// Copyright 2013 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "container/heap" "fmt" "math" "runtime" "sort" "strings" "time" "github.com/prometheus/common/log" "github.com/prometheus/prometheus/pkg/labels" "github.com/prometheus/prometheus/storage" "golang.org/x/net/context" "github.com/prometheus/prometheus/util/stats" ) const ( // The largest SampleValue that can be converted to an int64 without overflow. maxInt64 = 9223372036854774784 // The smallest SampleValue that can be converted to an int64 without underflow. minInt64 = -9223372036854775808 ) // convertibleToInt64 returns true if v does not over-/underflow an int64. func convertibleToInt64(v float64) bool { return v <= maxInt64 && v >= minInt64 } // Value is a generic interface for values resulting from a query evaluation. type Value interface { Type() ValueType String() string } func (Matrix) Type() ValueType { return ValueTypeMatrix } func (Vector) Type() ValueType { return ValueTypeVector } func (Scalar) Type() ValueType { return ValueTypeScalar } func (String) Type() ValueType { return ValueTypeString } // ValueType describes a type of a value. type ValueType string // The valid value types. const ( ValueTypeNone = "none" ValueTypeVector = "vector" ValueTypeScalar = "scalar" ValueTypeMatrix = "matrix" ValueTypeString = "string" ) // String represents a string value. type String struct { V string T int64 } func (s String) String() string { return s.V } // Scalar is a data point that's explicitly not associated with a metric. type Scalar struct { T int64 V float64 } func (s Scalar) String() string { return "" } // Series is a stream of data points belonging to a metric. type Series struct { Metric labels.Labels Points []Point } func (s Series) String() string { return "" } // Point represents a single data point for a given timestamp. type Point struct { T int64 V float64 } func (s Point) String() string { return "" } // Sample is a single sample belonging to a metric. type Sample struct { Point Metric labels.Labels } func (s Sample) String() string { return "" } // Vector is basically only an alias for model.Samples, but the // contract is that in a Vector, all Samples have the same timestamp. type Vector []Sample func (vec Vector) String() string { entries := make([]string, len(vec)) for i, s := range vec { entries[i] = s.String() } return strings.Join(entries, "\n") } // Matrix is a slice of Seriess that implements sort.Interface and // has a String method. type Matrix []Series func (m Matrix) String() string { // TODO(fabxc): sort, or can we rely on order from the querier? strs := make([]string, len(m)) for i, ss := range m { strs[i] = ss.String() } return strings.Join(strs, "\n") } // Result holds the resulting value of an execution or an error // if any occurred. type Result struct { Err error Value Value } // Vector returns a Vector if the result value is one. An error is returned if // the result was an error or the result value is not a Vector. func (r *Result) Vector() (Vector, error) { if r.Err != nil { return nil, r.Err } v, ok := r.Value.(Vector) if !ok { return nil, fmt.Errorf("query result is not a Vector") } return v, nil } // Matrix returns a Matrix. An error is returned if // the result was an error or the result value is not a Matrix. func (r *Result) Matrix() (Matrix, error) { if r.Err != nil { return nil, r.Err } v, ok := r.Value.(Matrix) if !ok { return nil, fmt.Errorf("query result is not a range Vector") } return v, nil } // Scalar returns a Scalar value. An error is returned if // the result was an error or the result value is not a Scalar. func (r *Result) Scalar() (Scalar, error) { if r.Err != nil { return Scalar{}, r.Err } v, ok := r.Value.(Scalar) if !ok { return Scalar{}, fmt.Errorf("query result is not a Scalar") } return v, nil } func (r *Result) String() string { if r.Err != nil { return r.Err.Error() } if r.Value == nil { return "" } return r.Value.String() } type ( // ErrQueryTimeout is returned if a query timed out during processing. ErrQueryTimeout string // ErrQueryCanceled is returned if a query was canceled during processing. ErrQueryCanceled string ) func (e ErrQueryTimeout) Error() string { return fmt.Sprintf("query timed out in %s", string(e)) } func (e ErrQueryCanceled) Error() string { return fmt.Sprintf("query was canceled in %s", string(e)) } // A Query is derived