// Copyright 2013 Prometheus Team // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package metric import ( "fmt" "github.com/jmhodges/levigo" "github.com/prometheus/prometheus/coding" "github.com/prometheus/prometheus/coding/indexable" "github.com/prometheus/prometheus/model" dto "github.com/prometheus/prometheus/model/generated" "github.com/prometheus/prometheus/storage" "sort" "sync" "time" ) // tieredStorage both persists samples and generates materialized views for // queries. type tieredStorage struct { appendToDiskQueue chan model.Sample appendToMemoryQueue chan model.Sample diskFrontier *diskFrontier diskStorage *LevelDBMetricPersistence draining chan bool flushMemoryInterval time.Duration memoryArena memorySeriesStorage memoryTTL time.Duration mutex sync.Mutex viewQueue chan viewJob writeMemoryInterval time.Duration } // viewJob encapsulates a request to extract sample values from the datastore. type viewJob struct { builder ViewRequestBuilder output chan View err chan error } // Provides a unified means for batch appending values into the datastore along // with querying for values in an efficient way. type Storage interface { // Enqueues a Sample for storage. AppendSample(model.Sample) error // Enqueus a ViewRequestBuilder for materialization, subject to a timeout. MakeView(request ViewRequestBuilder, timeout time.Duration) (View, error) // Starts serving requests. Serve() // Stops the storage subsystem, flushing all pending operations. Drain() Flush() Close() } func NewTieredStorage(appendToMemoryQueueDepth, appendToDiskQueueDepth, viewQueueDepth uint, flushMemoryInterval, writeMemoryInterval, memoryTTL time.Duration, root string) Storage { diskStorage, err := NewLevelDBMetricPersistence(root) if err != nil { panic(err) } return &tieredStorage{ appendToDiskQueue: make(chan model.Sample, appendToDiskQueueDepth), appendToMemoryQueue: make(chan model.Sample, appendToMemoryQueueDepth), diskStorage: diskStorage, draining: make(chan bool), flushMemoryInterval: flushMemoryInterval, memoryArena: NewMemorySeriesStorage(), memoryTTL: memoryTTL, viewQueue: make(chan viewJob, viewQueueDepth), writeMemoryInterval: writeMemoryInterval, } } func (t *tieredStorage) AppendSample(s model.Sample) (err error) { if len(t.draining) > 0 { return fmt.Errorf("Storage is in the process of draining.") } t.appendToMemoryQueue <- s return } func (t *tieredStorage) Drain() { if len(t.draining) == 0 { t.draining <- true } } func (t *tieredStorage) MakeView(builder ViewRequestBuilder, deadline time.Duration) (view View, err error) { if len(t.draining) > 0 { err = fmt.Errorf("Storage is in the process of draining.") return } result := make(chan View) errChan := make(chan error) t.viewQueue <- viewJob{ builder: builder, output: result, err: errChan, } select { case value := <-result: view = value case err = <-errChan: return case <-time.After(deadline): err = fmt.Errorf("MakeView timed out after %s.", deadline) } return } func (t *tieredStorage) rebuildDiskFrontier() (err error) { begin := time.Now() defer func() { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: appendSample, result: success}, map[string]string{operation: rebuildDiskFrontier, result: failure}) }() i, closer, err := t.diskStorage.metricSamples.GetIterator() if closer != nil { defer closer.Close() } if err != nil { panic(err) } t.diskFrontier, err = newDiskFrontier(i) if err != nil { panic(err) } return } func (t *tieredStorage) Serve() { var ( flushMemoryTicker = time.Tick(t.flushMemoryInterval) writeMemoryTicker = time.Tick(t.writeMemoryInterval) ) for { t.reportQueues() select { case <-writeMemoryTicker: t.writeMemory() case <-flushMemoryTicker: t.flushMemory() case viewRequest := <-t.viewQueue: t.renderView(viewRequest) case <-t.draining: t.flush() break } } } func (t *tieredStorage) reportQueues() { queueSizes.Set(map[string]string{"queue": "append_to_disk", "facet": "occupancy"}, float64(len(t.appendToDiskQueue))) queueSizes.Set(map[string]string{"queue": "append_to_disk", "facet": "capacity"}, float64(cap(t.appendToDiskQueue))) queueSizes.Set(map[string]string{"queue": "append_to_memory", "facet": "occupancy"}, float64(len(t.appendToMemoryQueue))) queueSizes.Set(map[string]string{"queue": "append_to_memory", "facet": "capacity"}, float64(cap(t.appendToMemoryQueue))) queueSizes.Set(map[string]string{"queue": "view_generation", "facet": "occupancy"}, float64(len(t.viewQueue))) queueSizes.Set(map[string]string{"queue": "view_generation", "facet": "capacity"}, float64(cap(t.viewQueue))) } func (t *tieredStorage) writeMemory() { begin := time.Now() defer func() { duration := time.Since(begin) recordOutcome(duration, nil, map[string]string{operation: appendSample, result: success}, map[string]string{operation: writeMemory, result: failure}) }() t.mutex.Lock() defer t.mutex.Unlock() pendingLength := len(t.appendToMemoryQueue) for i := 0; i < pendingLength; i++ { t.memoryArena.AppendSample(<-t.appendToMemoryQueue) } } func (t *tieredStorage) Flush() { t.flush() } func (t *tieredStorage) Close() { t.Drain() t.diskStorage.Close() } // Write all pending appends. func (t *tieredStorage) flush() (err error) { // Trim any old values to reduce iterative write costs. t.flushMemory() t.writeMemory() t.flushMemory() return } type memoryToDiskFlusher struct { toDiskQueue chan model.Sample disk MetricPersistence olderThan time.Time valuesAccepted int valuesRejected int } type memoryToDiskFlusherVisitor struct { stream stream flusher *memoryToDiskFlusher } func (f memoryToDiskFlusherVisitor) DecodeKey(in interface{}) (out interface{}, err error) { out = time.Time(in.(skipListTime)) return } func (f memoryToDiskFlusherVisitor) DecodeValue(in interface{}) (out interface{}, err error) { out = in.(value).get() return } func (f memoryToDiskFlusherVisitor) Filter(key, value interface{}) (filterResult storage.FilterResult) { var ( recordTime = key.(time.Time) ) if recordTime.Before(f.flusher.olderThan) { f.flusher.valuesAccepted++ return storage.ACCEPT } f.flusher.valuesRejected++ return storage.STOP } func (f memoryToDiskFlusherVisitor) Operate(key, value interface{}) (err *storage.OperatorError) { var ( recordTime = key.(time.Time) recordValue = value.(model.SampleValue) ) if len(f.flusher.toDiskQueue) == cap(f.flusher.toDiskQueue) { f.flusher.Flush() } f.flusher.toDiskQueue <- model.Sample{ Metric: f.stream.metric, Timestamp: recordTime, Value: recordValue, } f.stream.values.Delete(skipListTime(recordTime)) return } func (f *memoryToDiskFlusher) ForStream(stream stream) (decoder storage.RecordDecoder, filter storage.RecordFilter, operator storage.RecordOperator) { visitor := memoryToDiskFlusherVisitor{ stream: stream, flusher: f, } // fmt.Printf("fingerprint -> %s\n", model.NewFingerprintFromMetric(stream.metric).ToRowKey()) return visitor, visitor, visitor } func (f *memoryToDiskFlusher) Flush() { length := len(f.toDiskQueue) samples := model.Samples{} for i := 0; i < length; i++ { samples = append(samples, <-f.toDiskQueue) } start := time.Now() f.disk.AppendSamples(samples) if false { fmt.Printf("Took %s to append...\n", time.Since(start)) } } func (f memoryToDiskFlusher) Close() { f.Flush() } // Persist a whole bunch of samples to the datastore. func (t *tieredStorage) flushMemory() { begin := time.Now() defer func() { duration := time.Since(begin) recordOutcome(duration, nil, map[string]string{operation: appendSample, result: success}, map[string]string{operation: flushMemory, result: failure}) }() t.mutex.Lock() defer t.mutex.Unlock() flusher := &memoryToDiskFlusher{ disk: t.diskStorage, olderThan: time.Now().Add(-1 * t.memoryTTL), toDiskQueue: t.appendToDiskQueue, } defer flusher.Close() t.memoryArena.ForEachSample(flusher) return } func (t *tieredStorage) renderView(viewJob viewJob) { // Telemetry. var err error begin := time.Now() defer func() { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: renderView, result: success}, map[string]string{operation: renderView, result: failure}) }() t.mutex.Lock() defer t.mutex.Unlock() var ( scans = viewJob.builder.ScanJobs() view = newView() ) // Rebuilding of the frontier should happen on a conditional basis if a // (fingerprint, timestamp) tuple is outside of the current frontier. err = t.rebuildDiskFrontier() if err != nil { panic(err) } if t.diskFrontier == nil { // Storage still empty, return an empty view. viewJob.output <- view return } // Get a single iterator that will be used for all data extraction below. iterator, closer, err := t.diskStorage.metricSamples.GetIterator() if closer != nil { defer closer.Close() } if err != nil { panic(err) } for _, scanJob := range scans { seriesFrontier, err := newSeriesFrontier(scanJob.fingerprint, *t.diskFrontier, iterator) if err != nil { panic(err) } if seriesFrontier == nil { continue } standingOps := scanJob.operations for len(standingOps) > 0 { // Load data value chunk(s) around the first standing op's current time. highWatermark := *standingOps[0].CurrentTime() chunk := t.loadChunkAroundTime(iterator, seriesFrontier, scanJob.fingerprint, highWatermark) lastChunkTime := chunk[len(chunk)-1].Timestamp if lastChunkTime.After(highWatermark) { highWatermark = lastChunkTime } // For each op, extract all needed data from the current chunk. out := []model.SamplePair{} for _, op := range standingOps { if op.CurrentTime().After(highWatermark) { break } for op.CurrentTime() != nil && !op.CurrentTime().After(highWatermark) { out = op.ExtractSamples(chunk) } } // Append the extracted samples to the materialized view. for _, sample := range out { view.appendSample(scanJob.fingerprint, sample.Timestamp, sample.Value) } // Throw away standing ops which are finished. filteredOps := ops{} for _, op := range standingOps { if op.CurrentTime() != nil { filteredOps = append(filteredOps, op) } } standingOps = filteredOps // Sort ops by start time again, since they might be slightly off now. // For example, consider a current chunk of values and two interval ops // with different interval lengthsr. Their states after the cycle above // could be: // // (C = current op time) // // Chunk: [ X X X X X ] // Op 1: [ X X C . . . ] // Op 2: [ X X C . . .] // // Op 2 now has an earlier current time than Op 1. sort.Sort(startsAtSort{standingOps}) } } viewJob.output <- view return } func (t *tieredStorage) loadChunkAroundTime(iterator *levigo.Iterator, frontier *seriesFrontier, fingerprint model.Fingerprint, ts time.Time) (chunk []model.SamplePair) { var ( targetKey = &dto.SampleKey{ Fingerprint: fingerprint.ToDTO(), } foundKey = &dto.SampleKey{} foundValue *dto.SampleValueSeries ) // Limit the target key to be within the series' keyspace. if ts.After(frontier.lastSupertime) { targetKey.Timestamp = indexable.EncodeTime(frontier.lastSupertime) } else { targetKey.Timestamp = indexable.EncodeTime(ts) } // Try seeking to target key. rawKey, _ := coding.NewProtocolBufferEncoder(targetKey).Encode() iterator.Seek(rawKey) foundKey, err := extractSampleKey(iterator) if err != nil { panic(err) } // Figure out if we need to rewind by one block. // Imagine the following supertime blocks with time ranges: // // Block 1: ft 1000 - lt 1009 // Block 1: ft 1010 - lt 1019 // // If we are aiming to find time 1005, we would first seek to the block with // supertime 1010, then need to rewind by one block by virtue of LevelDB // iterator seek behavior. // // Only do the rewind if there is another chunk before this one. rewound := false firstTime := indexable.DecodeTime(foundKey.Timestamp) if ts.Before(firstTime) && !frontier.firstSupertime.After(ts) { iterator.Prev() rewound = true } foundValue, err = extractSampleValues(iterator) if err != nil { panic(err) } // If we rewound, but the target time is still past the current block, return // the last value of the current (rewound) block and the entire