// Copyright 2013 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package rules import ( "context" "errors" "fmt" "math" "net/url" "sort" "sync" "time" html_template "html/template" "github.com/go-kit/kit/log" "github.com/go-kit/kit/log/level" opentracing "github.com/opentracing/opentracing-go" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/pkg/labels" "github.com/prometheus/prometheus/pkg/rulefmt" "github.com/prometheus/prometheus/pkg/timestamp" "github.com/prometheus/prometheus/pkg/value" "github.com/prometheus/prometheus/promql" "github.com/prometheus/prometheus/storage" ) // RuleHealth describes the health state of a target. type RuleHealth string // The possible health states of a rule based on the last execution. const ( HealthUnknown RuleHealth = "unknown" HealthGood RuleHealth = "ok" HealthBad RuleHealth = "err" ) // Constants for instrumentation. const namespace = "prometheus" var ( evalDuration = prometheus.NewSummary( prometheus.SummaryOpts{ Namespace: namespace, Name: "rule_evaluation_duration_seconds", Help: "The duration for a rule to execute.", }, ) evalFailures = prometheus.NewCounter( prometheus.CounterOpts{ Namespace: namespace, Name: "rule_evaluation_failures_total", Help: "The total number of rule evaluation failures.", }, ) evalTotal = prometheus.NewCounter( prometheus.CounterOpts{ Namespace: namespace, Name: "rule_evaluations_total", Help: "The total number of rule evaluations.", }, ) iterationDuration = prometheus.NewSummary(prometheus.SummaryOpts{ Namespace: namespace, Name: "rule_group_duration_seconds", Help: "The duration of rule group evaluations.", Objectives: map[float64]float64{0.01: 0.001, 0.05: 0.005, 0.5: 0.05, 0.90: 0.01, 0.99: 0.001}, }) iterationsMissed = prometheus.NewCounter(prometheus.CounterOpts{ Namespace: namespace, Name: "rule_group_iterations_missed_total", Help: "The total number of rule group evaluations missed due to slow rule group evaluation.", }) iterationsScheduled = prometheus.NewCounter(prometheus.CounterOpts{ Namespace: namespace, Name: "rule_group_iterations_total", Help: "The total number of scheduled rule group evaluations, whether executed or missed.", }) lastDuration = prometheus.NewDesc( prometheus.BuildFQName(namespace, "", "rule_group_last_duration_seconds"), "The duration of the last rule group evaluation.", []string{"rule_group"}, nil, ) groupInterval = prometheus.NewDesc( prometheus.BuildFQName(namespace, "", "rule_group_interval_seconds"), "The interval of a rule group.", []string{"rule_group"}, nil, ) ) func init() { prometheus.MustRegister(iterationDuration) prometheus.MustRegister(iterationsScheduled) prometheus.MustRegister(iterationsMissed) prometheus.MustRegister(evalFailures) prometheus.MustRegister(evalDuration) } // QueryFunc processes PromQL queries. type QueryFunc func(ctx context.Context, q string, t time.Time) (promql.Vector, error) // EngineQueryFunc returns a new query function that executes instant queries against // the given engine. // It converts scalar into vector results. func EngineQueryFunc(engine *promql.Engine, q storage.Queryable) QueryFunc { return func(ctx context.Context, qs string, t time.Time) (promql.Vector, error) { q, err := engine.NewInstantQuery(q, qs, t) if err != nil { return nil, err } res := q.Exec(ctx) if res.Err != nil { return nil, res.Err } switch v := res.Value.(type) { case promql.Vector: return v, nil case promql.Scalar: return promql.Vector{promql.Sample{ Point: promql.Point(v), Metric: labels.Labels{}, }}, nil default: return nil, fmt.Errorf("rule result is not a vector or scalar") } } } // A Rule encapsulates a vector expression which is evaluated at a specified // interval and acted upon (currently either recorded or used for alerting). type Rule interface { Name() string // eval evaluates the rule, including any associated recording or alerting actions. Eval(context.Context, time.Time, QueryFunc, *url.URL) (promql.Vector, error) // String returns a human-readable string representation of the rule. String() string // SetLastErr sets the current error experienced by the rule. SetLastError(error) // LastErr returns the last error experienced by the rule. LastError() error // SetHealth sets the current