSize is the default chunks segment size. DefaultChunkSegmentSize = 512 * 1024 * 1024 ) // NewWriterWithSegSize returns a new writer against the given directory // and allows setting a custom size for the segments. func NewWriterWithSegSize(dir string, segmentSize int64) (*Writer, error) { return newWriter(dir, segmentSize) } // NewWriter returns a new writer against the given directory // using the default segment size. func NewWriter(dir string) (*Writer, error) { return newWriter(dir, DefaultChunkSegmentSize) } func newWriter(dir string, segmentSize int64) (*Writer, error) { if segmentSize <= 0 { segmentSize = DefaultChunkSegmentSize } if err := os.MkdirAll(dir, 0777); err != nil { return nil, err } dirFile, err := fileutil.OpenDir(dir) if err != nil { return nil, err } return &Writer{ dirFile: dirFile, n: 0, crc32: newCRC32(), segmentSize: segmentSize, }, nil } func (w *Writer) tail() *os.File { if len(w.files) == 0 { return nil } return w.files[len(w.files)-1] } // finalizeTail writes all pending data to the current tail file, // truncates its size, and closes it. func (w *Writer) finalizeTail() error { tf := w.tail() if tf == nil { return nil } if err := w.wbuf.Flush(); err != nil { return err } if err := tf.Sync(); err != nil { return err } // As the file was pre-allocated, we truncate any superfluous zero bytes. off, err := tf.Seek(0, io.SeekCurrent) if err != nil { return err } if err := tf.Truncate(off); err != nil { return err } return tf.Close() } func (w *Writer) cut() error { // Sync current tail to disk and close. if err := w.finalizeTail(); err != nil { return err } n, f, _, err := cutSegmentFile(w.dirFile, MagicChunks, chunksFormatV1, w.segmentSize) if err != nil { return err } w.n = int64(n) w.files = append(w.files, f) if w.wbuf != nil { w.wbuf.Reset(f) } else { w.wbuf = bufio.NewWriterSize(f, 8*1024*1024) } return nil } func cutSegmentFile(dirFile *os.File, magicNumber uint32, chunksFormat byte, allocSize int64) (headerSize int, newFile *os.File, seq int, err error) { p, seq, err := nextSequenceFile(dirFile.Name()) if err != nil { return 0, nil, 0, err } f, err := os.OpenFile(p, os.O_WRONLY|os.O_CREATE, 0666) if err != nil { return 0, nil, 0, err } if allocSize > 0 { if err = fileutil.Preallocate(f, allocSize, true); err != nil { return 0, nil, 0, err } } if err = dirFile.Sync(); err != nil { return 0, nil, 0, err } // Write header metadata for new file. metab := make([]byte, SegmentHeaderSize) binary.BigEndian.PutUint32(metab[:MagicChunksSize], magicNumber) metab[4] = chunksFormat n, err := f.Write(metab) if err != nil { return 0, nil, 0, err } return n, f, seq, nil } func (w *Writer) write(b []byte) error { n, err := w.wbuf.Write(b) w.n += int64(n) return err } // MergeOverlappingChunks removes the samples whose timestamp is overlapping. // The last appearing sample is retained in case there is overlapping. // This assumes that `chks []Meta` is sorted w.r.t. MinTime. func MergeOverlappingChunks(chks []Meta) ([]Meta, error) { if len(chks) < 2 { return chks, nil } newChks := make([]Meta, 0, len(chks)) // Will contain the merged chunks. newChks = append(newChks, chks[0]) last := 0 for _, c := range chks[1:] { // We need to check only the last chunk in newChks. // Reason: (1) newChks[last-1].MaxTime < newChks[last].MinTime (non overlapping) // (2) As chks are sorted w.r.t. MinTime, newChks[last].MinTime < c.MinTime. // So never overlaps with newChks[last-1] or anything before that. if c.MinTime > newChks[last].MaxTime { newChks = append(newChks, c) last++ continue } nc := &newChks[last] if c.MaxTime > nc.MaxTime { nc.MaxTime = c.MaxTime } chk, err := MergeChunks(nc.Chunk, c.Chunk) if err != nil { return nil, err } nc.Chunk = chk } return newChks, nil } // MergeChunks vertically merges a and b, i.e., if there is any sample // with same timestamp in both a and b, the sample in a is discarded. func MergeChunks(a, b chunkenc.Chunk) (*chunkenc.XORChunk, error) { newChunk := chunkenc.NewXORChunk() app, err := newChunk.Appender() if err != nil { return nil, err } ait := a.Iterator(nil) bit := b.Iterator(nil) aok, bok := ait.Next(), bit.Next() for aok && bok { at, av := ait.At() bt, bv := bit.At() if at < bt { app.Append(at, av) aok = ait.Next() } else if bt < at { app.Append(bt, bv) bok = bit.Next() } else { app.Append(bt, bv) aok = ait.Next() bok = bit.Next() } } for aok { at, av := ait.At() app.Append(at, av) aok = ait.Next() } for bok { bt, bv := bit.At() app.Append(bt, bv) bok = bit.Next() } if ait.Err() != nil { return nil, ait.Err() } if bit.Err() != nil { return nil, bit.Err() } return newChunk, nil } // WriteChunks writes as many chunks as possible to the current segment, // cuts a new segment when the current segment is full and // writes the rest of the chunks in the new segment. func (w *Writer) WriteChunks(chks ...Meta) error { var ( batchSize = int64(0) batchStart = 0 batches = make([][]Meta, 1) batchID = 0 firstBatch = true ) for i, chk := range chks { // Each chunk contains: data length + encoding + the data itself + crc32 chkSize := int64(MaxChunkLengthFieldSize) // The data length is a variable length field so use the maximum possible value. chkSize += ChunkEncodingSize // The chunk encoding. chkSize += int64(len(chk.Chunk.Bytes())) // The data itself. chkSize += crc32.Size // The 4 bytes of crc32. batchSize += chkSize // Cut a new batch when it is not the first chunk(to avoid empty segments) and // the batch is too large to fit in the current segment. cutNewBatch := (i != 0) && (batchSize+SegmentHeaderSize > w.segmentSize) // When the segment already has some data than // the first batch size calculation should account for that. if firstBatch && w.n > SegmentHeaderSize { cutNewBatch = batchSize+w.n > w.segmentSize if cutNewBatch { firstBatch = false } } if cutNewBatch { batchStart = i batches = append(batches, []Meta{}) batchID++ batchSize = chkSize } batches[batchID] = chks[batchStart : i+1] } // Create a new segment when one doesn't already exist. if w.n == 0 { if err := w.cut(); err != nil { return err } } for i, chks := range batches { if err := w.writeChunks(chks); err != nil { return err } // Cut a new segment only when there are more chunks to write. // Avoid creating a new empty segment at the end of the write. if i < len(batches)-1 { if err := w.cut(); err != nil { return err } } } return nil } // writeChunks writes the chunks into the current segment irrespective // of the configured segment size limit. A segment should have been already // started before calling this. func (w *Writer) writeChunks(chks []Meta) error { if len(chks) == 0 { return nil } var seq = uint64(w.seq()) << 32 for i := range chks { chk := &chks[i] // The reference is set to the segment index and the offset where // the data starts for this chunk. // // The upper 4 bytes are for the segment index and // the lower 4 bytes are for the segment offset where to start reading this chunk. chk.Ref = seq | uint64(w.n) n := binary.PutUvarint(w.buf[:], uint64(len(chk.Chunk.Bytes()))) if err := w.write(w.buf[:n]); err != nil { return err } w.buf[0] = byte(chk.Chunk.Encoding()) if err := w.write(w.buf[:1]); err != nil { return err } if err := w.write(chk.Chunk.Bytes()); err != nil { return err } w.crc32.Reset() if err := chk.writeHash(w.crc32, w.buf[:]); err != nil { return err } if err := w.write(w.crc32.Sum(w.buf[:0])); err != nil { return err } } return nil } func (w *Writer) seq() int { return len(w.files) - 1 } func (w *Writer) Close() error { if err := w.finalizeTail(); err != nil { return err } // close dir file (if not windows platform will fail on rename) return w.dirFile.Close() } // ByteSlice abstracts a byte slice. type ByteSlice interface { Len() int Range(start, end int) []byte } type realByteSlice []byte func (b realByteSlice) Len() int { return len(b) } func (b realByteSlice) Range(start, end int) []byte { return b[start:end] } func (b realByteSlice) Sub(start, end int) ByteSlice { return b[start:end] } // Reader implements a ChunkReader for a serialized byte stream // of series data. type Reader struct { // The underlying bytes holding the encoded series data. // Each slice holds the data for a different segment. bs []ByteSlice cs []io.Closer // Closers for resources behind the byte slices. size int64 // The total size of bytes in the reader. pool chunkenc.Pool } func newReader(bs []ByteSlice, cs []io.Closer, pool chunkenc.Pool) (*Reader, error) { cr := Reader{pool: pool, bs: bs, cs: cs} for i, b := range cr.bs { if