// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "math" "regexp" "sort" "strconv" "strings" "time" "github.com/pkg/errors" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/pkg/labels" ) // Function represents a function of the expression language and is // used by function nodes. type Function struct { Name string ArgTypes []ValueType Variadic int ReturnType ValueType // vals is a list of the evaluated arguments for the function call. // For range vectors it will be a Matrix with one series, instant vectors a // Vector, scalars a Vector with one series whose value is the scalar // value,and nil for strings. // args are the original arguments to the function, where you can access // matrixSelectors, vectorSelectors, and StringLiterals. // enh.out is a pre-allocated empty vector that you may use to accumulate // output before returning it. The vectors in vals should not be returned.a // Range vector functions need only return a vector with the right value, // the metric and timestamp are not needed. // Instant vector functions need only return a vector with the right values and // metrics, the timestamp are not needed. // Scalar results should be returned as the value of a sample in a Vector. Call func(vals []Value, args Expressions, enh *EvalNodeHelper) Vector } // === time() float64 === func funcTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return Vector{Sample{Point: Point{ V: float64(enh.ts) / 1000, }}} } // extrapolatedRate is a utility function for rate/increase/delta. // It calculates the rate (allowing for counter resets if isCounter is true), // extrapolates if the first/last sample is close to the boundary, and returns // the result as either per-second (if isRate is true) or overall. func extrapolatedRate(vals []Value, args Expressions, enh *EvalNodeHelper, isCounter bool, isRate bool) Vector { ms := args[0].(*MatrixSelector) var ( matrix = vals[0].(Matrix) rangeStart = enh.ts - durationMilliseconds(ms.Range+ms.Offset) rangeEnd = enh.ts - durationMilliseconds(ms.Offset) ) for _, samples := range matrix { // No sense in trying to compute a rate without at least two points. Drop // this Vector element. if len(samples.Points) < 2 { continue } var ( counterCorrection float64 lastValue float64 ) for _, sample := range samples.Points { if isCounter && sample.V < lastValue { counterCorrection += lastValue } lastValue = sample.V } resultValue := lastValue - samples.Points[0].V + counterCorrection // Duration between first/last samples and boundary of range. durationToStart := float64(samples.Points[0].T-rangeStart) / 1000 durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000 sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000 averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1) if isCounter && resultValue > 0 && samples.Points[0].V >= 0 { // Counters cannot be negative. If we have any slope at // all (i.e. resultValue went up), we can extrapolate // the zero point of the counter. If the duration to the // zero point is shorter than the durationToStart, we // take the zero point as the start of the series, // thereby avoiding extrapolation to negative counter // values. durationToZero := sampledInterval * (samples.Points[0].V / resultValue) if durationToZero < durationToStart { durationToStart = durationToZero } } // If the first/last samples are close to the boundaries of the range, // extrapolate the result. This is as we expect that another sample // will exist given the spacing between samples we've seen thus far, // with an allowance for noise. extrapolationThreshold := averageDurationBetweenSamples * 1.1 extrapolateToInterval := sampledInterval if durationToStart < extrapolationThreshold { extrapolateToInterval += durationToStart } else { extrapolateToInterval += averageDurationBetweenSamples / 2 } if durationToEnd < extrapolationThreshold { extrapolateToInterval += durationToEnd } else { extrapolateToInterval += averageDurationBetweenSamples / 2 } resultValue = resultValue * (extrapolateToInterval / sampledInterval) if isRate { resultValue = resultValue / ms.Range.Seconds() } enh.out = append(enh.out, Sample{ Point: Point{V: resultValue}, }) } return enh.out } // === delta(Matrix ValueTypeMatrix) Vector === func funcDelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return extrapolatedRate(vals, args, enh, false, false) } // === rate(node ValueTypeMatrix) Vector === func funcRate(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return extrapolatedRate(vals, args, enh, true, true) } // === increase(node ValueTypeMatrix) Vector === func funcIncrease(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return extrapolatedRate(vals, args, enh, true, false) } // === irate(node ValueTypeMatrix) Vector === func funcIrate(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return instantValue(vals, enh.out, true) } // === idelta(node model.ValMatric) Vector === func funcIdelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return instantValue(vals, enh.out, false) } func instantValue(vals []Value, out Vector, isRate bool) Vector { for _, samples := range vals[0].(Matrix) { // No sense in trying to compute a rate without at least two points. Drop // this Vector element. if len(samples.Points) < 2 { continue } lastSample := samples.Points[len(samples.Points)-1] previousSample := samples.Points[len(samples.Points)-2] var resultValue float64 if isRate && lastSample.V < previousSample.V { // Counter reset. resultValue = lastSample.V } else { resultValue = lastSample.V - previousSample.V } sampledInterval := lastSample.T - previousSample.T if sampledInterval == 0 { // Avoid dividing by 0. continue } if isRate { // Convert to per-second. resultValue /= float64(sampledInterval) / 1000 } out = append(out, Sample{ Point: Point{V: resultValue}, }) } return out } // Calculate the trend value at the given index i in raw data d. // This is somewhat analogous to the slope of the trend at the given index. // The argument "s" is the set of computed smoothed values. // The argument "b" is the set of computed trend factors. // The argument "d" is the set of raw input values. func calcTrendValue(i int, sf, tf, s0, s1, b float64) float64 { if i == 0 { return b } x := tf * (s1 - s0) y := (1 - tf) * b return x + y } // Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data. // Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current // data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects // how trends in historical data will affect the current data. A higher trend factor increases the influence. // of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing". func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { mat := vals[0].(Matrix) // The smoothing factor argument. sf := vals[1].(Vector)[0].V // The trend factor argument. tf := vals[2].(Vector)[0].V // Sanity check the input. if sf <= 0 || sf >= 1 { panic(errors.Errorf("invalid smoothing factor. Expected: 0 < sf < 1, got: %f", sf)) } if tf <= 0 || tf >= 1 { panic(errors.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf)) } var l int for _, samples := range mat { l = len(samples.Points) // Can't do the smoothing operation with less than two points. if l < 2 { continue } var s0, s1, b float64 // Set initial values. s1 = samples.Points[0].V b = samples.Points[1].V - samples.Points[0].V // Run the smoothing operation. var x, y float64 for i := 1; i < l; i++ { // Scale the raw value against the smoothing factor. x = sf * samples.Points[i].V // Scale the last smoothed value with the trend at this point. b = calcTrendValue(i-1, sf, tf, s0, s1, b) y = (1 - sf) * (s1 + b) s0, s1 = s1, x+y } enh.out = append(enh.out, Sample{ Point: Point{V: s1}, }) } return enh.out } // === sort(node ValueTypeVector) Vector === func funcSort(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { // NaN should sort to the bottom, so take descending sort with NaN first and // reverse it. byValueSorter := vectorByReverseValueHeap(vals[0].(Vector)) sort.Sort(sort.Reverse(byValueSorter)) return Vector(byValueSorter) } // === sortDesc(node ValueTypeVector) Vector === func funcSortDesc(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { // NaN should sort to the bottom, so take ascending sort with NaN first and // reverse it. byValueSorter := vectorByValueHeap(vals[0].(Vector)) sort.Sort(sort.Reverse(byValueSorter)) return Vector(byValueSorter) } // === clamp_max(Vector ValueTypeVector, max Scalar) Vector === func funcClampMax(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { vec := vals[0].