health of the rule. SetHealth(RuleHealth) // Health returns the current health of the rule. Health() RuleHealth SetEvaluationDuration(time.Duration) GetEvaluationDuration() time.Duration // HTMLSnippet returns a human-readable string representation of the rule, // decorated with HTML elements for use the web frontend. HTMLSnippet(pathPrefix string) html_template.HTML } // Group is a set of rules that have a logical relation. type Group struct { name string file string interval time.Duration rules []Rule seriesInPreviousEval []map[string]labels.Labels // One per Rule. opts *ManagerOptions evaluationDuration time.Duration mtx sync.Mutex shouldRestore bool done chan struct{} terminated chan struct{} logger log.Logger } // NewGroup makes a new Group with the given name, options, and rules. func NewGroup(name, file string, interval time.Duration, rules []Rule, shouldRestore bool, opts *ManagerOptions) *Group { return &Group{ name: name, file: file, interval: interval, rules: rules, shouldRestore: shouldRestore, opts: opts, seriesInPreviousEval: make([]map[string]labels.Labels, len(rules)), done: make(chan struct{}), terminated: make(chan struct{}), logger: log.With(opts.Logger, "group", name), } } // Name returns the group name. func (g *Group) Name() string { return g.name } // File returns the group's file. func (g *Group) File() string { return g.file } // Rules returns the group's rules. func (g *Group) Rules() []Rule { return g.rules } // Interval returns the group's interval. func (g *Group) Interval() time.Duration { return g.interval } func (g *Group) run(ctx context.Context) { defer close(g.terminated) // Wait an initial amount to have consistently slotted intervals. evalTimestamp := g.evalTimestamp().Add(g.interval) select { case <-time.After(time.Until(evalTimestamp)): case <-g.done: return } iter := func() { iterationsScheduled.Inc() start := time.Now() g.Eval(ctx, evalTimestamp) timeSinceStart := time.Since(start) iterationDuration.Observe(timeSinceStart.Seconds()) g.SetEvaluationDuration(timeSinceStart) } // The assumption here is that since the ticker was started after having // waited for `evalTimestamp` to pass, the ticks will trigger soon // after each `evalTimestamp + N * g.interval` occurrence. tick := time.NewTicker(g.interval) defer tick.Stop() iter() if g.shouldRestore { // If we have to restore, we wait for another Eval to finish. // The reason behind this is, during first eval (or before it) // we might not have enough data scraped, and recording rules would not // have updated the latest values, on which some alerts might depend. select { case <-g.done: return case <-tick.C: missed := (time.Since(evalTimestamp) / g.interval) - 1 if missed > 0 { iterationsMissed.Add(float64(missed)) iterationsScheduled.Add(float64(missed)) } evalTimestamp = evalTimestamp.Add((missed + 1) * g.interval) iter() } g.RestoreForState(time.Now()) g.shouldRestore = false } for { select { case <-g.done: return default: select { case <-g.done: return case <-tick.C: missed := (time.Since(evalTimestamp) / g.interval) - 1 if missed > 0 { iterationsMissed.Add(float64(missed)) iterationsScheduled.Add(float64(missed)) } evalTimestamp = evalTimestamp.Add((missed + 1) * g.interval) iter() } } } } func (g *Group) stop() { close(g.done) <-g.terminated } func (g *Group) hash() uint64 { l := labels.New( labels.Label{"name", g.name}, labels.Label{"file", g.file}, ) return l.Hash() } // GetEvaluationDuration returns the time in seconds it took to evaluate the rule group. func (g *Group) GetEvaluationDuration() time.Duration { g.mtx.Lock() defer g.mtx.Unlock() return g.evaluationDuration } // SetEvaluationDuration sets the time in seconds the last evaluation took. func (g *Group) SetEvaluationDuration(dur time.Duration) { g.mtx.Lock() defer g.mtx.Unlock() g.evaluationDuration = dur } // evalTimestamp returns the immediately preceding consistently slotted evaluation time. func (g *Group) evalTimestamp() time.Time { var ( offset = int64(g.hash() % uint64(g.interval)) now = time.Now().UnixNano() adjNow = now - offset base = adjNow - (adjNow % int64(g.interval)) ) return time.Unix(0, base+offset) } // CopyState copies the alerting rule and staleness related