b.Len() < SegmentHeaderSize { return nil, errors.Wrapf(errInvalidSize, "invalid segment header in segment %d", i) } // Verify magic number. if m := binary.BigEndian.Uint32(b.Range(0, MagicChunksSize)); m != MagicChunks { return nil, errors.Errorf("invalid magic number %x", m) } // Verify chunk format version. if v := int(b.Range(MagicChunksSize, MagicChunksSize+ChunksFormatVersionSize)[0]); v != chunksFormatV1 { return nil, errors.Errorf("invalid chunk format version %d", v) } cr.size += int64(b.Len()) } return &cr, nil } // NewDirReader returns a new Reader against sequentially numbered files in the // given directory. func NewDirReader(dir string, pool chunkenc.Pool) (*Reader, error) { files, err := sequenceFiles(dir) if err != nil { return nil, err } if pool == nil { pool = chunkenc.NewPool() } var ( bs []ByteSlice cs []io.Closer merr tsdb_errors.MultiError ) for _, fn := range files { f, err := fileutil.OpenMmapFile(fn) if err != nil { merr.Add(errors.Wrap(err, "mmap files")) merr.Add(closeAll(cs)) return nil, merr } cs = append(cs, f) bs = append(bs, realByteSlice(f.Bytes())) } reader, err := newReader(bs, cs, pool) if err != nil { merr.Add(err) merr.Add(closeAll(cs)) return nil, merr } return reader, nil } func (s *Reader) Close() error { return closeAll(s.cs) } // Size returns the size of the chunks. func (s *Reader) Size() int64 { return s.size } // Chunk returns a chunk from a given reference. func (s *Reader) Chunk(ref uint64) (chunkenc.Chunk, error) { var ( // Get the upper 4 bytes. // These contain the segment index. sgmIndex = int(ref >> 32) // Get the lower 4 bytes. // These contain the segment offset where the data for this chunk starts. chkStart = int((ref << 32) >> 32) chkCRC32 = newCRC32() ) if sgmIndex >= len(s.bs) { return nil, errors.Errorf("segment index %d out of range", sgmIndex) } sgmBytes := s.bs[sgmIndex] if chkStart+MaxChunkLengthFieldSize > sgmBytes.Len() { return nil, errors.Errorf("segment doesn't include enough bytes to read the chunk size data field - required:%v, available:%v", chkStart+MaxChunkLengthFieldSize, sgmBytes.Len()) } // With the minimum chunk length this should never cause us reading // over the end of the slice. c := sgmBytes.Range(chkStart, chkStart+MaxChunkLengthFieldSize) chkDataLen, n := binary.Uvarint(c) if n <= 0 { return nil, errors.Errorf("reading chunk length failed with %d", n) } chkEncStart := chkStart + n chkEnd := chkEncStart + ChunkEncodingSize + int(chkDataLen) + crc32.Size chkDataStart := chkEncStart + ChunkEncodingSize chkDataEnd := chkEnd - crc32.Size if chkEnd > sgmBytes.Len() { return nil, errors.Errorf("segment doesn't include enough bytes to read the chunk - required:%v, available:%v", chkEnd, sgmBytes.Len()) } sum := sgmBytes.Range(chkDataEnd, chkEnd) if _, err := chkCRC32.Write(sgmBytes.Range(chkEncStart, chkDataEnd)); err != nil { return nil, err } if act := chkCRC32.Sum(nil); !bytes.Equal(act, sum) { return nil, errors.Errorf("checksum mismatch expected:%x, actual:%x", sum, act) } chkData := sgmBytes.Range(chkDataStart, chkDataEnd) chkEnc := sgmBytes.Range(chkEncStart, chkEncStart+ChunkEncodingSize)[0] return s.pool.Get(chunkenc.Encoding(chkEnc), chkData) } func nextSequenceFile(dir string) (string, int, error) { files, err := ioutil.ReadDir(dir) if err != nil { return "", 0, err } i := uint64(0) for _, f := range files { j, err := strconv.ParseUint(f.Name(), 10, 64) if err != nil { continue } // It is not necessary that we find the files in number order, // for example with '1000000' and '200000', '1000000' would come first. // Though this is a very very race case, we check anyway for the max id. if j > i { i = j } } return segmentFile(dir, int(i+1)), int(i + 1), nil } func segmentFile(baseDir string, index int) string { return filepath.Join(baseDir, fmt.Sprintf("%0.6d", index)) } func sequenceFiles(dir string) ([]string, error) { files, err := ioutil.ReadDir(dir) if err != nil { return nil, err } var res []string for _, fi := range files { if _, err := strconv.ParseUint(fi.Name(), 10, 64); err != nil { continue } res = append(res, filepath.Join(dir, fi.Name())) } return res, nil } func closeAll(cs []io.Closer) error { var merr tsdb_errors.MultiError for _, c := range cs { merr.Add(c.Close()) } return merr.Err() }