from an a raw query string and can be run against an engine // it is associated with. type Query interface { // Exec processes the query and Exec(ctx context.Context) *Result // Statement returns the parsed statement of the query. Statement() Statement // Stats returns statistics about the lifetime of the query. Stats() *stats.TimerGroup // Cancel signals that a running query execution should be aborted. Cancel() } // query implements the Query interface. type query struct { // The original query string. q string // Statement of the parsed query. stmt Statement // Timer stats for the query execution. stats *stats.TimerGroup // Cancelation function for the query. cancel func() // The engine against which the query is executed. ng *Engine } // Statement implements the Query interface. func (q *query) Statement() Statement { return q.stmt } // Stats implements the Query interface. func (q *query) Stats() *stats.TimerGroup { return q.stats } // Cancel implements the Query interface. func (q *query) Cancel() { if q.cancel != nil { q.cancel() } } // Exec implements the Query interface. func (q *query) Exec(ctx context.Context) *Result { res, err := q.ng.exec(ctx, q) return &Result{Err: err, Value: res} } // contextDone returns an error if the context was canceled or timed out. func contextDone(ctx context.Context, env string) error { select { case <-ctx.Done(): err := ctx.Err() switch err { case context.Canceled: return ErrQueryCanceled(env) case context.DeadlineExceeded: return ErrQueryTimeout(env) default: return err } default: return nil } } // Engine handles the lifetime of queries from beginning to end. // It is connected to a querier. type Engine struct { // A Querier constructor against an underlying storage. queryable Queryable // The gate limiting the maximum number of concurrent and waiting queries. gate *queryGate options *EngineOptions } // Queryable allows opening a storage querier. type Queryable interface { Querier(mint, maxt int64) (storage.Querier, error) } // NewEngine returns a new engine. func NewEngine(queryable Queryable, o *EngineOptions) *Engine { if o == nil { o = DefaultEngineOptions } return &Engine{ queryable: queryable, gate: newQueryGate(o.MaxConcurrentQueries), options: o, } } // EngineOptions contains configuration parameters for an Engine. type EngineOptions struct { MaxConcurrentQueries int Timeout time.Duration } // DefaultEngineOptions are the default engine options. var DefaultEngineOptions = &EngineOptions{ MaxConcurrentQueries: 20, Timeout: 2 * time.Minute, } // NewInstantQuery returns an evaluation query for the given expression at the given time. func (ng *Engine) NewInstantQuery(qs string, ts time.Time) (Query, error) { expr, err := ParseExpr(qs) if err != nil { return nil, err } qry := ng.newQuery(expr, ts, ts, 0) qry.q = qs return qry, nil } // NewRangeQuery returns an evaluation query for the given time range and with // the resolution set by the interval. func (ng *Engine) NewRangeQuery(qs string, start, end time.Time, interval time.Duration) (Query, error) { expr, err := ParseExpr(qs) if err != nil { return nil, err } if expr.Type() != ValueTypeVector && expr.Type() != ValueTypeScalar { return nil, fmt.Errorf("invalid expression type %q for range query, must be Scalar or instant Vector", documentedType(expr.Type())) } qry := ng.newQuery(expr, start, end, interval) qry.q = qs return qry, nil } func (ng *Engine) newQuery(expr Expr, start, end time.Time, interval time.Duration) *query { es := &EvalStmt{ Expr: expr, Start: start, End: end, Interval: interval, } qry := &query{ stmt: es, ng: ng, stats: stats.NewTimerGroup(), } return qry } // testStmt is an internal helper statement that allows execution // of an arbitrary function during handling. It is used to test the Engine. type testStmt func(context.Context) error func (testStmt) String() string { return "test statement" } func (testStmt) stmt() {} func (ng *Engine) newTestQuery(f func(context.Context) error) Query { qry := &query{ q: "test statement", stmt: testStmt(f), ng: ng, stats: stats.NewTimerGroup(), } return qry } // exec executes the query. // // At this point per query only one EvalStmt is evaluated. Alert and record // statements are not handled by the Engine. func (ng *Engine) exec(ctx context.Context, q *query) (Value, error) { ctx, cancel := context.WithTimeout(ctx, ng.options.Timeout) q.cancel = cancel queueTimer := q.stats.GetTimer(stats.ExecQueueTime).Start() if err := ng.gate.Start(ctx); err != nil { return nil, err } defer ng.gate.Done() queueTimer.Stop() // Cancel when execution is done or an error was raised. defer q.cancel() const env = "query execution" evalTimer := q.stats.GetTimer(stats.TotalEvalTime).Start() defer evalTimer.Stop() // The base context might already be canceled on the first iteration (e.g. during shutdown). if err := contextDone(ctx, env); err != nil { return nil, err } switch s := q.Statement().