// Copyright 2013 Prometheus Team // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package metric import ( "fmt" "github.com/prometheus/prometheus/model" "github.com/prometheus/prometheus/utility/test" "math" "math/rand" "testing/quick" "time" ) const ( stochasticMaximumVariance = 8 ) func BasicLifecycleTests(p MetricPersistence, t test.Tester) { if p == nil { t.Errorf("Received nil Metric Persistence.\n") return } } func ReadEmptyTests(p MetricPersistence, t test.Tester) { hasLabelPair := func(x int) (success bool) { name := model.LabelName(string(x)) value := model.LabelValue(string(x)) labelSet := model.LabelSet{ name: value, } fingerprints, err := p.GetFingerprintsForLabelSet(labelSet) if err != nil { t.Error(err) return } success = len(fingerprints) == 0 if !success { t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints)) } return } err := quick.Check(hasLabelPair, nil) if err != nil { t.Error(err) return } hasLabelName := func(x int) (success bool) { labelName := model.LabelName(string(x)) fingerprints, err := p.GetFingerprintsForLabelName(labelName) if err != nil { t.Error(err) return } success = len(fingerprints) == 0 if !success { t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints)) } return } err = quick.Check(hasLabelName, nil) if err != nil { t.Error(err) return } } func AppendSampleAsPureSparseAppendTests(p MetricPersistence, t test.Tester) { appendSample := func(x int) (success bool) { v := model.SampleValue(x) ts := time.Unix(int64(x), int64(x)) labelName := model.LabelName(x) labelValue := model.LabelValue(x) l := model.Metric{labelName: labelValue} sample := model.Sample{ Value: v, Timestamp: ts, Metric: l, } err := p.AppendSample(sample) success = err == nil if !success { t.Error(err) } return } if err := quick.Check(appendSample, nil); err != nil { t.Error(err) } } func AppendSampleAsSparseAppendWithReadsTests(p MetricPersistence, t test.Tester) { appendSample := func(x int) (success bool) { v := model.SampleValue(x) ts := time.Unix(int64(x), int64(x)) labelName := model.LabelName(x) labelValue := model.LabelValue(x) l := model.Metric{labelName: labelValue} sample := model.Sample{ Value: v, Timestamp: ts, Metric: l, } err := p.AppendSample(sample) if err != nil { t.Error(err) return } fingerprints, err := p.GetFingerprintsForLabelName(labelName) if err != nil { t.Error(err) return } if len(fingerprints) != 1 { t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints)) return } fingerprints, err = p.GetFingerprintsForLabelSet(model.LabelSet{ labelName: labelValue, }) if err != nil { t.Error(err) return } if len(fingerprints) != 1 { t.Error("expected fingerprint count of %d, got %d", 1, len(fingerprints)) return } return true } if err := quick.Check(appendSample, nil); err != nil { t.Error(err) } } func AppendSampleAsPureSingleEntityAppendTests(p MetricPersistence, t test.Tester) { appendSample := func(x int) bool { sample := model.Sample{ Value: model.SampleValue(x), Timestamp: time.Unix(int64(x), 0), Metric: model.Metric{"name": "my_metric"}, } err := p.AppendSample(sample) return err == nil } if err := quick.Check(appendSample, nil); err != nil { t.Error(err) } } func StochasticTests(persistenceMaker func() MetricPersistence, t test.Tester) { stochastic := func(x int) (success bool) { p := persistenceMaker() defer func() { err := p.Close() if err != nil { t.Error(err) } }() seed := rand.NewSource(int64(x)) random := rand.New(seed) numberOfMetrics := random.Intn(stochasticMaximumVariance) + 1 numberOfSharedLabels := random.Intn(stochasticMaximumVariance) numberOfUnsharedLabels := random.Intn(stochasticMaximumVariance) numberOfSamples := random.Intn(stochasticMaximumVariance) + 2 numberOfRangeScans := random.Intn(stochasticMaximumVariance) metricTimestamps := map[int]map[int64]bool{} metricEarliestSample := map[int]int64{} metricNewestSample := map[int]int64{} for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ { sample := model.Sample{ Metric: model.Metric{}, } v := model.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex)) sample.Metric["name"] = v for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ { l := model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex)) v := model.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex)) sample.Metric[l] = v } for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ { l := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex)) v := model.