// Copyright 2014 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package local import ( "encoding/binary" "fmt" "io" "math" "sort" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/storage/metric" ) // The 21-byte header of a delta-encoded chunk looks like: // // - time delta bytes: 1 bytes // - value delta bytes: 1 bytes // - is integer: 1 byte // - base time: 8 bytes // - base value: 8 bytes // - used buf bytes: 2 bytes const ( deltaHeaderBytes = 21 deltaHeaderTimeBytesOffset = 0 deltaHeaderValueBytesOffset = 1 deltaHeaderIsIntOffset = 2 deltaHeaderBaseTimeOffset = 3 deltaHeaderBaseValueOffset = 11 deltaHeaderBufLenOffset = 19 ) // A deltaEncodedChunk adaptively stores sample timestamps and values with a // delta encoding of various types (int, float) and bit widths. However, once 8 // bytes would be needed to encode a delta value, a fall-back to the absolute // numbers happens (so that timestamps are saved directly as int64 and values as // float64). It implements the chunk interface. type deltaEncodedChunk []byte // newDeltaEncodedChunk returns a newly allocated deltaEncodedChunk. func newDeltaEncodedChunk(tb, vb deltaBytes, isInt bool, length int) *deltaEncodedChunk { if tb < 1 { panic("need at least 1 time delta byte") } if length < deltaHeaderBytes+16 { panic(fmt.Errorf( "chunk length %d bytes is insufficient, need at least %d", length, deltaHeaderBytes+16, )) } c := make(deltaEncodedChunk, deltaHeaderIsIntOffset+1, length) c[deltaHeaderTimeBytesOffset] = byte(tb) c[deltaHeaderValueBytesOffset] = byte(vb) if vb < d8 && isInt { // Only use int for fewer than 8 value delta bytes. c[deltaHeaderIsIntOffset] = 1 } else { c[deltaHeaderIsIntOffset] = 0 } return &c } // add implements chunk. func (c deltaEncodedChunk) add(s *model.SamplePair) []chunk { if c.len() == 0 { c = c[:deltaHeaderBytes] binary.LittleEndian.PutUint64(c[deltaHeaderBaseTimeOffset:], uint64(s.Timestamp)) binary.LittleEndian.PutUint64(c[deltaHeaderBaseValueOffset:], math.Float64bits(float64(s.Value))) } remainingBytes := cap(c) - len(c) sampleSize := c.sampleSize() // Do we generally have space for another sample in this chunk? If not, // overflow into a new one. if remainingBytes < sampleSize { overflowChunks := newChunk().add(s) return []chunk{&c, overflowChunks[0]} } baseValue := c.baseValue() dt := s.Timestamp - c.baseTime() if dt < 0 { panic("time delta is less than zero") } dv := s.Value - baseValue tb := c.timeBytes() vb := c.valueBytes() isInt := c.isInt() // If the new sample is incompatible with the current encoding, reencode the // existing chunk data into new chunk(s). ntb, nvb, nInt := tb, vb, isInt if isInt && !isInt64(dv) { // int->float. nvb = d4 nInt = false } else if !isInt && vb == d4 && baseValue+model.SampleValue(float32(dv)) != s.Value { // float32->float64. nvb = d8 } else { if tb < d8 { // Maybe more bytes for timestamp. ntb = max(tb, bytesNeededForUnsignedTimestampDelta(dt)) } if c.isInt() && vb < d8 { // Maybe more bytes for sample value. nvb = max(vb, bytesNeededForIntegerSampleValueDelta(dv)) } } if tb != ntb || vb != nvb || isInt != nInt { if len(c)*2 < cap(c) { return transcodeAndAdd(newDeltaEncodedChunk(ntb, nvb, nInt, cap(c)), &c, s) } // Chunk is already half full. Better create a new one and save the transcoding efforts. overflowChunks := newChunk().add(s) return []chunk{&c, overflowChunks[0]} } offset := len(c) c = c[:offset+sampleSize] switch tb { case d1: c[offset] = byte(dt) case d2: binary.LittleEndian.PutUint16(c[offset:], uint16(dt)) case d4: binary.LittleEndian.PutUint32(c[offset:], uint32(dt)) case d8: // Store the absolute