(Vector) max := vals[1].(Vector)[0].Point.V for _, el := range vec { enh.out = append(enh.out, Sample{ Metric: enh.dropMetricName(el.Metric), Point: Point{V: math.Min(max, el.V)}, }) } return enh.out } // === clamp_min(Vector ValueTypeVector, min Scalar) Vector === func funcClampMin(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { vec := vals[0].(Vector) min := vals[1].(Vector)[0].Point.V for _, el := range vec { enh.out = append(enh.out, Sample{ Metric: enh.dropMetricName(el.Metric), Point: Point{V: math.Max(min, el.V)}, }) } return enh.out } // === round(Vector ValueTypeVector, toNearest=1 Scalar) Vector === func funcRound(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { vec := vals[0].(Vector) // round returns a number rounded to toNearest. // Ties are solved by rounding up. toNearest := float64(1) if len(args) >= 2 { toNearest = vals[1].(Vector)[0].Point.V } // Invert as it seems to cause fewer floating point accuracy issues. toNearestInverse := 1.0 / toNearest for _, el := range vec { v := math.Floor(el.V*toNearestInverse+0.5) / toNearestInverse enh.out = append(enh.out, Sample{ Metric: enh.dropMetricName(el.Metric), Point: Point{V: v}, }) } return enh.out } // === Scalar(node ValueTypeVector) Scalar === func funcScalar(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { v := vals[0].(Vector) if len(v) != 1 { return append(enh.out, Sample{ Point: Point{V: math.NaN()}, }) } return append(enh.out, Sample{ Point: Point{V: v[0].V}, }) } func aggrOverTime(vals []Value, enh *EvalNodeHelper, aggrFn func([]Point) float64) Vector { mat := vals[0].(Matrix) for _, el := range mat { if len(el.Points) == 0 { continue } enh.out = append(enh.out, Sample{ Point: Point{V: aggrFn(el.Points)}, }) } return enh.out } // === avg_over_time(Matrix ValueTypeMatrix) Vector === func funcAvgOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return aggrOverTime(vals, enh, func(values []Point) float64 { var mean, count float64 for _, v := range values { count++ mean += (v.V - mean) / count } return mean }) } // === count_over_time(Matrix ValueTypeMatrix) Vector === func funcCountOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return aggrOverTime(vals, enh, func(values []Point) float64 { return float64(len(values)) }) } // === floor(Vector ValueTypeVector) Vector === // === max_over_time(Matrix ValueTypeMatrix) Vector === func funcMaxOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return aggrOverTime(vals, enh, func(values []Point) float64 { max := values[0].V for _, v := range values { if v.V > max || math.IsNaN(max) { max = v.V } } return max }) } // === min_over_time(Matrix ValueTypeMatrix) Vector === func funcMinOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return aggrOverTime(vals, enh, func(values []Point) float64 { min := values[0].V for _, v := range values { if v.V < min || math.IsNaN(min) { min = v.V } } return min }) } // === sum_over_time(Matrix ValueTypeMatrix) Vector === func funcSumOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return aggrOverTime(vals, enh, func(values []Point) float64 { var sum float64 for _, v := range values { sum += v.V } return sum }) } // === quantile_over_time(Matrix ValueTypeMatrix) Vector === func funcQuantileOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { q := vals[0].(Vector)[0].V mat := vals[1].(Matrix) for _, el := range mat { if len(el.Points) == 0 { continue } values := make(vectorByValueHeap, 0, len(el.Points)) for _, v := range el.Points { values = append(values, Sample{Point: Point{V: v.V}}) } enh.out = append(enh.out, Sample{ Point: Point{V: quantile(q, values)}, }) } return enh.out } // === stddev_over_time(Matrix ValueTypeMatrix) Vector === func funcStddevOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return aggrOverTime(vals, enh, func(values []Point) float64 { var aux, count, mean float64 for _, v := range values { count++ delta := v.V - mean mean += delta / count aux += delta * (v.V - mean) } return math.Sqrt(aux / count) }) } // === stdvar_over_time(Matrix ValueTypeMatrix) Vector === func funcStdvarOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return aggrOverTime(vals, enh, func(values []Point) float64 { var aux, count, mean float64 for _, v := range values { count++ delta := v.V - mean mean += delta / count aux += delta * (v.V - mean) } return aux / count }) } // === absent(Vector ValueTypeVector) Vector === func funcAbsent(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { if len(vals[0].