state from the given group. // // Rules are matched based on their name. If there are duplicates, the // first is matched with the first, second with the second etc. func (g *Group) CopyState(from *Group) { g.evaluationDuration = from.evaluationDuration ruleMap := make(map[string][]int, len(from.rules)) for fi, fromRule := range from.rules { l := ruleMap[fromRule.Name()] ruleMap[fromRule.Name()] = append(l, fi) } for i, rule := range g.rules { indexes := ruleMap[rule.Name()] if len(indexes) == 0 { continue } fi := indexes[0] g.seriesInPreviousEval[i] = from.seriesInPreviousEval[fi] ruleMap[rule.Name()] = indexes[1:] ar, ok := rule.(*AlertingRule) if !ok { continue } far, ok := from.rules[fi].(*AlertingRule) if !ok { continue } for fp, a := range far.active { ar.active[fp] = a } } } // Eval runs a single evaluation cycle in which all rules are evaluated sequentially. func (g *Group) Eval(ctx context.Context, ts time.Time) { for i, rule := range g.rules { select { case <-g.done: return default: } func(i int, rule Rule) { sp, ctx := opentracing.StartSpanFromContext(ctx, "rule") sp.SetTag("name", rule.Name()) defer func(t time.Time) { sp.Finish() evalDuration.Observe(time.Since(t).Seconds()) rule.SetEvaluationDuration(time.Since(t)) }(time.Now()) evalTotal.Inc() vector, err := rule.Eval(ctx, ts, g.opts.QueryFunc, g.opts.ExternalURL) if err != nil { // Canceled queries are intentional termination of queries. This normally // happens on shutdown and thus we skip logging of any errors here. if _, ok := err.(promql.ErrQueryCanceled); !ok { level.Warn(g.logger).Log("msg", "Evaluating rule failed", "rule", rule, "err", err) } evalFailures.Inc() return } if ar, ok := rule.(*AlertingRule); ok { ar.sendAlerts(ctx, ts, g.opts.ResendDelay, g.opts.NotifyFunc) } var ( numOutOfOrder = 0 numDuplicates = 0 ) app, err := g.opts.Appendable.Appender() if err != nil { level.Warn(g.logger).Log("msg", "creating appender failed", "err", err) return } seriesReturned := make(map[string]labels.Labels, len(g.seriesInPreviousEval[i])) for _, s := range vector { if _, err := app.Add(s.Metric, s.T, s.V); err != nil { switch err { case storage.ErrOutOfOrderSample: numOutOfOrder++ level.Debug(g.logger).Log("msg", "Rule evaluation result discarded", "err", err, "sample", s) case storage.ErrDuplicateSampleForTimestamp: numDuplicates++ level.Debug(g.logger).Log("msg", "Rule evaluation result discarded", "err", err, "sample", s) default: level.Warn(g.logger).Log("msg", "Rule evaluation result discarded", "err", err, "sample", s) } } else { seriesReturned[s.Metric.String()] = s.Metric } } if numOutOfOrder > 0 { level.Warn(g.logger).Log("msg", "Error on ingesting out-of-order result from rule evaluation", "numDropped", numOutOfOrder) } if numDuplicates > 0 { level.Warn(g.logger).Log("msg", "Error on ingesting results from rule evaluation with different value but same timestamp", "numDropped", numDuplicates) } for metric, lset := range g.seriesInPreviousEval[i] { if _, ok := seriesReturned[metric]; !ok { // Series no longer exposed, mark it stale. _, err = app.Add(lset, timestamp.FromTime(ts), math.Float64frombits(value.StaleNaN)) switch err { case nil: case storage.ErrOutOfOrderSample, storage.ErrDuplicateSampleForTimestamp: // Do not count these in logging, as this is expected if series // is exposed from a different rule. default: level.Warn(g.logger).Log("msg", "adding stale sample failed", "sample", metric, "err", err) } } } if err := app.Commit(); err != nil { level.Warn(g.logger).Log("msg", "rule sample appending failed", "err", err) } else { g.seriesInPreviousEval[i] = seriesReturned } }(i, rule) } } // RestoreForState restores the 'for' state of the alerts // by looking up last ActiveAt from storage. func (g *Group) RestoreForState(ts time.Time) { maxtMS := int64(model.TimeFromUnixNano(ts.UnixNano())) // We allow restoration only if alerts were active before after certain time. mint := ts.Add(-g.opts.OutageTolerance) mintMS := int64(model.TimeFromUnixNano(mint.UnixNano())) q, err := g.opts.TSDB.Querier(g.opts.Context, mintMS, maxtMS) if err != nil { level.Error(g.logger).Log("msg", "Failed to get Querier", "err", err) return } for _, rule := range g.Rules() { alertRule, ok := rule.