// Copyright 2013 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package rules import ( "context" "errors" "math" "strings" "sync" "time" "go.uber.org/atomic" "golang.org/x/exp/slices" "github.com/prometheus/prometheus/promql/parser" "github.com/go-kit/log" "github.com/go-kit/log/level" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/common/model" "go.opentelemetry.io/otel" "go.opentelemetry.io/otel/attribute" "go.opentelemetry.io/otel/codes" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/model/timestamp" "github.com/prometheus/prometheus/model/value" "github.com/prometheus/prometheus/promql" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/tsdb/chunkenc" ) // Group is a set of rules that have a logical relation. type Group struct { name string file string interval time.Duration limit int rules []Rule seriesInPreviousEval []map[string]labels.Labels // One per Rule. staleSeries []labels.Labels opts *ManagerOptions mtx sync.Mutex evaluationTime time.Duration lastEvaluation time.Time // Wall-clock time of most recent evaluation. lastEvalTimestamp time.Time // Time slot used for most recent evaluation. shouldRestore bool markStale bool done chan struct{} terminated chan struct{} managerDone chan struct{} logger log.Logger metrics *Metrics // Rule group evaluation iteration function, // defaults to DefaultEvalIterationFunc. evalIterationFunc GroupEvalIterationFunc // concurrencyController controls the rules evaluation concurrency. concurrencyController RuleConcurrencyController } // GroupEvalIterationFunc is used to implement and extend rule group // evaluation iteration logic. It is configured in Group.evalIterationFunc, // and periodically invoked at each group evaluation interval to // evaluate the rules in the group at that point in time. // DefaultEvalIterationFunc is the default implementation. type GroupEvalIterationFunc func(ctx context.Context, g *Group, evalTimestamp time.Time) type GroupOptions struct { Name, File string Interval time.Duration Limit int Rules []Rule ShouldRestore bool Opts *ManagerOptions done chan struct{} EvalIterationFunc GroupEvalIterationFunc } // NewGroup makes a new Group with the given name, options, and rules. func NewGroup(o GroupOptions) *Group { metrics := o.Opts.Metrics if metrics == nil { metrics = NewGroupMetrics(o.Opts.Registerer) } key := GroupKey(o.File, o.Name) metrics.IterationsMissed.WithLabelValues(key) metrics.IterationsScheduled.WithLabelValues(key) metrics.EvalTotal.WithLabelValues(key) metrics.EvalFailures.WithLabelValues(key) metrics.GroupLastEvalTime.WithLabelValues(key) metrics.GroupLastDuration.WithLabelValues(key) metrics.GroupRules.WithLabelValues(key).Set(float64(len(o.Rules))) metrics.GroupSamples.WithLabelValues(key) metrics.GroupInterval.WithLabelValues(key).Set(o.Interval.Seconds()) evalIterationFunc := o.EvalIterationFunc if evalIterationFunc == nil { evalIterationFunc = DefaultEvalIterationFunc } concurrencyController := o.Opts.RuleConcurrencyController if concurrencyController == nil { concurrencyController = sequentialRuleEvalController{} } return &Group{ name: o.Name, file: o.File, interval: o.Interval, limit: o.Limit, rules: o.Rules, shouldRestore: o.ShouldRestore, opts: o.Opts, seriesInPreviousEval: make([]map[string]labels.Labels, len(o.Rules)), done: make(chan struct{}), managerDone: o.done, terminated: make(chan struct{}), logger: log.With(o.Opts.Logger, "file", o.File, "group", o.Name), metrics: metrics, evalIterationFunc: evalIterationFunc, concurrencyController: concurrencyController, } } // Name returns the group name. func (g *Group) Name() string { return g.name } // File returns the group's file. func (g *Group) File() string { return g.file } // Rules returns the group's rules. func (g *Group) Rules() []Rule { return g.rules } // Queryable returns the group's querable. func (g *Group) Queryable() storage.Queryable { return g.opts.Queryable } // Context returns the group's context. func (g *Group) Context() context.Context { return g.opts.Context } // Interval