(Vector)) > 0 { return enh.out } m := []labels.Label{} if vs, ok := args[0].(*VectorSelector); ok { for _, ma := range vs.LabelMatchers { if ma.Type == labels.MatchEqual && ma.Name != labels.MetricName { m = append(m, labels.Label{Name: ma.Name, Value: ma.Value}) } } } return append(enh.out, Sample{ Metric: labels.New(m...), Point: Point{V: 1}, }) } func simpleFunc(vals []Value, enh *EvalNodeHelper, f func(float64) float64) Vector { for _, el := range vals[0].(Vector) { enh.out = append(enh.out, Sample{ Metric: enh.dropMetricName(el.Metric), Point: Point{V: f(el.V)}, }) } return enh.out } // === abs(Vector ValueTypeVector) Vector === func funcAbs(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return simpleFunc(vals, enh, math.Abs) } // === ceil(Vector ValueTypeVector) Vector === func funcCeil(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return simpleFunc(vals, enh, math.Ceil) } // === floor(Vector ValueTypeVector) Vector === func funcFloor(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return simpleFunc(vals, enh, math.Floor) } // === exp(Vector ValueTypeVector) Vector === func funcExp(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return simpleFunc(vals, enh, math.Exp) } // === sqrt(Vector VectorNode) Vector === func funcSqrt(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return simpleFunc(vals, enh, math.Sqrt) } // === ln(Vector ValueTypeVector) Vector === func funcLn(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return simpleFunc(vals, enh, math.Log) } // === log2(Vector ValueTypeVector) Vector === func funcLog2(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return simpleFunc(vals, enh, math.Log2) } // === log10(Vector ValueTypeVector) Vector === func funcLog10(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return simpleFunc(vals, enh, math.Log10) } // === timestamp(Vector ValueTypeVector) Vector === func funcTimestamp(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { vec := vals[0].(Vector) for _, el := range vec { enh.out = append(enh.out, Sample{ Metric: enh.dropMetricName(el.Metric), Point: Point{V: float64(el.T) / 1000}, }) } return enh.out } // linearRegression performs a least-square linear regression analysis on the // provided SamplePairs. It returns the slope, and the intercept value at the // provided time. func linearRegression(samples []Point, interceptTime int64) (slope, intercept float64) { var ( n float64 sumX, sumY float64 sumXY, sumX2 float64 ) for _, sample := range samples { x := float64(sample.T-interceptTime) / 1e3 n += 1.0 sumY += sample.V sumX += x sumXY += x * sample.V sumX2 += x * x } covXY := sumXY - sumX*sumY/n varX := sumX2 - sumX*sumX/n slope = covXY / varX intercept = sumY/n - slope*sumX/n return slope, intercept } // === deriv(node ValueTypeMatrix) Vector === func funcDeriv(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { mat := vals[0].(Matrix) for _, samples := range mat { // No sense in trying to compute a derivative without at least two points. // Drop this Vector element. if len(samples.Points) < 2 { continue } // We pass in an arbitrary timestamp that is near the values in use // to avoid floating point accuracy issues, see // https://github.com/prometheus/prometheus/issues/2674 slope, _ := linearRegression(samples.Points, samples.Points[0].T) enh.out = append(enh.out, Sample{ Point: Point{V: slope}, }) } return enh.out } // === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector === func funcPredictLinear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { mat := vals[0].(Matrix) duration := vals[1].(Vector)[0].V for _, samples := range mat { // No sense in trying to predict anything without at least two points. // Drop this Vector element. if len(samples.Points) < 2 { continue } slope, intercept := linearRegression(samples.Points, enh.ts) enh.out = append(enh.out, Sample{ Point: Point{V: slope*duration + intercept}, }) } return enh.out } // === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector === func funcHistogramQuantile(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { q := vals[0].