(*AlertingRule) if !ok { continue } alertHoldDuration := alertRule.HoldDuration() if alertHoldDuration < g.opts.ForGracePeriod { // If alertHoldDuration is already less than grace period, we would not // like to make it wait for `g.opts.ForGracePeriod` time before firing. // Hence we skip restoration, which will make it wait for alertHoldDuration. alertRule.SetRestored(true) continue } alertRule.ForEachActiveAlert(func(a *Alert) { smpl := alertRule.forStateSample(a, time.Now(), 0) var matchers []*labels.Matcher for _, l := range smpl.Metric { mt, err := labels.NewMatcher(labels.MatchEqual, l.Name, l.Value) if err != nil { panic(err) } matchers = append(matchers, mt) } sset, err := q.Select(nil, matchers...) if err != nil { level.Error(g.logger).Log("msg", "Failed to restore 'for' state", labels.AlertName, alertRule.Name(), "stage", "Select", "err", err) return } seriesFound := false var s storage.Series for sset.Next() { // Query assures that smpl.Metric is included in sset.At().Labels(), // hence just checking the length would act like equality. // (This is faster than calling labels.Compare again as we already have some info). if len(sset.At().Labels()) == len(smpl.Metric) { s = sset.At() seriesFound = true break } } if !seriesFound { return } // Series found for the 'for' state. var t int64 var v float64 it := s.Iterator() for it.Next() { t, v = it.At() } if it.Err() != nil { level.Error(g.logger).Log("msg", "Failed to restore 'for' state", labels.AlertName, alertRule.Name(), "stage", "Iterator", "err", it.Err()) return } if value.IsStaleNaN(v) { // Alert was not active. return } downAt := time.Unix(t/1000, 0) restoredActiveAt := time.Unix(int64(v), 0) timeSpentPending := downAt.Sub(restoredActiveAt) timeRemainingPending := alertHoldDuration - timeSpentPending if timeRemainingPending <= 0 { // It means that alert was firing when prometheus went down. // In the next Eval, the state of this alert will be set back to // firing again if it's still firing in that Eval. // Nothing to be done in this case. } else if timeRemainingPending < g.opts.ForGracePeriod { // (new) restoredActiveAt = (ts + m.opts.ForGracePeriod) - alertHoldDuration // /* new firing time */ /* moving back by hold duration */ // // Proof of correctness: // firingTime = restoredActiveAt.Add(alertHoldDuration) // = ts + m.opts.ForGracePeriod - alertHoldDuration + alertHoldDuration // = ts + m.opts.ForGracePeriod // // Time remaining to fire = firingTime.Sub(ts) // = (ts + m.opts.ForGracePeriod) - ts // = m.opts.ForGracePeriod restoredActiveAt = ts.Add(g.opts.ForGracePeriod).Add(-alertHoldDuration) } else { // By shifting ActiveAt to the future (ActiveAt + some_duration), // the total pending time from the original ActiveAt // would be `alertHoldDuration + some_duration`. // Here, some_duration = downDuration. downDuration := ts.Sub(downAt) restoredActiveAt = restoredActiveAt.Add(downDuration) } a.ActiveAt = restoredActiveAt level.Debug(g.logger).Log("msg", "'for' state restored", labels.AlertName, alertRule.Name(), "restored_time", a.ActiveAt.Format(time.RFC850), "labels", a.Labels.String()) }) alertRule.SetRestored(true) } } // The Manager manages recording and alerting rules. type Manager struct { opts *ManagerOptions groups map[string]*Group mtx sync.RWMutex block chan struct{} restored bool logger log.Logger } // Appendable returns an Appender. type Appendable interface { Appender() (storage.Appender, error) } // NotifyFunc sends notifications about a set of alerts generated by the given expression. type NotifyFunc func(ctx context.Context, expr string, alerts ...