returns the group's interval. func (g *Group) Interval() time.Duration { return g.interval } // Limit returns the group's limit. func (g *Group) Limit() int { return g.limit } func (g *Group) Logger() log.Logger { return g.logger } func (g *Group) run(ctx context.Context) { defer close(g.terminated) // Wait an initial amount to have consistently slotted intervals. evalTimestamp := g.EvalTimestamp(time.Now().UnixNano()).Add(g.interval) select { case <-time.After(time.Until(evalTimestamp)): case <-g.done: return } ctx = promql.NewOriginContext(ctx, map[string]interface{}{ "ruleGroup": map[string]string{ "file": g.File(), "name": g.Name(), }, }) // The assumption here is that since the ticker was started after having // waited for `evalTimestamp` to pass, the ticks will trigger soon // after each `evalTimestamp + N * g.interval` occurrence. tick := time.NewTicker(g.interval) defer tick.Stop() defer func() { if !g.markStale { return } go func(now time.Time) { for _, rule := range g.seriesInPreviousEval { for _, r := range rule { g.staleSeries = append(g.staleSeries, r) } } // That can be garbage collected at this point. g.seriesInPreviousEval = nil // Wait for 2 intervals to give the opportunity to renamed rules // to insert new series in the tsdb. At this point if there is a // renamed rule, it should already be started. select { case <-g.managerDone: case <-time.After(2 * g.interval): g.cleanupStaleSeries(ctx, now) } }(time.Now()) }() g.evalIterationFunc(ctx, g, evalTimestamp) if g.shouldRestore { // If we have to restore, we wait for another Eval to finish. // The reason behind this is, during first eval (or before it) // we might not have enough data scraped, and recording rules would not // have updated the latest values, on which some alerts might depend. select { case <-g.done: return case <-tick.C: missed := (time.Since(evalTimestamp) / g.interval) - 1 if missed > 0 { g.metrics.IterationsMissed.WithLabelValues(GroupKey(g.file, g.name)).Add(float64(missed)) g.metrics.IterationsScheduled.WithLabelValues(GroupKey(g.file, g.name)).Add(float64(missed)) } evalTimestamp = evalTimestamp.Add((missed + 1) * g.interval) g.evalIterationFunc(ctx, g, evalTimestamp) } g.RestoreForState(time.Now()) g.shouldRestore = false } for { select { case <-g.done: return default: select { case <-g.done: return case <-tick.C: missed := (time.Since(evalTimestamp) / g.interval) - 1 if missed > 0 { g.metrics.IterationsMissed.WithLabelValues(GroupKey(g.file, g.name)).Add(float64(missed)) g.metrics.IterationsScheduled.WithLabelValues(GroupKey(g.file, g.name)).Add(float64(missed)) } evalTimestamp = evalTimestamp.Add((missed + 1) * g.interval) g.evalIterationFunc(ctx, g, evalTimestamp) } } } } func (g *Group) stop() { close(g.done) <-g.terminated } func (g *Group) hash() uint64 { l := labels.New( labels.Label{Name: "name", Value: g.name}, labels.Label{Name: "file", Value: g.file}, ) return l.Hash() } // AlertingRules returns the list of the group's alerting rules. func (g *Group) AlertingRules() []*AlertingRule { g.mtx.Lock() defer g.mtx.Unlock() var alerts []*AlertingRule for _, rule := range g.rules { if alertingRule, ok := rule.(*AlertingRule); ok { alerts = append(alerts, alertingRule) } } slices.SortFunc(alerts, func(a, b *AlertingRule) int { if a.State() == b.State() { return strings.Compare(a.Name(), b.Name()) } return int(b.State() - a.State()) }) return alerts } // HasAlertingRules returns true if the group contains at least one AlertingRule. func (g *Group) HasAlertingRules() bool { g.mtx.Lock() defer g.mtx.Unlock() for _, rule := range g.rules { if _, ok := rule.