(Vector)[0].V inVec := vals[1].(Vector) sigf := enh.signatureFunc(false, excludedLabels...) if enh.signatureToMetricWithBuckets == nil { enh.signatureToMetricWithBuckets = map[uint64]*metricWithBuckets{} } else { for _, v := range enh.signatureToMetricWithBuckets { v.buckets = v.buckets[:0] } } for _, el := range inVec { upperBound, err := strconv.ParseFloat( el.Metric.Get(model.BucketLabel), 64, ) if err != nil { // Oops, no bucket label or malformed label value. Skip. // TODO(beorn7): Issue a warning somehow. continue } hash := sigf(el.Metric) mb, ok := enh.signatureToMetricWithBuckets[hash] if !ok { el.Metric = labels.NewBuilder(el.Metric). Del(labels.BucketLabel, labels.MetricName). Labels() mb = &metricWithBuckets{el.Metric, nil} enh.signatureToMetricWithBuckets[hash] = mb } mb.buckets = append(mb.buckets, bucket{upperBound, el.V}) } for _, mb := range enh.signatureToMetricWithBuckets { if len(mb.buckets) > 0 { enh.out = append(enh.out, Sample{ Metric: mb.metric, Point: Point{V: bucketQuantile(q, mb.buckets)}, }) } } return enh.out } // === resets(Matrix ValueTypeMatrix) Vector === func funcResets(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { in := vals[0].(Matrix) for _, samples := range in { resets := 0 prev := samples.Points[0].V for _, sample := range samples.Points[1:] { current := sample.V if current < prev { resets++ } prev = current } enh.out = append(enh.out, Sample{ Point: Point{V: float64(resets)}, }) } return enh.out } // === changes(Matrix ValueTypeMatrix) Vector === func funcChanges(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { in := vals[0].(Matrix) for _, samples := range in { changes := 0 prev := samples.Points[0].V for _, sample := range samples.Points[1:] { current := sample.V if current != prev && !(math.IsNaN(current) && math.IsNaN(prev)) { changes++ } prev = current } enh.out = append(enh.out, Sample{ Point: Point{V: float64(changes)}, }) } return enh.out } // === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector === func funcLabelReplace(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { var ( vector = vals[0].(Vector) dst = args[1].(*StringLiteral).Val repl = args[2].(*StringLiteral).Val src = args[3].(*StringLiteral).Val regexStr = args[4].(*StringLiteral).Val ) if enh.regex == nil { var err error enh.regex, err = regexp.Compile("^(?:" + regexStr + ")$") if err != nil { panic(errors.Errorf("invalid regular expression in label_replace(): %s", regexStr)) } if !model.LabelNameRE.MatchString(dst) { panic(errors.Errorf("invalid destination label name in label_replace(): %s", dst)) } enh.dmn = make(map[uint64]labels.Labels, len(enh.out)) } for _, el := range vector { h := el.Metric.Hash() var outMetric labels.Labels if l, ok := enh.dmn[h]; ok { outMetric = l } else { srcVal := el.Metric.Get(src) indexes := enh.regex.FindStringSubmatchIndex(srcVal) if indexes == nil { // If there is no match, no replacement should take place. outMetric = el.Metric enh.dmn[h] = outMetric } else { res := enh.regex.ExpandString([]byte{}, repl, srcVal, indexes) lb := labels.NewBuilder(el.Metric).Del(dst) if len(res) > 0 { lb.Set(dst, string(res)) } outMetric = lb.Labels() enh.dmn[h] = outMetric } } enh.out = append(enh.out, Sample{ Metric: outMetric, Point: Point{V: el.Point.V}, }) } return enh.out } // === Vector(s Scalar) Vector === func funcVector(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return append(enh.out, Sample{ Metric: labels.Labels{}, Point: Point{V: vals[0].(Vector)[0].V}, }) } // === label_join(vector model.ValVector, dest_labelname, separator, src_labelname...) Vector === func funcLabelJoin(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { var ( vector = vals[0].(Vector) dst = args[1].(*StringLiteral).Val sep = args[2].(*StringLiteral).Val srcLabels = make([]string, len(args)-3) ) if enh.dmn == nil { enh.dmn = make(map[uint64]labels.Labels, len(enh.out)) } for i := 3; i < len(args); i++ { src := args[i].