next block. if rewound { foundKey, err = extractSampleKey(iterator) if err != nil { panic(err) } currentChunkLastTime := time.Unix(*foundKey.LastTimestamp, 0) if ts.After(currentChunkLastTime) { sampleCount := len(foundValue.Value) chunk = append(chunk, model.SamplePair{ Timestamp: time.Unix(*foundValue.Value[sampleCount-1].Timestamp, 0), Value: model.SampleValue(*foundValue.Value[sampleCount-1].Value), }) // We know there's a next block since we have rewound from it. iterator.Next() foundValue, err = extractSampleValues(iterator) if err != nil { panic(err) } } } // Now append all the samples of the currently seeked block to the output. for _, sample := range foundValue.Value { chunk = append(chunk, model.SamplePair{ Timestamp: time.Unix(*sample.Timestamp, 0), Value: model.SampleValue(*sample.Value), }) } return } func (s scanJobs) Represent(d *LevelDBMetricPersistence, m memorySeriesStorage) (storage *memorySeriesStorage, err error) { if len(s) == 0 { return } iterator, closer, err := d.metricSamples.GetIterator() if err != nil { panic(err) return } defer closer.Close() diskFrontier, err := newDiskFrontier(iterator) if err != nil { panic(err) return } if diskFrontier == nil { panic("diskfrontier == nil") } for _, job := range s { if len(job.operations) == 0 { panic("len(job.operations) == 0 should never occur") } // Determine if the metric is in the known keyspace. This is used as a // high-level heuristic before comparing the timestamps. var ( fingerprint = job.fingerprint absentDiskKeyspace = fingerprint.Less(diskFrontier.firstFingerprint) || diskFrontier.lastFingerprint.Less(fingerprint) absentMemoryKeyspace = false ) if _, ok := m.fingerprintToSeries[fingerprint]; !ok { absentMemoryKeyspace = true } var ( firstSupertime time.Time lastSupertime time.Time ) var ( _ = absentMemoryKeyspace _ = firstSupertime _ = lastSupertime ) // If the key is present in the disk keyspace, we should find out the maximum // seek points ahead of time. In the LevelDB case, this will save us from // having to dispose of and recreate the iterator. if !absentDiskKeyspace { seriesFrontier, err := newSeriesFrontier(fingerprint, *diskFrontier, iterator) if err != nil { panic(err) return nil, err } if seriesFrontier == nil { panic("ouch") } } } return } // var ( // memoryLowWaterMark time.Time // memoryHighWaterMark time.Time // ) // if !absentMemoryKeyspace { // } // // if firstDiskFingerprint.Equal(job.fingerprint) { // // for _, operation := range job.operations { // // if o, ok := operation.(getMetricAtTimeOperation); ok { // // if o.StartTime().Before(firstDiskSuperTime) { // // } // // } // // if o, ok := operation.(GetMetricAtInterval); ok { // // } // // } // // } // } // // // Compare the metrics on the basis of the keys. // // firstSampleInRange = sort.IsSorted(model.Fingerprints{firstDiskFingerprint, s[0].fingerprint}) // // lastSampleInRange = sort.IsSorted(model.Fingerprints{s[s.Len()-1].fingerprint, lastDiskFingerprint}) // // if firstSampleInRange && firstDiskFingerprint.Equal(s[0].fingerprint) { // // firstSampleInRange = !indexable.DecodeTime(firstKey.Timestamp).After(s.operations[0].StartTime()) // // } // // if lastSampleInRange && lastDiskFingerprint.Equal(s[s.Len()-1].fingerprint) { // // lastSampleInRange = !s.operations[s.Len()-1].StartTime().After(indexable.DecodeTime(lastKey.Timestamp)) // // } // // for _, job := range s { // // operations := job.operations // // numberOfOperations := len(operations) // // for j := 0; j < numberOfOperations; j++ { // // operationTime := operations[j].StartTime() // // group, skipAhead := collectOperationsForTime(operationTime, operations[j:numberOfOperations]) // // ranges := collectRanges(group) // // intervals := collectIntervals(group) // // fmt.Printf("ranges -> %s\n", ranges) // // if len(ranges) > 0 { // // fmt.Printf("d -> %s\n", peekForLongestRange(ranges, ranges[0].through)) // // } // // j += skipAhead // // } // // }