(*AlertingRule); ok { return true } } return false } // GetEvaluationTime returns the time in seconds it took to evaluate the rule group. func (g *Group) GetEvaluationTime() time.Duration { g.mtx.Lock() defer g.mtx.Unlock() return g.evaluationTime } // setEvaluationTime sets the time in seconds the last evaluation took. func (g *Group) setEvaluationTime(dur time.Duration) { g.metrics.GroupLastDuration.WithLabelValues(GroupKey(g.file, g.name)).Set(dur.Seconds()) g.mtx.Lock() defer g.mtx.Unlock() g.evaluationTime = dur } // GetLastEvaluation returns the time the last evaluation of the rule group took place. func (g *Group) GetLastEvaluation() time.Time { g.mtx.Lock() defer g.mtx.Unlock() return g.lastEvaluation } // setLastEvaluation updates evaluationTimestamp to the timestamp of when the rule group was last evaluated. func (g *Group) setLastEvaluation(ts time.Time) { g.metrics.GroupLastEvalTime.WithLabelValues(GroupKey(g.file, g.name)).Set(float64(ts.UnixNano()) / 1e9) g.mtx.Lock() defer g.mtx.Unlock() g.lastEvaluation = ts } // GetLastEvalTimestamp returns the timestamp of the last evaluation. func (g *Group) GetLastEvalTimestamp() time.Time { g.mtx.Lock() defer g.mtx.Unlock() return g.lastEvalTimestamp } // setLastEvalTimestamp updates lastEvalTimestamp to the timestamp of the last evaluation. func (g *Group) setLastEvalTimestamp(ts time.Time) { g.mtx.Lock() defer g.mtx.Unlock() g.lastEvalTimestamp = ts } // EvalTimestamp returns the immediately preceding consistently slotted evaluation time. func (g *Group) EvalTimestamp(startTime int64) time.Time { var ( offset = int64(g.hash() % uint64(g.interval)) // This group's evaluation times differ from the perfect time intervals by `offset` nanoseconds. // But we can only use `% interval` to align with the interval. And `% interval` will always // align with the perfect time intervals, instead of this group's. Because of this we add // `offset` _after_ aligning with the perfect time interval. // // There can be cases where adding `offset` to the perfect evaluation time can yield a // timestamp in the future, which is not what EvalTimestamp should do. // So we subtract one `offset` to make sure that `now - (now % interval) + offset` gives an // evaluation time in the past. adjNow = startTime - offset // Adjust to perfect evaluation intervals. base = adjNow - (adjNow % int64(g.interval)) // Add one offset to randomize the evaluation times of this group. next = base + offset ) return time.Unix(0, next).UTC() } func nameAndLabels(rule Rule) string { return rule.Name() + rule.Labels().String() } // CopyState copies the alerting rule and staleness related state from the given group. // // Rules are matched based on their name and labels. If there are duplicates, the // first is matched with the first, second with the second etc. func (g *Group) CopyState(from *Group) { g.evaluationTime = from.evaluationTime g.lastEvaluation = from.lastEvaluation ruleMap := make(map[string][]int, len(from.rules)) for fi, fromRule := range from.rules { nameAndLabels := nameAndLabels(fromRule) l := ruleMap[nameAndLabels] ruleMap[nameAndLabels] = append(l, fi) } for i, rule := range g.rules { nameAndLabels := nameAndLabels(rule) indexes := ruleMap[nameAndLabels] if len(indexes) == 0 { continue } fi := indexes[0] g.seriesInPreviousEval[i] = from.seriesInPreviousEval[fi] ruleMap[nameAndLabels] = indexes[1:] ar, ok := rule.(*AlertingRule) if !ok { continue } far, ok := from.rules[fi].(*AlertingRule) if !ok { continue } for fp, a := range far.active { ar.active[fp] = a } } // Handle deleted and unmatched duplicate rules. g.staleSeries = from.staleSeries for fi, fromRule := range from.rules { nameAndLabels := nameAndLabels(fromRule) l := ruleMap[nameAndLabels] if len(l) != 0 { for _, series := range from.seriesInPreviousEval[fi] { g.staleSeries = append(g.staleSeries, series) } } } } // Eval runs a single evaluation cycle in which all rules are evaluated sequentially. // Rules can be evaluated concurrently if the `concurrent-rule-eval` feature flag is enabled. func (g *Group) Eval(ctx context.Context, ts time.Time) { var ( samplesTotal atomic.Float64 wg sync.WaitGroup ) for i, rule := range g.rules { select { case <-g.done: return default: } eval := func(i int, rule Rule, cleanup func()) { if cleanup != nil { defer cleanup() } logger := log.WithPrefix(g.logger, "name", rule.Name(), "index", i) ctx, sp := otel.Tracer("").Start(ctx, "rule") sp.SetAttributes(attribute.String("name", rule.Name())) defer