(type) { case *EvalStmt: return ng.execEvalStmt(ctx, q, s) case testStmt: return nil, s(ctx) } panic(fmt.Errorf("promql.Engine.exec: unhandled statement of type %T", q.Statement())) } func timeMilliseconds(t time.Time) int64 { return t.UnixNano() / int64(time.Millisecond/time.Nanosecond) } func durationMilliseconds(d time.Duration) int64 { return int64(d / (time.Millisecond / time.Nanosecond)) } // execEvalStmt evaluates the expression of an evaluation statement for the given time range. func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *EvalStmt) (Value, error) { prepareTimer := query.stats.GetTimer(stats.QueryPreparationTime).Start() querier, err := ng.populateIterators(ctx, s) prepareTimer.Stop() if err != nil { return nil, err } defer querier.Close() evalTimer := query.stats.GetTimer(stats.InnerEvalTime).Start() // Instant evaluation. if s.Start == s.End && s.Interval == 0 { evaluator := &evaluator{ Timestamp: timeMilliseconds(s.Start), ctx: ctx, } val, err := evaluator.Eval(s.Expr) if err != nil { return nil, err } evalTimer.Stop() return val, nil } numSteps := int(s.End.Sub(s.Start) / s.Interval) // Range evaluation. Seriess := map[uint64]Series{} for ts := s.Start; !ts.After(s.End); ts = ts.Add(s.Interval) { if err := contextDone(ctx, "range evaluation"); err != nil { return nil, err } evaluator := &evaluator{ Timestamp: timeMilliseconds(ts), ctx: ctx, } val, err := evaluator.Eval(s.Expr) if err != nil { return nil, err } switch v := val.(type) { case Scalar: // As the expression type does not change we can safely default to 0 // as the fingerprint for Scalar expressions. ss, ok := Seriess[0] if !ok { ss = Series{Points: make([]Point, 0, numSteps)} Seriess[0] = ss } ss.Points = append(ss.Points, Point(v)) case Vector: for _, sample := range v { h := sample.Metric.Hash() ss, ok := Seriess[h] if !ok { ss = Series{ Metric: sample.Metric, Points: make([]Point, 0, numSteps), } Seriess[h] = ss } ss.Points = append(ss.Points, sample.Point) } default: panic(fmt.Errorf("promql.Engine.exec: invalid expression type %q", val.Type())) } } evalTimer.Stop() if err := contextDone(ctx, "expression evaluation"); err != nil { return nil, err } appendTimer := query.stats.GetTimer(stats.ResultAppendTime).Start() mat := Matrix{} for _, ss := range Seriess { mat = append(mat, ss) } appendTimer.Stop() if err := contextDone(ctx, "expression evaluation"); err != nil { return nil, err } // Turn Matrix type with protected metric into model.Matrix. resMatrix := mat // TODO(fabxc): order ensured by storage? // sortTimer := query.stats.GetTimer(stats.ResultSortTime).Start() // sort.Sort(resMatrix) // sortTimer.Stop() return resMatrix, nil } func (ng *Engine) populateIterators(ctx context.Context, s *EvalStmt) (storage.Querier, error) { var maxOffset time.Duration Inspect(s.Expr, func(node Node) bool { switch n := node.(type) { case *VectorSelector: if n.Offset > maxOffset { maxOffset = n.Offset + StalenessDelta } case *MatrixSelector: if n.Offset > maxOffset { maxOffset = n.Offset + n.Range } } return true }) mint := s.Start.Add(-maxOffset) querier, err := ng.queryable.Querier(timeMilliseconds(mint), timeMilliseconds(s.End)) if err != nil { return nil, err } Inspect(s.Expr, func(node Node) bool { switch n := node.