value (no delta) in case of d8. binary.LittleEndian.PutUint64(c[offset:], uint64(s.Timestamp)) default: panic("invalid number of bytes for time delta") } offset += int(tb) if c.isInt() { switch vb { case d0: // No-op. Constant value is stored as base value. case d1: c[offset] = byte(int8(dv)) case d2: binary.LittleEndian.PutUint16(c[offset:], uint16(int16(dv))) case d4: binary.LittleEndian.PutUint32(c[offset:], uint32(int32(dv))) // d8 must not happen. Those samples are encoded as float64. default: panic("invalid number of bytes for integer delta") } } else { switch vb { case d4: binary.LittleEndian.PutUint32(c[offset:], math.Float32bits(float32(dv))) case d8: // Store the absolute value (no delta) in case of d8. binary.LittleEndian.PutUint64(c[offset:], math.Float64bits(float64(s.Value))) default: panic("invalid number of bytes for floating point delta") } } return []chunk{&c} } // clone implements chunk. func (c deltaEncodedChunk) clone() chunk { clone := make(deltaEncodedChunk, len(c), cap(c)) copy(clone, c) return &clone } // firstTime implements chunk. func (c deltaEncodedChunk) firstTime() model.Time { return c.baseTime() } // newIterator implements chunk. func (c *deltaEncodedChunk) newIterator() chunkIterator { return &deltaEncodedChunkIterator{ c: *c, len: c.len(), baseT: c.baseTime(), baseV: c.baseValue(), tBytes: c.timeBytes(), vBytes: c.valueBytes(), isInt: c.isInt(), } } // marshal implements chunk. func (c deltaEncodedChunk) marshal(w io.Writer) error { if len(c) > math.MaxUint16 { panic("chunk buffer length would overflow a 16 bit uint.") } binary.LittleEndian.PutUint16(c[deltaHeaderBufLenOffset:], uint16(len(c))) n, err := w.Write(c[:cap(c)]) if err != nil { return err } if n != cap(c) { return fmt.Errorf("wanted to write %d bytes, wrote %d", len(c), n) } return nil } // unmarshal implements chunk. func (c *deltaEncodedChunk) unmarshal(r io.Reader) error { *c = (*c)[:cap(*c)] if _, err := io.ReadFull(r, *c); err != nil { return err } *c = (*c)[:binary.LittleEndian.Uint16((*c)[deltaHeaderBufLenOffset:])] return nil } // unmarshalFromBuf implements chunk. func (c *deltaEncodedChunk) unmarshalFromBuf(buf []byte) { *c = (*c)[:cap(*c)] copy(*c, buf) *c = (*c)[:binary.LittleEndian.Uint16((*c)[deltaHeaderBufLenOffset:])] } // encoding implements chunk. func (c deltaEncodedChunk) encoding() chunkEncoding { return delta } func (c deltaEncodedChunk) timeBytes() deltaBytes { return deltaBytes(c[deltaHeaderTimeBytesOffset]) } func (c deltaEncodedChunk) valueBytes() deltaBytes { return deltaBytes(c[deltaHeaderValueBytesOffset]) } func (c deltaEncodedChunk) isInt() bool { return c[deltaHeaderIsIntOffset] == 1 } func (c deltaEncodedChunk) baseTime() model.Time { return model.Time(binary.LittleEndian.Uint64(c[deltaHeaderBaseTimeOffset:])) } func (c deltaEncodedChunk) baseValue() model.SampleValue { return model.SampleValue(math.Float64frombits(binary.LittleEndian.Uint64(c[deltaHeaderBaseValueOffset:]))) } func (c deltaEncodedChunk) sampleSize() int { return int(c.timeBytes() + c.valueBytes()) } func (c deltaEncodedChunk) len() int { if len(c) < deltaHeaderBytes { return 0 } return (len(c) - deltaHeaderBytes) / c.sampleSize() } // deltaEncodedChunkIterator implements chunkIterator. type deltaEncodedChunkIterator struct { c deltaEncodedChunk len int baseT model.Time baseV model.SampleValue tBytes, vBytes deltaBytes isInt bool } // length implements chunkIterator. func (it *deltaEncodedChunkIterator) length() int { return it.len } // valueAtTime implements chunkIterator. func (it *deltaEncodedChunkIterator) valueAtTime(t model.Time) []model.SamplePair { i := sort.Search(it.len, func(i int) bool { return !it.timestampAtIndex(i).Before(t) }) switch i { case 0: return []model.SamplePair{{ Timestamp: it.timestampAtIndex(0), Value: it.sampleValueAtIndex(0), }} case it.len: return []model.SamplePair{{ Timestamp: it.timestampAtIndex(it.len - 1), Value: it.sampleValueAtIndex(it.len - 1), }} default: ts := it.timestampAtIndex(i) if ts.Equal(t) { return []model.SamplePair{{ Timestamp: ts, Value: it.sampleValueAtIndex(i), }} } return []model.SamplePair{ { Timestamp: it.timestampAtIndex(i - 1), Value: it.sampleValueAtIndex(i - 1), }, { Timestamp: ts, Value: it.sampleValueAtIndex(i), }, } } } // rangeValues implements chunkIterator. func (it *deltaEncodedChunkIterator) rangeValues(in metric.Interval) []model.SamplePair { oldest := sort.Search(it.len, func(i int) bool { return !it.timestampAtIndex(i).Before(in.OldestInclusive) }) newest := sort.Search(it.len, func(i int) bool { return it.timestampAtIndex(i).After(in.NewestInclusive) }) if oldest == it.len { return nil } result := make([]model.SamplePair, 0, newest-oldest) for i := oldest; i < newest; i++ { result = append(result, model.SamplePair{ Timestamp: it.timestampAtIndex(i), Value: it.sampleValueAtIndex(i), }) } return result } // contains implements chunkIterator. func (it *deltaEncodedChunkIterator) contains(t model.Time) bool { return !t.Before(it.baseT) && !t.After(it.timestampAtIndex(it.len-1)) } // values implements chunkIterator. func (it *deltaEncodedChunkIterator) values() <-chan *model.SamplePair { valuesChan := make(chan *model.SamplePair) go func() { for i := 0; i < it.len; i++ { valuesChan <- &model.SamplePair{ Timestamp: it.timestampAtIndex(i), Value: it.sampleValueAtIndex(i), } } close(valuesChan) }() return valuesChan } // timestampAtIndex implements chunkIterator. func (it *deltaEncodedChunkIterator) timestampAtIndex(idx int) model.Time { offset := deltaHeaderBytes + idx*int(it.tBytes+it.vBytes) switch it.tBytes { case d1: return it.baseT + model.Time(uint8(it.c[offset])) case d2: return it.baseT + model.Time(binary.LittleEndian.Uint16(it.c[offset:])) case d4: return it.baseT + model.Time(binary.LittleEndian.Uint32(it.c[offset:])) case d8: // Take absolute value for d8. return model.Time(binary.LittleEndian.Uint64(it.c[offset:])) default: panic("invalid number of bytes for time delta") } } // lastTimestamp implements chunkIterator. func (it *deltaEncodedChunkIterator) lastTimestamp() model.Time { return it.timestampAtIndex(it.len - 1) } // sampleValueAtIndex implements chunkIterator. func (it *deltaEncodedChunkIterator) sampleValueAtIndex(idx int) model.SampleValue { offset := deltaHeaderBytes + idx*int(it.tBytes+it.vBytes) + int(it.tBytes) if it.isInt { switch it.vBytes { case d0: return it.baseV case d1: return it.baseV + model.SampleValue(int8(it.c[offset])) case d2: return it.baseV + model.SampleValue(int16(binary.LittleEndian.Uint16(it.c[offset:]))) case d4: return it.baseV + model.SampleValue(int32(binary.LittleEndian.Uint32(it.c[offset:]))) // No d8 for ints. default: panic("invalid number of bytes for integer delta") } } else { switch it.vBytes { case d4: return it.baseV + model.SampleValue(math.Float32frombits(binary.LittleEndian.Uint32(it.c[offset:]))) case d8: // Take absolute value for d8. return model.SampleValue(math.Float64frombits(binary.LittleEndian.Uint64(it.c[offset:]))) default: panic("invalid number of bytes for floating point delta") } } } // lastSampleValue implements chunkIterator. func (it *deltaEncodedChunkIterator) lastSampleValue() model.SampleValue { return it.sampleValueAtIndex(it.len - 1) }