func(t time.Time) { sp.End() since := time.Since(t) g.metrics.EvalDuration.Observe(since.Seconds()) rule.SetEvaluationDuration(since) rule.SetEvaluationTimestamp(t) }(time.Now()) if sp.SpanContext().IsSampled() && sp.SpanContext().HasTraceID() { logger = log.WithPrefix(logger, "trace_id", sp.SpanContext().TraceID()) } g.metrics.EvalTotal.WithLabelValues(GroupKey(g.File(), g.Name())).Inc() vector, err := rule.Eval(ctx, ts, g.opts.QueryFunc, g.opts.ExternalURL, g.Limit()) if err != nil { rule.SetHealth(HealthBad) rule.SetLastError(err) sp.SetStatus(codes.Error, err.Error()) g.metrics.EvalFailures.WithLabelValues(GroupKey(g.File(), g.Name())).Inc() // Canceled queries are intentional termination of queries. This normally // happens on shutdown and thus we skip logging of any errors here. var eqc promql.ErrQueryCanceled if !errors.As(err, &eqc) { level.Warn(logger).Log("msg", "Evaluating rule failed", "rule", rule, "err", err) } return } rule.SetHealth(HealthGood) rule.SetLastError(nil) samplesTotal.Add(float64(len(vector))) if ar, ok := rule.(*AlertingRule); ok { ar.sendAlerts(ctx, ts, g.opts.ResendDelay, g.interval, g.opts.NotifyFunc) } var ( numOutOfOrder = 0 numTooOld = 0 numDuplicates = 0 ) app := g.opts.Appendable.Appender(ctx) seriesReturned := make(map[string]labels.Labels, len(g.seriesInPreviousEval[i])) defer func() { if err := app.Commit(); err != nil { rule.SetHealth(HealthBad) rule.SetLastError(err) sp.SetStatus(codes.Error, err.Error()) g.metrics.EvalFailures.WithLabelValues(GroupKey(g.File(), g.Name())).Inc() level.Warn(logger).Log("msg", "Rule sample appending failed", "err", err) return } g.seriesInPreviousEval[i] = seriesReturned }() for _, s := range vector { if s.H != nil { _, err = app.AppendHistogram(0, s.Metric, s.T, nil, s.H) } else { _, err = app.Append(0, s.Metric, s.T, s.F) } if err != nil { rule.SetHealth(HealthBad) rule.SetLastError(err) sp.SetStatus(codes.Error, err.Error()) unwrappedErr := errors.Unwrap(err) if unwrappedErr == nil { unwrappedErr = err } switch { case errors.Is(unwrappedErr, storage.ErrOutOfOrderSample): numOutOfOrder++ level.Debug(logger).Log("msg", "Rule evaluation result discarded", "err", err, "sample", s) case errors.Is(unwrappedErr, storage.ErrTooOldSample): numTooOld++ level.Debug(logger).Log("msg", "Rule evaluation result discarded", "err", err, "sample", s) case errors.Is(unwrappedErr, storage.ErrDuplicateSampleForTimestamp): numDuplicates++ level.Debug(logger).Log("msg", "Rule evaluation result discarded", "err", err, "sample", s) default: level.Warn(logger).Log("msg", "Rule evaluation result discarded", "err", err, "sample", s) } } else { buf := [1024]byte{} seriesReturned[string(s.Metric.Bytes(buf[:]))] = s.Metric } } if numOutOfOrder > 0 { level.Warn(logger).Log("msg", "Error on ingesting out-of-order result from rule evaluation", "numDropped", numOutOfOrder) } if numTooOld > 0 { level.Warn(logger).Log("msg", "Error on ingesting too old result from rule evaluation", "numDropped", numTooOld) } if numDuplicates > 0 { level.Warn(logger).Log("msg", "Error on ingesting results from rule evaluation with different value but same timestamp", "numDropped", numDuplicates) } for metric, lset := range g.seriesInPreviousEval[i] { if _, ok := seriesReturned[metric]; !ok { // Series no longer exposed, mark it stale. _, err = app.Append(0, lset, timestamp.FromTime(ts), math.Float64frombits(value.StaleNaN)) unwrappedErr := errors.Unwrap(err) if unwrappedErr == nil { unwrappedErr = err } switch { case unwrappedErr == nil: case errors.Is(unwrappedErr, storage.ErrOutOfOrderSample), errors.Is(unwrappedErr, storage.ErrTooOldSample), errors.Is(unwrappedErr, storage.ErrDuplicateSampleForTimestamp): // Do not count these in logging, as this is expected if series // is exposed from a different rule. default: level.Warn(logger).Log("msg", "Adding stale sample failed", "sample", lset.String(), "err", err) } } } } // If the rule has no dependencies, it can run concurrently because no other rules