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex)) sample.Metric[l] = v } timestamps := map[int64]bool{} metricTimestamps[metricIndex] = timestamps var ( newestSample int64 = math.MinInt64 oldestSample int64 = math.MaxInt64 nextTimestamp func() int64 ) nextTimestamp = func() int64 { var candidate int64 candidate = random.Int63n(math.MaxInt32 - 1) if _, has := timestamps[candidate]; has { // WART candidate = nextTimestamp() } timestamps[candidate] = true if candidate < oldestSample { oldestSample = candidate } if candidate > newestSample { newestSample = candidate } return candidate } for sampleIndex := 0; sampleIndex < numberOfSamples; sampleIndex++ { sample.Timestamp = time.Unix(nextTimestamp(), 0) sample.Value = model.SampleValue(sampleIndex) err := p.AppendSample(sample) if err != nil { t.Error(err) return } } metricEarliestSample[metricIndex] = oldestSample metricNewestSample[metricIndex] = newestSample for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ { labelPair := model.LabelSet{ model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex)): model.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex)), } fingerprints, err := p.GetFingerprintsForLabelSet(labelPair) if err != nil { t.Error(err) return } if len(fingerprints) == 0 { t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints)) return } labelName := model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex)) fingerprints, err = p.GetFingerprintsForLabelName(labelName) if err != nil { t.Error(err) return } if len(fingerprints) == 0 { t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints)) return } } } for sharedIndex := 0; sharedIndex < numberOfSharedLabels; sharedIndex++ { labelName := model.LabelName(fmt.Sprintf("shared_label_%d", sharedIndex)) fingerprints, err := p.GetFingerprintsForLabelName(labelName) if err != nil { t.Error(err) return } if len(fingerprints) != numberOfMetrics { t.Errorf("expected fingerprint count of %d, got %d", numberOfMetrics, len(fingerprints)) return } } for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ { for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ { labelName := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex)) labelValue := model.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex)) labelSet := model.LabelSet{ labelName: labelValue, } fingerprints, err := p.GetFingerprintsForLabelSet(labelSet) if err != nil { t.Error(err) return } if len(fingerprints) != 1 { t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints)) return } fingerprints, err = p.GetFingerprintsForLabelName(labelName) if err != nil { t.Error(err) return } if len(fingerprints) != 1 { t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints)) return } } metric := model.Metric{} metric["name"] = model.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex)) for i := 0; i < numberOfSharedLabels; i++ { l := model.LabelName(fmt.Sprintf("shared_label_%d", i)) v := model.LabelValue(fmt.Sprintf("label_%d", i)) metric[l] = v } for i := 0; i < numberOfUnsharedLabels; i++ { l := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, i)) v := model.LabelValue(fmt.Sprintf("private_label_%d", i)) metric[l] = v } for i := 0; i < numberOfRangeScans; i++ { timestamps := metricTimestamps[metricIndex] var first int64 = 0 var second int64 = 0 for { firstCandidate := random.Int63n(int64(len(timestamps))) secondCandidate := random.Int63n(int64(len(timestamps))) smallest := int64(-1) largest := int64(-1) if firstCandidate == secondCandidate { continue } else if firstCandidate > secondCandidate { largest = firstCandidate smallest = secondCandidate } else { largest = secondCandidate smallest = firstCandidate } j := int64(0) for i := range timestamps { if j == smallest { first = i } else if j == largest { second = i break } j++ } break } begin := first end := second if second < first { begin, end = second, first } interval := model.Interval{ OldestInclusive: time.Unix(begin, 0), NewestInclusive: time.Unix(end, 0), } samples, err := p.GetRangeValues(metric, interval) if err != nil { t.Error(err) return } if len(samples.Values) < 2 { t.Errorf("expected sample count less than %d, got %d", 2, len(samples.Values)) return } } } return true } if err := quick.Check(stochastic, nil); err != nil { t.Error(err) } }