(type) { case *VectorSelector: n.series, err = expandSeriesSet(querier.Select(n.LabelMatchers...)) if err != nil { return false } for _, s := range n.series { it := storage.NewBuffer(s.Iterator(), durationMilliseconds(StalenessDelta)) n.iterators = append(n.iterators, it) } case *MatrixSelector: n.series, err = expandSeriesSet(querier.Select(n.LabelMatchers...)) if err != nil { return false } for _, s := range n.series { it := storage.NewBuffer(s.Iterator(), durationMilliseconds(n.Range)) n.iterators = append(n.iterators, it) } } return true }) return querier, err } func expandSeriesSet(it storage.SeriesSet) (res []storage.Series, err error) { for it.Next() { res = append(res, it.Series()) } return res, it.Err() } // An evaluator evaluates given expressions at a fixed timestamp. It is attached to an // engine through which it connects to a querier and reports errors. On timeout or // cancellation of its context it terminates. type evaluator struct { ctx context.Context Timestamp int64 // time in milliseconds } // fatalf causes a panic with the input formatted into an error. func (ev *evaluator) errorf(format string, args ...interface{}) { ev.error(fmt.Errorf(format, args...)) } // fatal causes a panic with the given error. func (ev *evaluator) error(err error) { panic(err) } // recover is the handler that turns panics into returns from the top level of evaluation. func (ev *evaluator) recover(errp *error) { e := recover() if e != nil { if _, ok := e.(runtime.Error); ok { // Print the stack trace but do not inhibit the running application. buf := make([]byte, 64<<10) buf = buf[:runtime.Stack(buf, false)] log.Errorf("parser panic: %v\n%s", e, buf) *errp = fmt.Errorf("unexpected error") } else { *errp = e.(error) } } } // evalScalar attempts to evaluate e to a Scalar value and errors otherwise. func (ev *evaluator) evalScalar(e Expr) Scalar { val := ev.eval(e) sv, ok := val.(Scalar) if !ok { ev.errorf("expected Scalar but got %s", documentedType(val.Type())) } return sv } // evalVector attempts to evaluate e to a Vector value and errors otherwise. func (ev *evaluator) evalVector(e Expr) Vector { val := ev.eval(e) vec, ok := val.(Vector) if !ok { ev.errorf("expected instant Vector but got %s", documentedType(val.Type())) } return vec } // evalInt attempts to evaluate e into an integer and errors otherwise. func (ev *evaluator) evalInt(e Expr) int64 { sc := ev.evalScalar(e) if !convertibleToInt64(sc.V) { ev.errorf("Scalar value %v overflows int64", sc.V) } return int64(sc.V) } // evalFloat attempts to evaluate e into a float and errors otherwise. func (ev *evaluator) evalFloat(e Expr) float64 { sc := ev.evalScalar(e) return float64(sc.V) } // evalMatrix attempts to evaluate e into a Matrix and errors otherwise. // The error message uses the term "range Vector" to match the user facing // documentation. func (ev *evaluator) evalMatrix(e Expr) Matrix { val := ev.eval(e) mat, ok := val.(Matrix) if !ok { ev.errorf("expected range Vector but got %s", documentedType(val.Type())) } return mat } // evalString attempts to evaluate e to a string value and errors otherwise. func (ev *evaluator) evalString(e Expr) String { val := ev.eval(e) sv, ok := val.(String) if !ok { ev.errorf("expected string but got %s", documentedType(val.Type())) } return sv } // evalOneOf evaluates e and errors unless the result is of one of the given types. func (ev *evaluator) evalOneOf(e Expr, t1, t2 ValueType) Value { val := ev.eval(e) if val.Type() != t1 && val.Type() != t2 { ev.errorf("expected %s or %s but got %s", documentedType(t1), documentedType(t2), documentedType(val.Type())) } return val } func (ev *evaluator) Eval(expr Expr) (v Value, err error) { defer ev.recover(&err) return ev.eval(expr), nil } // eval evaluates the given expression as the given AST expression node requires. func (ev *evaluator) eval(expr Expr) Value { // This is the top-level evaluation method. // Thus, we check for timeout/cancelation here. if err := contextDone(ev.ctx, "expression evaluation"); err != nil { ev.error(err) } switch e := expr.(type) { case *AggregateExpr: Vector := ev.evalVector(e.Expr) return ev.aggregation(e.Op, e.Grouping, e.Without, e.KeepCommonLabels, e.Param, Vector) case *BinaryExpr: lhs := ev.evalOneOf(e.LHS, ValueTypeScalar, ValueTypeVector) rhs := ev.evalOneOf(e.RHS, ValueTypeScalar, ValueTypeVector) switch lt, rt := lhs.Type(), rhs.Type(); { case lt == ValueTypeScalar && rt == ValueTypeScalar: return Scalar{ V: scalarBinop(e.Op, lhs.(Scalar).V, rhs.(Scalar).V), T: ev.Timestamp, } case lt == ValueTypeVector && rt == ValueTypeVector: switch e.Op { case itemLAND: return ev.VectorAnd(lhs.(Vector), rhs.(Vector), e.VectorMatching) case itemLOR: return ev.VectorOr(lhs.(Vector), rhs.(Vector), e.VectorMatching) case itemLUnless: return ev.VectorUnless(lhs.(Vector), rhs.(Vector), e.VectorMatching) default: return ev.VectorBinop(e.Op, lhs.(Vector), rhs.