in this group depend on its output. // Try run concurrently if there are slots available. if ctrl := g.concurrencyController; isRuleEligibleForConcurrentExecution(rule) && ctrl.Allow() { wg.Add(1) go eval(i, rule, func() { wg.Done() ctrl.Done() }) } else { eval(i, rule, nil) } } wg.Wait() g.metrics.GroupSamples.WithLabelValues(GroupKey(g.File(), g.Name())).Set(samplesTotal.Load()) g.cleanupStaleSeries(ctx, ts) } func (g *Group) cleanupStaleSeries(ctx context.Context, ts time.Time) { if len(g.staleSeries) == 0 { return } app := g.opts.Appendable.Appender(ctx) for _, s := range g.staleSeries { // Rule that produced series no longer configured, mark it stale. _, err := app.Append(0, s, timestamp.FromTime(ts), math.Float64frombits(value.StaleNaN)) unwrappedErr := errors.Unwrap(err) if unwrappedErr == nil { unwrappedErr = err } switch { case unwrappedErr == nil: case errors.Is(unwrappedErr, storage.ErrOutOfOrderSample), errors.Is(unwrappedErr, storage.ErrTooOldSample), errors.Is(unwrappedErr, storage.ErrDuplicateSampleForTimestamp): // Do not count these in logging, as this is expected if series // is exposed from a different rule. default: level.Warn(g.logger).Log("msg", "Adding stale sample for previous configuration failed", "sample", s, "err", err) } } if err := app.Commit(); err != nil { level.Warn(g.logger).Log("msg", "Stale sample appending for previous configuration failed", "err", err) } else { g.staleSeries = nil } } // RestoreForState restores the 'for' state of the alerts // by looking up last ActiveAt from storage. func (g *Group) RestoreForState(ts time.Time) { maxtMS := int64(model.TimeFromUnixNano(ts.UnixNano())) // We allow restoration only if alerts were active before after certain time. mint := ts.Add(-g.opts.OutageTolerance) mintMS := int64(model.TimeFromUnixNano(mint.UnixNano())) q, err := g.opts.Queryable.Querier(mintMS, maxtMS) if err != nil { level.Error(g.logger).Log("msg", "Failed to get Querier", "err", err) return } defer func() { if err := q.Close(); err != nil { level.Error(g.logger).Log("msg", "Failed to close Querier", "err", err) } }() for _, rule := range g.Rules() { alertRule, ok := rule.(*AlertingRule) if !ok { continue } alertHoldDuration := alertRule.HoldDuration() if alertHoldDuration < g.opts.ForGracePeriod { // If alertHoldDuration is already less than grace period, we would not // like to make it wait for `g.opts.ForGracePeriod` time before firing. // Hence we skip restoration, which will make it wait for alertHoldDuration. alertRule.SetRestored(true) continue } alertRule.ForEachActiveAlert(func(a *Alert) { var s storage.Series s, err := alertRule.QueryforStateSeries(g.opts.Context, a, q) if err != nil { // Querier Warnings are ignored. We do not care unless we have an error. level.Error(g.logger).Log( "msg", "Failed to restore 'for' state", labels.AlertName, alertRule.Name(), "stage", "Select", "err", err, ) return } if s == nil { return } // Series found for the 'for' state. var t int64 var v float64 it := s.Iterator(nil) for it.Next() == chunkenc.ValFloat { t, v = it.At() } if it.Err() != nil { level.Error(g.logger).Log("msg", "Failed to restore 'for' state", labels.AlertName, alertRule.Name(), "stage", "Iterator", "err", it.Err()) return } if value.IsStaleNaN(v) { // Alert was not active. return } downAt := time.Unix(t/1000, 0).UTC() restoredActiveAt := time.Unix(int64(v), 0).UTC() timeSpentPending := downAt.Sub(restoredActiveAt) timeRemainingPending := alertHoldDuration - timeSpentPending switch { case timeRemainingPending <= 0: // It means that alert was firing when prometheus went down. // In the next Eval, the state of this alert will be set back to // firing again if it's still firing in that Eval. // Nothing to be done in this case. case timeRemainingPending < g.opts.ForGracePeriod: // (new) restoredActiveAt = (ts + m.opts.ForGracePeriod) - alertHoldDuration // /* new firing time */ /* moving back by hold duration */ // // Proof of correctness: // firingTime = restoredActiveAt.Add(alertHoldDuration) // = ts + m.opts.ForGracePeriod - alertHoldDuration + alertHoldDuration // = ts + m.opts.ForGracePeriod // // Time remaining to fire = firingTime.Sub(ts) // = (ts + m.opts.ForGracePeriod) - ts // = m.opts.ForGracePeriod restoredActiveAt = ts.Add(g.opts.ForGracePeriod).Add(-alertHoldDuration) default: // By shifting ActiveAt to the future (ActiveAt + some_duration), // the total pending time from the original ActiveAt // would be `alertHoldDuration + some_duration`. // Here, some_duration = downDuration. downDuration := ts.Sub(downAt) restoredActiveAt = restoredActiveAt.Add(downDuration) } a.ActiveAt = restoredActiveAt level.Debug(g.logger).Log("msg", "'for' state restored", labels.AlertName, alertRule.Name(), "restored_time", a.ActiveAt.Format(time.RFC850), "labels", a.Labels.String()) }) alertRule.SetRestored(true) } } // Equals return if two groups are the same. func (g *Group) Equals(ng *Group) bool { if g.name != ng.name { return false } if g.file != ng.file { return false } if g.interval != ng.interval { return false } if g.limit != ng.limit { return false } if len(g.rules) != len(ng.rules) { return false } for i, gr := range g.rules { if gr.String() != ng.rules[i].String() { return false } } return true } // GroupKey group names need not be unique across filenames. func GroupKey(file, name string) string { return file + ";" + name } // Constants for instrumentation. const namespace = "prometheus" // Metrics for rule evaluation. type Metrics struct { EvalDuration prometheus.Summary IterationDuration prometheus.Summary IterationsMissed *prometheus.CounterVec IterationsScheduled *prometheus.CounterVec EvalTotal *prometheus.CounterVec EvalFailures *prometheus.CounterVec GroupInterval *prometheus.GaugeVec GroupLastEvalTime *prometheus.GaugeVec GroupLastDuration *prometheus.GaugeVec GroupRules *prometheus.GaugeVec GroupSamples *prometheus.GaugeVec } // NewGroupMetrics creates a new instance of Metrics and registers it with the provided registerer, // if not nil. func NewGroupMetrics(reg prometheus.Registerer) *Metrics { m := &Metrics{ EvalDuration: prometheus.NewSummary( prometheus.SummaryOpts{ Namespace: namespace, Name: "rule_evaluation_duration_seconds", Help: "The duration for a rule to execute.", Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001}, }), IterationDuration: prometheus.NewSummary(prometheus.SummaryOpts{ Namespace: namespace, Name: "rule_group_duration_seconds", Help: "The duration of rule group evaluations.", Objectives: map[float64]float64{0.01: 0.001, 0.05: 0.005, 0.5: 0.05, 0.90: 0.01, 0.99: 0.001}, }), IterationsMissed: prometheus.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Name: "rule_group_iterations_missed_total", Help: "The total number of rule group evaluations missed due to slow rule group evaluation.", }, []string{"rule_group"}, ), IterationsScheduled: prometheus.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Name: "rule_group_iterations_total", Help: "The total number of scheduled rule group evaluations, whether executed or missed.", }, []string{"rule_group"}, ), EvalTotal: prometheus.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Name: "rule_evaluations_total", Help: "The total number of rule evaluations.", }, []string{"rule_group"}, ), EvalFailures: prometheus.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Name: "rule_evaluation_failures_total", Help: "The total number of rule evaluation failures.", }, []string{"rule_group"}, ), GroupInterval: prometheus.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Name: "rule_group_interval_seconds", Help: "The interval of a rule group.", }, []string{"rule_group"}, ), GroupLastEvalTime: prometheus.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Name: "rule_group_last_evaluation_timestamp_seconds", Help: "The timestamp of the last rule group evaluation in seconds.", }, []string{"rule_group"}, ), GroupLastDuration: prometheus.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Name: "rule_group_last_duration_seconds", Help: "The duration of the last rule group evaluation.", }, []string{"rule_group"}, ), GroupRules: prometheus.