*Alert) // ManagerOptions bundles options for the Manager. type ManagerOptions struct { ExternalURL *url.URL QueryFunc QueryFunc NotifyFunc NotifyFunc Context context.Context Appendable Appendable TSDB storage.Storage Logger log.Logger Registerer prometheus.Registerer OutageTolerance time.Duration ForGracePeriod time.Duration ResendDelay time.Duration } // NewManager returns an implementation of Manager, ready to be started // by calling the Run method. func NewManager(o *ManagerOptions) *Manager { m := &Manager{ groups: map[string]*Group{}, opts: o, block: make(chan struct{}), logger: o.Logger, } if o.Registerer != nil { o.Registerer.MustRegister(m) } return m } // Run starts processing of the rule manager. func (m *Manager) Run() { close(m.block) } // Stop the rule manager's rule evaluation cycles. func (m *Manager) Stop() { m.mtx.Lock() defer m.mtx.Unlock() level.Info(m.logger).Log("msg", "Stopping rule manager...") for _, eg := range m.groups { eg.stop() } level.Info(m.logger).Log("msg", "Rule manager stopped") } // Update the rule manager's state as the config requires. If // loading the new rules failed the old rule set is restored. func (m *Manager) Update(interval time.Duration, files []string) error { m.mtx.Lock() defer m.mtx.Unlock() groups, errs := m.loadGroups(interval, files...) if errs != nil { for _, e := range errs { level.Error(m.logger).Log("msg", "loading groups failed", "err", e) } return errors.New("error loading rules, previous rule set restored") } m.restored = true var wg sync.WaitGroup for _, newg := range groups { wg.Add(1) // If there is an old group with the same identifier, stop it and wait for // it to finish the current iteration. Then copy it into the new group. gn := groupKey(newg.name, newg.file) oldg, ok := m.groups[gn] delete(m.groups, gn) go func(newg *Group) { if ok { oldg.stop() newg.CopyState(oldg) } go func() { // Wait with starting evaluation until the rule manager // is told to run. This is necessary to avoid running // queries against a bootstrapping storage. <-m.block newg.run(m.opts.Context) }() wg.Done() }(newg) } // Stop remaining old groups. for _, oldg := range m.groups { oldg.stop() } wg.Wait() m.groups = groups return nil } // loadGroups reads groups from a list of files. func (m *Manager) loadGroups(interval time.Duration, filenames ...string) (map[string]*Group, []error) { groups := make(map[string]*Group) shouldRestore := !m.restored for _, fn := range filenames { rgs, errs := rulefmt.ParseFile(fn) if errs != nil { return nil, errs } for _, rg := range rgs.Groups { itv := interval if rg.Interval != 0 { itv = time.Duration(rg.Interval) } rules := make([]Rule, 0, len(rg.Rules)) for _, r := range rg.Rules { expr, err := promql.ParseExpr(r.Expr) if err != nil { return nil, []error{err} } if r.Alert != "" { rules = append(rules, NewAlertingRule( r.Alert, expr, time.Duration(r.For), labels.FromMap(r.Labels), labels.FromMap(r.Annotations), m.restored, log.With(m.logger, "alert", r.Alert), )) continue } rules = append(rules, NewRecordingRule( r.Record, expr, labels.FromMap(r.Labels), )) } groups[groupKey(rg.Name, fn)] = NewGroup(rg.Name, fn, itv, rules, shouldRestore, m.opts) } } return groups, nil } // Group names need not be unique across filenames. func groupKey(name, file string) string { return name + ";" + file } // RuleGroups returns the list of manager's rule groups. func (m *Manager) RuleGroups() []*Group { m.mtx.RLock() defer m.mtx.RUnlock() rgs := make([]*Group, 0, len(m.groups)) for _, g := range m.groups { rgs = append(rgs, g) } sort.Slice(rgs, func(i, j int) bool { return rgs[i].file < rgs[j].file && rgs[i].name < rgs[j].name }) return rgs } // Rules returns the list of the manager's rules. func (m *Manager) Rules() []Rule { m.mtx.RLock() defer m.mtx.RUnlock() var rules []Rule for _, g := range m.groups { rules = append(rules, g.rules...) } return rules } // AlertingRules returns the list of the manager's alerting rules. func (m *Manager) AlertingRules() []*AlertingRule { m.mtx.RLock() defer m.mtx.RUnlock() alerts := []*AlertingRule{} for _, rule := range m.Rules() { if alertingRule, ok := rule.(*AlertingRule); ok { alerts = append(alerts, alertingRule) } } return alerts } // Describe implements prometheus.Collector. func (m *Manager) Describe(ch chan<- *prometheus.Desc) { ch <- lastDuration ch <- groupInterval } // Collect implements prometheus.Collector. func (m *Manager) Collect(ch chan<- prometheus.Metric) { for _, g := range m.RuleGroups() { ch <- prometheus.MustNewConstMetric(lastDuration, prometheus.GaugeValue, g.GetEvaluationDuration().Seconds(), groupKey(g.file, g.name)) } for _, g := range m.RuleGroups() { ch <- prometheus.MustNewConstMetric(groupInterval, prometheus.GaugeValue, g.interval.Seconds(), groupKey(g.file, g.name)) } }