(Vector), e.VectorMatching, e.ReturnBool) } case lt == ValueTypeVector && rt == ValueTypeScalar: return ev.VectorscalarBinop(e.Op, lhs.(Vector), rhs.(Scalar), false, e.ReturnBool) case lt == ValueTypeScalar && rt == ValueTypeVector: return ev.VectorscalarBinop(e.Op, rhs.(Vector), lhs.(Scalar), true, e.ReturnBool) } case *Call: return e.Func.Call(ev, e.Args) case *MatrixSelector: return ev.MatrixSelector(e) case *NumberLiteral: return Scalar{V: e.Val, T: ev.Timestamp} case *ParenExpr: return ev.eval(e.Expr) case *StringLiteral: return String{V: e.Val, T: ev.Timestamp} case *UnaryExpr: se := ev.evalOneOf(e.Expr, ValueTypeScalar, ValueTypeVector) // Only + and - are possible operators. if e.Op == itemSUB { switch v := se.(type) { case Scalar: v.V = -v.V case Vector: for i, sv := range v { v[i].V = -sv.V } } } return se case *VectorSelector: return ev.VectorSelector(e) } panic(fmt.Errorf("unhandled expression of type: %T", expr)) } // VectorSelector evaluates a *VectorSelector expression. func (ev *evaluator) VectorSelector(node *VectorSelector) Vector { var ( ok bool vec = make(Vector, 0, len(node.series)) refTime = ev.Timestamp - durationMilliseconds(node.Offset) ) for i, it := range node.iterators { if !it.Seek(refTime) { if it.Err() != nil { ev.error(it.Err()) } continue } t, v := it.Values() if t > refTime { t, v, ok = it.PeekBack() if !ok || t < refTime-durationMilliseconds(StalenessDelta) { continue } } vec = append(vec, Sample{ Metric: toLabels(node.series[i].Labels()), Point: Point{V: v, T: ev.Timestamp}, }) } return vec } // MatrixSelector evaluates a *MatrixSelector expression. func (ev *evaluator) MatrixSelector(node *MatrixSelector) Matrix { var ( offset = durationMilliseconds(node.Offset) maxt = ev.Timestamp - offset mint = maxt - durationMilliseconds(node.Range) Matrix = make(Matrix, 0, len(node.series)) ) for i, it := range node.iterators { ss := Series{ Metric: toLabels(node.series[i].Labels()), Points: make([]Point, 0, 16), } if !it.Seek(maxt) { if it.Err() != nil { ev.error(it.Err()) } continue } buf := it.Buffer() for buf.Next() { t, v := buf.Values() // Values in the buffer are guaranteed to be smaller than maxt. if t >= mint { ss.Points = append(ss.Points, Point{T: t + offset, V: v}) } } // The seeked sample might also be in the range. t, v := it.Values() if t == maxt { ss.Points = append(ss.Points, Point{T: t + offset, V: v}) } Matrix = append(Matrix, ss) } return Matrix } func (ev *evaluator) VectorAnd(lhs, rhs Vector, matching *VectorMatching) Vector { if matching.Card != CardManyToMany { panic("set operations must only use many-to-many matching") } sigf := signatureFunc(matching.On, matching.MatchingLabels...) var result Vector // The set of signatures for the right-hand side Vector. rightSigs := map[uint64]struct{}{} // Add all rhs samples to a map so we can easily find matches later. for _, rs := range rhs { rightSigs[sigf(rs.Metric)] = struct{}{} } for _, ls := range lhs { // If there's a matching entry in the right-hand side Vector, add the sample. if _, ok := rightSigs[sigf(ls.Metric)]; ok { result = append(result, ls) } } return result } func (ev *evaluator) VectorOr(lhs, rhs Vector, matching *VectorMatching) Vector { if matching.Card != CardManyToMany { panic("set operations must only use many-to-many matching") } sigf := signatureFunc(matching.On, matching.MatchingLabels...) var result Vector leftSigs := map[uint64]struct{}{} // Add everything from the left-hand-side Vector. for _, ls := range lhs { leftSigs[sigf(ls.Metric)] = struct{}{} result = append(result, ls) } // Add all right-hand side elements which have not been added from the left-hand side. for _, rs := range rhs { if _, ok := leftSigs[sigf(rs.Metric)]; !ok { result = append(result, rs) } } return result } func (ev *evaluator) VectorUnless(lhs, rhs Vector, matching *VectorMatching) Vector { if matching.Card != CardManyToMany { panic("set operations must only use many-to-many matching") } sigf := signatureFunc(matching.On, matching.MatchingLabels...) rightSigs := map[uint64]struct{}{} for _, rs := range rhs { rightSigs[sigf(rs.Metric)] = struct{}{} } var result Vector for _, ls := range lhs { if _, ok := rightSigs[sigf(ls.Metric)]; !ok { result = append(result, ls) } } return result } // VectorBinop evaluates a binary operation between two Vectors, excluding set operators. func (ev *evaluator) VectorBinop(op itemType, lhs, rhs Vector, matching *VectorMatching, returnBool bool) Vector { if matching.Card == CardManyToMany { panic("many-to-many only allowed for set operators") } var ( result = Vector{} sigf = signatureFunc(matching.On, matching.MatchingLabels...) ) // The control flow below handles one-to-one or many-to-one matching. // For one-to-many, swap sidedness and account for the swap when calculating // values. if matching.Card == CardOneToMany { lhs, rhs = rhs, lhs } // All samples from the rhs hashed by the matching label/values. rightSigs := map[uint64]Sample{} // Add all rhs samples to a map so we can easily find matches later. for _, rs := range rhs { sig := sigf(rs.Metric) // The rhs is guaranteed to be the 'one' side. Having multiple samples // with the same signature means that the matching is many-to-many. if _, found := rightSigs[sig]; found { // Many-to-many matching not allowed. ev.errorf("many-to-many matching not allowed: matching labels must be unique on one side") } rightSigs[sig] = rs } // Tracks the match-signature. For one-to-one operations the value is nil. For many-to-one // the value is a set of signatures to detect duplicated result elements. matchedSigs := map[uint64]map[uint64]struct{}{} // For all lhs samples find a respective rhs sample and perform // the binary operation. for _, ls := range lhs { sig := sigf(ls.Metric) rs, found := rightSigs[sig] // Look for a match in the rhs Vector. if !found { continue } // Account for potentially swapped sidedness. vl, vr := ls.V, rs.V if matching.Card == CardOneToMany { vl, vr = vr, vl } value, keep := vectorElemBinop(op, vl, vr) if returnBool { if keep { value = 1.0 } else { value = 0.0 } } else if !keep { continue } metric := resultMetric(ls.Metric, rs.Metric, op, matching) insertedSigs, exists := matchedSigs[sig] if matching.Card == CardOneToOne { if exists { ev.errorf("multiple matches for labels: many-to-one matching must be explicit (group_left/group_right)") } matchedSigs[sig] = nil // Set existence to true. } else { // In many-to-one matching the grouping labels have to ensure a unique metric // for the result Vector. Check whether those labels have already been added for // the same matching labels. insertSig := metric.Hash() if !exists { insertedSigs = map[uint64]struct{}{} matchedSigs[sig] = insertedSigs } else if _, duplicate := insertedSigs[insertSig]; duplicate { ev.errorf("multiple matches for labels: grouping labels must ensure unique matches") } insertedSigs[insertSig] = struct{}{} } result = append(result, Sample{ Metric: metric, Point: Point{V: value, T: ev.Timestamp}, }) } return result } func hashWithoutLabels(lset labels.Labels, names ...string) uint64 { cm := make(labels.Labels, 0, len(lset)-len(names)-1) Outer: for _, l := range lset { for _, n := range names { if n == l.Name { continue Outer } } if l.Name == labels.MetricName { continue } cm = append(cm, l) } return cm.Hash() } func hashForLabels(lset labels.Labels, names ...string) uint64 { cm := make(labels.Labels, 0, len(names)) for _, l := range lset { for _, n := range names { if l.Name == n { cm = append(cm, l) break } } } return cm.Hash() } // signatureFunc returns a function that calculates the signature for a metric // ignoring the provided labels. If on, then the given labels are only used instead. func signatureFunc(on bool, names ...string) func(labels.Labels) uint64 { // TODO(fabxc): ensure names are sorted and then use that and sortedness // of labels by names to speed up the operations below. // Alternatively, inline the hashing and don't build new label sets. if on { return func(lset labels.Labels) uint64 { return hashForLabels(lset, names...) } } return func(lset labels.Labels) uint64 { return hashWithoutLabels(lset, names...) } } // resultMetric returns the metric for the given sample(s) based on the Vector // binary operation and the matching options. func resultMetric(lhs, rhs labels.Labels, op itemType, matching *VectorMatching) labels.Labels { lb := labels.NewBuilder(lhs) if shouldDropMetricName(op) { lb.Del(labels.MetricName) } if matching.Card == CardOneToOne { if matching.On { Outer: for _, l := range lhs { for _, n := range matching.MatchingLabels { if l.Name == n { continue Outer } } lb.Del(l.Name) } } else { lb.Del(matching.MatchingLabels...) } } for _, ln := range matching.Include { // Included labels from the `group_x` modifier are taken from the "one"-side. if v := rhs.Get(ln); v != "" { lb.Set(ln, v) } else { lb.Del(ln) } } return lb.Labels() } // VectorscalarBinop evaluates a binary operation between a Vector and a Scalar. func (ev *evaluator) VectorscalarBinop(op itemType, lhs Vector, rhs Scalar, swap, returnBool bool) Vector { vec := make(Vector, 0, len(lhs)) for _, lhsSample := range lhs { lv, rv := lhsSample.V, rhs.V // lhs always contains the Vector. If the original position was different // swap for calculating the value. if swap { lv, rv = rv, lv } value, keep := vectorElemBinop(op, lv, rv) if returnBool { if keep { value = 1.0 } else { value = 0.0 } keep = true } if keep { lhsSample.V = value if shouldDropMetricName(op) { lhsSample.Metric = dropMetricName(lhsSample.Metric) } vec = append(vec, lhsSample) } } return vec } func dropMetricName(l labels.Labels) labels.Labels { return labels.NewBuilder(l).Del(labels.MetricName).Labels() } // scalarBinop evaluates a binary operation between two Scalars. func scalarBinop(op itemType, lhs, rhs float64) float64 { switch op { case itemADD: return lhs + rhs case itemSUB: return lhs - rhs case itemMUL: return lhs * rhs case itemDIV: return lhs / rhs case itemPOW: return math.Pow(float64(lhs), float64(rhs)) case itemMOD: return math.Mod(float64(lhs), float64(rhs)) case itemEQL: return btos(lhs == rhs) case itemNEQ: return btos(lhs != rhs) case itemGTR: return btos(lhs > rhs) case itemLSS: return btos(lhs < rhs) case itemGTE: return btos(lhs >= rhs) case itemLTE: return btos(lhs <= rhs) } panic(fmt.Errorf("operator %q not allowed for Scalar operations", op)) } // vectorElemBinop evaluates a binary operation between two Vector elements. func vectorElemBinop(op itemType, lhs, rhs float64) (float64, bool) { switch op { case itemADD: return lhs + rhs, true case itemSUB: return lhs - rhs, true case itemMUL: return lhs * rhs, true case itemDIV: return lhs / rhs, true case itemPOW: return math.Pow(float64(lhs), float64(rhs)), true case itemMOD: return math.Mod(float64(lhs), float64(rhs)), true case itemEQL: return lhs, lhs == rhs case itemNEQ: return lhs, lhs != rhs case itemGTR: return lhs, lhs > rhs case itemLSS: return lhs, lhs < rhs case itemGTE: return lhs, lhs >= rhs case itemLTE: return lhs, lhs <= rhs } panic(fmt.Errorf("operator %q not allowed for operations between Vectors", op)) } // intersection returns the metric of common label/value pairs of two input metrics. func intersection(ls1, ls2 labels.Labels) labels.Labels { res := make(labels.Labels, 0, 5) for _, l1 := range ls1 { for _, l2 := range ls2 { if l1.Name == l2.Name && l1.Value == l2.Value { res = append(res, l1) continue } } } return res } type groupedAggregation struct { labels labels.Labels value float64 valuesSquaredSum float64 groupCount int heap vectorByValueHeap reverseHeap vectorByReverseValueHeap } // aggregation evaluates an aggregation operation on a Vector. func (ev *evaluator) aggregation(op itemType, grouping []string, without bool, keepCommon bool, param Expr, vec Vector) Vector { result := map[uint64]*groupedAggregation{} var k int64 if op == itemTopK || op == itemBottomK { k = ev.evalInt(param) if k < 1 { return Vector{} } } var q float64 if op == itemQuantile { q = ev.evalFloat(param) } var valueLabel string if op == itemCountValues { valueLabel = ev.evalString(param).V if !without { grouping = append(grouping, valueLabel) } } for _, s := range vec { lb := labels.NewBuilder(s.Metric) if without || keepCommon { lb.Del(labels.MetricName) } if op == itemCountValues { lb.Set(valueLabel, fmt.Sprintf("%f", s.V)) // TODO(fabxc): use correct printing. } var ( metric = lb.Labels() groupingKey = metric.Hash() ) group, ok := result[groupingKey] // Add a new group if it doesn't exist. if !ok { var m labels.Labels if keepCommon || without { m = metric } else { m = make(labels.Labels, 0, len(grouping)) for _, l := range s.Metric { for _, n := range grouping { if l.Name == n { m = append(m, labels.Label{Name: n, Value: l.Value}) break } } } } result[groupingKey] = &groupedAggregation{ labels: m, value: s.V, valuesSquaredSum: s.V * s.V, groupCount: 1, } if op == itemTopK || op == itemQuantile { result[groupingKey].heap = make(vectorByValueHeap, 0, k) heap.Push(&result[groupingKey].heap, &Sample{ Point: Point{V: s.V}, Metric: s.Metric, }) } else if