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Name: "rule_group_rules", Help: "The number of rules.", }, []string{"rule_group"}, ), GroupSamples: prometheus.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Name: "rule_group_last_evaluation_samples", Help: "The number of samples returned during the last rule group evaluation.", }, []string{"rule_group"}, ), } if reg != nil { reg.MustRegister( m.EvalDuration, m.IterationDuration, m.IterationsMissed, m.IterationsScheduled, m.EvalTotal, m.EvalFailures, m.GroupInterval, m.GroupLastEvalTime, m.GroupLastDuration, m.GroupRules, m.GroupSamples, ) } return m } // dependencyMap is a data-structure which contains the relationships between rules within a group. // It is used to describe the dependency associations between rules in a group whereby one rule uses the // output metric produced by another rule in its expression (i.e. as its "input"). type dependencyMap map[Rule][]Rule // dependents returns the count of rules which use the output of the given rule as one of their inputs. func (m dependencyMap) dependents(r Rule) int { return len(m[r]) } // dependencies returns the count of rules on which the given rule is dependent for input. func (m dependencyMap) dependencies(r Rule) int { if len(m) == 0 { return 0 } var count int for _, children := range m { for _, child := range children { if child == r { count++ } } } return count } // isIndependent determines whether the given rule is not dependent on another rule for its input, nor is any other rule // dependent on its output. func (m dependencyMap) isIndependent(r Rule) bool { if m == nil { return false } return m.dependents(r)+m.dependencies(r) == 0 } // buildDependencyMap builds a data-structure which contains the relationships between rules within a group. // // Alert rules, by definition, cannot have any dependents - but they can have dependencies. Any recording rule on whose // output an Alert rule depends will not be able to run concurrently. // // There is a class of rule expressions which are considered "indeterminate", because either relationships cannot be // inferred, or concurrent evaluation of rules depending on these series would produce undefined/unexpected behaviour: // - wildcard queriers like {cluster="prod1"} which would match every series with that label selector // - any "meta" series (series produced by Prometheus itself) like ALERTS, ALERTS_FOR_STATE // // Rules which are independent can run concurrently with no side-effects. func buildDependencyMap(rules []Rule) dependencyMap { dependencies := make(dependencyMap) if len(rules) <= 1 { // No relationships if group has 1 or fewer rules. return dependencies } inputs := make(map[string][]Rule, len(rules)) outputs := make(map[string][]Rule, len(rules)) var indeterminate bool for _, rule := range rules { if indeterminate { break } name := rule.Name() outputs[name] = append(outputs[name], rule) parser.Inspect(rule.Query(), func(node parser.Node, path []parser.Node) error { if n, ok := node.(*parser.VectorSelector); ok { // A wildcard metric expression means we cannot reliably determine if this rule depends on any other, // which means we cannot safely run any rules concurrently. if n.Name == "" && len(n.LabelMatchers) > 0 { indeterminate = true return nil } // Rules which depend on "meta-metrics" like ALERTS and ALERTS_FOR_STATE will have undefined behaviour // if they run concurrently. if n.Name == alertMetricName || n.Name == alertForStateMetricName { indeterminate = true return nil } inputs[n.Name] = append(inputs[n.Name], rule) } return nil }) } if indeterminate { return nil } for output, outRules := range outputs { for _, outRule := range outRules { if inRules, found := inputs[output]; found && len(inRules) > 0 { dependencies[outRule] = append(dependencies[outRule], inRules...) } } } return dependencies } func isRuleEligibleForConcurrentExecution(rule Rule) bool { return rule.NoDependentRules() && rule.NoDependencyRules() }