(*StringLiteral).Val if !model.LabelName(src).IsValid() { panic(errors.Errorf("invalid source label name in label_join(): %s", src)) } srcLabels[i-3] = src } if !model.LabelName(dst).IsValid() { panic(errors.Errorf("invalid destination label name in label_join(): %s", dst)) } srcVals := make([]string, len(srcLabels)) for _, el := range vector { h := el.Metric.Hash() var outMetric labels.Labels if l, ok := enh.dmn[h]; ok { outMetric = l } else { for i, src := range srcLabels { srcVals[i] = el.Metric.Get(src) } lb := labels.NewBuilder(el.Metric) strval := strings.Join(srcVals, sep) if strval == "" { lb.Del(dst) } else { lb.Set(dst, strval) } outMetric = lb.Labels() enh.dmn[h] = outMetric } enh.out = append(enh.out, Sample{ Metric: outMetric, Point: Point{V: el.Point.V}, }) } return enh.out } // Common code for date related functions. func dateWrapper(vals []Value, enh *EvalNodeHelper, f func(time.Time) float64) Vector { if len(vals) == 0 { return append(enh.out, Sample{ Metric: labels.Labels{}, Point: Point{V: f(time.Unix(enh.ts/1000, 0).UTC())}, }) } for _, el := range vals[0].(Vector) { t := time.Unix(int64(el.V), 0).UTC() enh.out = append(enh.out, Sample{ Metric: enh.dropMetricName(el.Metric), Point: Point{V: f(t)}, }) } return enh.out } // === days_in_month(v Vector) Scalar === func funcDaysInMonth(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day()) }) } // === day_of_month(v Vector) Scalar === func funcDayOfMonth(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Day()) }) } // === day_of_week(v Vector) Scalar === func funcDayOfWeek(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Weekday()) }) } // === hour(v Vector) Scalar === func funcHour(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Hour()) }) } // === minute(v Vector) Scalar === func funcMinute(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Minute()) }) } // === month(v Vector) Scalar === func funcMonth(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Month()) }) } // === year(v Vector) Scalar === func funcYear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Year()) }) } // Functions is a list of all functions supported by PromQL, including their types. var Functions = map[string]*Function{ "abs": { Name: "abs", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcAbs, }, "absent": { Name: "absent", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcAbsent, }, "avg_over_time": { Name: "avg_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcAvgOverTime, }, "ceil": { Name: "ceil", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcCeil, }, "changes": { Name: "changes", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcChanges, }, "clamp_max": { Name: "clamp_max", ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar}, ReturnType: ValueTypeVector, Call: funcClampMax, }, "clamp_min": { Name: "clamp_min", ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar}, ReturnType: ValueTypeVector, Call: funcClampMin, }, "count_over_time": { Name: "count_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcCountOverTime, }, "days_in_month": { Name: "days_in_month", ArgTypes: []ValueType{ValueTypeVector}, Variadic: 1, ReturnType: ValueTypeVector, Call: funcDaysInMonth, }, "day_of_month": { Name: "day_of_month", ArgTypes: []ValueType{ValueTypeVector}, Variadic: 1, ReturnType: ValueTypeVector, Call: funcDayOfMonth, }, "day_of_week": { Name: "day_of_week", ArgTypes: []ValueType{ValueTypeVector}, Variadic: 1, ReturnType: ValueTypeVector, Call: funcDayOfWeek, }, "delta": { Name: "delta", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcDelta, }, "deriv": { Name: "deriv", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcDeriv, }, "exp": { Name: "exp", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcExp, }, "floor": { Name: "floor", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcFloor, }, "histogram_quantile": { Name: "histogram_quantile", ArgTypes: []ValueType{ValueTypeScalar, ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcHistogramQuantile, }, "holt_winters": { Name: "holt_winters", ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar, ValueTypeScalar}, ReturnType: ValueTypeVector, Call: funcHoltWinters, }, "hour": { Name: "hour", ArgTypes: []ValueType{ValueTypeVector}, Variadic: 1, ReturnType: ValueTypeVector, Call: funcHour, }, "idelta": { Name: "idelta", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcIdelta, }, "increase": { Name: "increase", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcIncrease, }, "irate": { Name: "irate", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcIrate, }, "label_replace": { Name: "label_replace", ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString, ValueTypeString}, ReturnType: ValueTypeVector, Call: funcLabelReplace, }, "label_join": { Name: "label_join", ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString}, Variadic: -1, ReturnType: ValueTypeVector, Call: funcLabelJoin, }, "ln": { Name: "ln", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcLn, }, "log10": { Name: "log10", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcLog10, }, "log2": { Name: "log2", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcLog2, }, "max_over_time": { Name: "max_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcMaxOverTime, }, "min_over_time": { Name: "min_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcMinOverTime, }, "minute": { Name: "minute", ArgTypes: []ValueType{ValueTypeVector}, Variadic: 1, ReturnType: ValueTypeVector, Call: funcMinute, }, "month": { Name: "month", ArgTypes: []ValueType{ValueTypeVector}, Variadic: 1, ReturnType: ValueTypeVector, Call: funcMonth, }, "predict_linear": { Name: "predict_linear", ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar}, ReturnType: ValueTypeVector, Call: funcPredictLinear, }, "quantile_over_time": { Name: "quantile_over_time", ArgTypes: []ValueType{ValueTypeScalar, ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcQuantileOverTime, }, "rate": { Name: "rate", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcRate, }, "resets": { Name: "resets", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcResets, }, "round": { Name: "round", ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar}, Variadic: 1, ReturnType: ValueTypeVector, Call: funcRound, }, "scalar": { Name: "scalar", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeScalar, Call: funcScalar, }, "sort": { Name: "sort", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcSort, }, "sort_desc": { Name: "sort_desc", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcSortDesc, }, "sqrt": { Name: "sqrt", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcSqrt, }, "stddev_over_time": { Name: "stddev_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcStddevOverTime, }, "stdvar_over_time": { Name: "stdvar_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcStdvarOverTime, }, "sum_over_time": { Name: "sum_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcSumOverTime, }, "time": { Name: "time", ArgTypes: []ValueType{}, ReturnType: ValueTypeScalar, Call: funcTime, }, "timestamp": { Name: "timestamp", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcTimestamp, }, "vector": { Name: "vector", ArgTypes: []ValueType{ValueTypeScalar}, ReturnType: ValueTypeVector, Call: funcVector, }, "year": { Name: "year", ArgTypes: []ValueType{ValueTypeVector}, Variadic: 1, ReturnType: ValueTypeVector, Call: funcYear, }, } // getFunction returns a predefined Function object for the given name. func getFunction(name string) (*Function, bool) { function, ok := Functions[name] return function, ok } type vectorByValueHeap Vector func (s vectorByValueHeap) Len() int { return len(s) } func (s vectorByValueHeap) Less(i, j int) bool { if math.IsNaN(s[i].V) { return true } return s[i].V < s[j].V } func (s vectorByValueHeap) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *vectorByValueHeap) Push(x interface{}) { *s = append(*s, *(x.(*Sample))) } func (s *vectorByValueHeap) Pop() interface{} { old := *s n := len(old) el := old[n-1] *s = old[0 : n-1] return el } type vectorByReverseValueHeap Vector func (s vectorByReverseValueHeap) Len() int { return len(s) } func (s vectorByReverseValueHeap) Less(i, j int) bool { if math.IsNaN(s[i].V) { return true } return s[i].V > s[j].V } func (s vectorByReverseValueHeap) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *vectorByReverseValueHeap) Push(x interface{}) { *s = append(*s, *(x.(*Sample))) } func (s *vectorByReverseValueHeap) Pop() interface{} { old := *s n := len(old) el := old[n-1] *s = old[0 : n-1] return el }