op == itemBottomK { result[groupingKey].reverseHeap = make(vectorByReverseValueHeap, 0, k) heap.Push(&result[groupingKey].reverseHeap, &Sample{ Point: Point{V: s.V}, Metric: s.Metric, }) } continue } // Add the sample to the existing group. if keepCommon { group.labels = intersection(group.labels, s.Metric) } switch op { case itemSum: group.value += s.V case itemAvg: group.value += s.V group.groupCount++ case itemMax: if group.value < s.V || math.IsNaN(float64(group.value)) { group.value = s.V } case itemMin: if group.value > s.V || math.IsNaN(float64(group.value)) { group.value = s.V } case itemCount, itemCountValues: group.groupCount++ case itemStdvar, itemStddev: group.value += s.V group.valuesSquaredSum += s.V * s.V group.groupCount++ case itemTopK: if int64(len(group.heap)) < k || group.heap[0].V < s.V || math.IsNaN(float64(group.heap[0].V)) { if int64(len(group.heap)) == k { heap.Pop(&group.heap) } heap.Push(&group.heap, &Sample{ Point: Point{V: s.V}, Metric: s.Metric, }) } case itemBottomK: if int64(len(group.reverseHeap)) < k || group.reverseHeap[0].V > s.V || math.IsNaN(float64(group.reverseHeap[0].V)) { if int64(len(group.reverseHeap)) == k { heap.Pop(&group.reverseHeap) } heap.Push(&group.reverseHeap, &Sample{ Point: Point{V: s.V}, Metric: s.Metric, }) } case itemQuantile: group.heap = append(group.heap, s) default: panic(fmt.Errorf("expected aggregation operator but got %q", op)) } } // Construct the result Vector from the aggregated groups. resultVector := make(Vector, 0, len(result)) for _, aggr := range result { switch op { case itemAvg: aggr.value = aggr.value / float64(aggr.groupCount) case itemCount, itemCountValues: aggr.value = float64(aggr.groupCount) case itemStdvar: avg := float64(aggr.value) / float64(aggr.groupCount) aggr.value = float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg case itemStddev: avg := float64(aggr.value) / float64(aggr.groupCount) aggr.value = math.Sqrt(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg) case itemTopK: // The heap keeps the lowest value on top, so reverse it. sort.Sort(sort.Reverse(aggr.heap)) for _, v := range aggr.heap { resultVector = append(resultVector, Sample{ Metric: v.Metric, Point: Point{V: v.V, T: ev.Timestamp}, }) } continue // Bypass default append. case itemBottomK: // The heap keeps the lowest value on top, so reverse it. sort.Sort(sort.Reverse(aggr.reverseHeap)) for _, v := range aggr.reverseHeap { resultVector = append(resultVector, Sample{ Metric: v.Metric, Point: Point{V: v.V, T: ev.Timestamp}, }) } continue // Bypass default append. case itemQuantile: aggr.value = quantile(q, aggr.heap) default: // For other aggregations, we already have the right value. } resultVector = append(resultVector, Sample{ Metric: aggr.labels, Point: Point{V: aggr.value, T: ev.Timestamp}, }) } return resultVector } // btos returns 1 if b is true, 0 otherwise. func btos(b bool) float64 { if b { return 1 } return 0 } // shouldDropMetricName returns whether the metric name should be dropped in the // result of the op operation. func shouldDropMetricName(op itemType) bool { switch op { case itemADD, itemSUB, itemDIV, itemMUL, itemMOD: return true default: return false } } // StalenessDelta determines the time since the last sample after which a time // series is considered stale. var StalenessDelta = 5 * time.Minute // A queryGate controls the maximum number of concurrently running and waiting queries. type queryGate struct { ch chan struct{} } // newQueryGate returns a query gate that limits the number of queries // being concurrently executed. func newQueryGate(length int) *queryGate { return &queryGate{ ch: make(chan struct{}, length), } } // Start blocks until the gate has a free spot or the context is done. func (g *queryGate) Start(ctx context.Context) error { select { case <-ctx.Done(): return contextDone(ctx, "query queue") case g.ch <- struct{}{}: return nil } } // Done releases a single spot in the gate. func (g *queryGate) Done() { select { case <-g.ch: default: panic("engine.queryGate.Done: more operations done than started") } } // documentedType returns the internal type to the equivalent // user facing terminology as defined in the documentation. func documentedType(t ValueType) string { switch t { case "Vector": return "instant Vector" case "Matrix": return "range Vector" default: return string(t) } }