// Copyright 2013 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package remote import ( "context" "math" "strconv" "sync" "sync/atomic" "time" "github.com/go-kit/kit/log" "github.com/go-kit/kit/log/level" "github.com/gogo/protobuf/proto" "github.com/golang/snappy" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/config" pkgrelabel "github.com/prometheus/prometheus/pkg/relabel" "github.com/prometheus/prometheus/prompb" "github.com/prometheus/prometheus/relabel" "github.com/prometheus/tsdb" ) // String constants for instrumentation. const ( namespace = "prometheus" subsystem = "remote_storage" queue = "queue" // We track samples in/out and how long pushes take using an Exponentially // Weighted Moving Average. ewmaWeight = 0.2 shardUpdateDuration = 10 * time.Second // Allow 30% too many shards before scaling down. shardToleranceFraction = 0.3 ) var ( succeededSamplesTotal = prometheus.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Subsystem: subsystem, Name: "succeeded_samples_total", Help: "Total number of samples successfully sent to remote storage.", }, []string{queue}, ) failedSamplesTotal = prometheus.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Subsystem: subsystem, Name: "failed_samples_total", Help: "Total number of samples which failed on send to remote storage, non-recoverable errors.", }, []string{queue}, ) retriedSamplesTotal = prometheus.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Subsystem: subsystem, Name: "retried_samples_total", Help: "Total number of samples which failed on send to remote storage but were retried because the send error was recoverable.", }, []string{queue}, ) droppedSamplesTotal = prometheus.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Subsystem: subsystem, Name: "dropped_samples_total", Help: "Total number of samples which were dropped after being read from the WAL before being sent via remote write.", }, []string{queue}, ) enqueueRetriesTotal = prometheus.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Subsystem: subsystem, Name: "enqueue_retries_total", Help: "Total number of times enqueue has failed because a shards queue was full.", }, []string{queue}, ) sentBatchDuration = prometheus.NewHistogramVec( prometheus.HistogramOpts{ Namespace: namespace, Subsystem: subsystem, Name: "sent_batch_duration_seconds", Help: "Duration of sample batch send calls to the remote storage.", Buckets: prometheus.DefBuckets, }, []string{queue}, ) queueLastSendTimestamp = prometheus.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "queue_last_send_timestamp", Help: "Timestamp of the last successful send by this queue.", }, []string{queue}, ) queueHighestSentTimestamp = prometheus.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "queue_highest_sent_timestamp", Help: "Timestamp from a WAL sample, the highest timestamp successfully sent by this queue, in seconds since epoch.", }, []string{queue}, ) queuePendingSamples = prometheus.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "pending_samples", Help: "The number of samples pending in the queues shards to be sent to the remote storage.", }, []string{queue}, ) shardCapacity = prometheus.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "shard_capacity", Help: "The capacity of each shard of the queue used for parallel sending to the remote storage.", }, []string{queue}, ) numShards = prometheus.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "shards", Help: "The number of shards used for parallel sending to the remote storage.", }, []string{queue}, ) ) func init() { prometheus.MustRegister(succeededSamplesTotal) prometheus.MustRegister(failedSamplesTotal) prometheus.MustRegister(retriedSamplesTotal) prometheus.MustRegister(droppedSamplesTotal) prometheus.MustRegister(enqueueRetriesTotal) prometheus.MustRegister(sentBatchDuration) prometheus.MustRegister(queueLastSendTimestamp) prometheus.MustRegister(queueHighestSentTimestamp) prometheus.MustRegister(queuePendingSamples) prometheus.MustRegister(shardCapacity) prometheus.MustRegister(numShards) } // StorageClient defines an interface for sending a batch of samples to an // external timeseries database. type StorageClient interface { // Store stores the given samples in the remote storage. Store(context.Context, []byte) error // Name identifies the remote storage implementation. Name() string } // QueueManager manages a queue of samples to be sent to the Storage // indicated by the provided StorageClient. Implements writeTo interface // used by WAL Watcher. type QueueManager struct { logger log.Logger flushDeadline time.Duration cfg config.QueueConfig externalLabels model.LabelSet relabelConfigs []*pkgrelabel.Config client StorageClient queueName string watcher *WALWatcher lastSendTimestampMetric prometheus.Gauge highestSentTimestampMetric prometheus.Gauge pendingSamplesMetric prometheus.Gauge enqueueRetriesMetric prometheus.Counter lastSendTimestamp int64 highestSentTimestamp int64 timestampLock sync.Mutex highestTimestampIn *int64 // highest timestamp of any sample ingested by remote storage via scrape (Appender) seriesMtx sync.Mutex seriesLabels map[uint64][]prompb.Label seriesSegmentIndexes map[uint64]int droppedSeries map[uint64]struct{} shards *shards numShards int reshardChan chan int quit chan struct{} wg sync.WaitGroup samplesIn, samplesOut, samplesOutDuration *ewmaRate integralAccumulator float64 } // NewQueueManager builds a new QueueManager. func NewQueueManager(logger log.Logger, walDir string, samplesIn *ewmaRate, highestTimestampIn *int64, cfg config.QueueConfig, externalLabels model.LabelSet, relabelConfigs []*pkgrelabel.Config, client StorageClient, flushDeadline time.Duration) *QueueManager { if logger == nil { logger = log.NewNopLogger() } else { logger = log.With(logger, "queue", client.Name()) } t := &QueueManager{ logger: logger, flushDeadline: flushDeadline, cfg: cfg, externalLabels: externalLabels, relabelConfigs: relabelConfigs, client: client, queueName: client.Name(), highestTimestampIn: highestTimestampIn, seriesLabels: make(map[uint64][]prompb.Label), seriesSegmentIndexes: make(map[uint64]int), droppedSeries: make(map[uint64]struct{}), numShards: cfg.MinShards, reshardChan: make(chan int), quit: make(chan struct{}), samplesIn: samplesIn, samplesOut: newEWMARate(ewmaWeight, shardUpdateDuration), samplesOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration), } t.lastSendTimestampMetric = queueLastSendTimestamp.WithLabelValues(t.queueName) t.highestSentTimestampMetric = queueHighestSentTimestamp.WithLabelValues(t.queueName) t.pendingSamplesMetric = queuePendingSamples.WithLabelValues(t.queueName) t.enqueueRetriesMetric = enqueueRetriesTotal.WithLabelValues(t.queueName) t.watcher = NewWALWatcher(logger, client.Name(), t, walDir) t.shards = t.newShards() numShards.WithLabelValues(t.queueName).Set(float64(t.numShards)) shardCapacity.WithLabelValues(t.queueName).Set(float64(t.cfg.Capacity)) // Initialize counter labels to zero. sentBatchDuration.WithLabelValues(t.queueName) succeededSamplesTotal.WithLabelValues(t.queueName) failedSamplesTotal.WithLabelValues(t.queueName) droppedSamplesTotal.WithLabelValues(t.queueName) retriedSamplesTotal.WithLabelValues(t.queueName) // Reset pending samples metric to 0. t.pendingSamplesMetric.Set(0) return t } // Append queues a sample to be sent to the remote storage. Blocks until all samples are // enqueued on their shards or a shutdown signal is received. func (t *QueueManager) Append(s []tsdb.RefSample) bool { type enqueuable struct { ts prompb.TimeSeries ref uint64 } tempSamples := make([]enqueuable, 0, len(s)) t.seriesMtx.Lock() for _, sample := range s { // If we have no labels for the series, due to relabelling or otherwise, don't send the sample. if _, ok := t.seriesLabels[sample.Ref]; !ok { droppedSamplesTotal.WithLabelValues(t.queueName).Inc() if _, ok := t.droppedSeries[sample.Ref]; !ok { level.Info(t.logger).Log("msg", "dropped sample for series that was not explicitly dropped via relabelling", "ref", sample.Ref) } continue } tempSamples = append(tempSamples, enqueuable{ ts: prompb.TimeSeries{ Labels: t.seriesLabels[sample.Ref], Samples: []prompb.Sample{ prompb.Sample{ Value: float64(sample.V), Timestamp: sample.T, }, }, }, ref: sample.Ref, }) } t.seriesMtx.Unlock() outer: for _, sample := range tempSamples { // This will only loop if the queues are being resharded. backoff := t.cfg.MinBackoff for { select { case <-t.quit: return false default: } if t.shards.enqueue(sample.ref, sample.ts) { continue outer } t.enqueueRetriesMetric.Inc() time.Sleep(time.Duration(backoff)) backoff = backoff * 2 if backoff > t.cfg.MaxBackoff { backoff = t.cfg.MaxBackoff } } } return true } // Start the queue manager sending samples to the remote storage. // Does not block. func (t *QueueManager) Start() { t.shards.start(t.numShards) t.watcher.Start() t.wg.Add(2) go t.updateShardsLoop() go t.reshardLoop() } // Stop stops sending samples to the remote storage and waits for pending // sends to complete. func (t *QueueManager) Stop() { level.Info(t.logger).Log("msg", "Stopping remote storage...") defer level.Info(t.logger).Log("msg", "Remote storage stopped.") close(t.quit) t.shards.stop() t.watcher.Stop() t.wg.Wait() } // StoreSeries keeps track of which series we know about for lookups when sending samples to remote. func (t *QueueManager) StoreSeries(series []tsdb.RefSeries, index int) { temp := make(map[uint64][]prompb.Label, len(series)) for _, s := range series { ls := make(model.LabelSet, len(s.Labels)) for _, label := range s.Labels { ls[model.LabelName(label.Name)] = model.LabelValue(label.Value) } t.processExternalLabels(ls) rl := relabel.Process(ls, t.relabelConfigs...) if len(rl) == 0 { t.droppedSeries[s.Ref] = struct{}{} continue } temp[s.Ref] = labelsetToLabelsProto(rl) } t.seriesMtx.Lock() defer t.seriesMtx.Unlock() for ref, labels := range temp { t.seriesLabels[ref] = labels t.seriesSegmentIndexes[ref] = index } } // SeriesReset is used when reading a checkpoint. WAL Watcher should have // stored series records with the checkpoints index number, so we can now // delete any ref ID's lower than that # from the two maps. func (t *QueueManager) SeriesReset(index int) { t.seriesMtx.Lock() defer t.seriesMtx.Unlock() // Check for series that are in segments older than the checkpoint // that were not also present in the checkpoint. for k, v := range t.seriesSegmentIndexes { if v < index { delete(t.seriesLabels, k) delete(t.seriesSegmentIndexes, k) } } } func (t *QueueManager) processExternalLabels(ls model.LabelSet) { for ln, lv := range t.externalLabels { if _, ok := ls[ln]; !ok { ls[ln] = lv } } } func (t *QueueManager) updateShardsLoop() { defer t.wg.Done() ticker := time.NewTicker(shardUpdateDuration) defer ticker.Stop() for { select { case <-ticker.C: now := time.Now().Unix() threshold := int64(time.Duration(2 * t.cfg.BatchSendDeadline).Seconds()) if now-t.lastSendTimestamp > threshold { level.Debug(t.logger).Log("msg", "Skipping resharding, last successful send was beyond threshold") continue } t.calculateDesiredShards() case <-t.quit: return } } } func (t *QueueManager) calculateDesiredShards() { t.samplesIn.tick() t.samplesOut.tick() t.samplesOutDuration.tick() // We use the number of incoming samples as a prediction of how much work we // will need to do next iteration. We add to this any pending samples // (received - send) so we can catch up with any backlog. We use the average // outgoing batch latency to work out how many shards we need. var ( samplesIn = t.samplesIn.rate() samplesOut = t.samplesOut.rate() samplesPending = samplesIn - samplesOut samplesOutDuration = t.samplesOutDuration.rate() ) // We use an integral accumulator, like in a PID, to help dampen oscillation. t.integralAccumulator = t.integralAccumulator + (samplesPending * 0.1) if samplesOut <= 0 { return } var ( timePerSample = samplesOutDuration / samplesOut desiredShards = (timePerSample * (samplesIn + samplesPending + t.integralAccumulator)) / float64(time.Second) ) level.Debug(t.logger).Log("msg", "QueueManager.calculateDesiredShards", "samplesIn", samplesIn, "samplesOut", samplesOut, "samplesPending", samplesPending, "desiredShards", desiredShards) // Changes in the number of shards must be greater than shardToleranceFraction. var ( lowerBound = float64(t.numShards) * (1. - shardToleranceFraction) upperBound = float64(t.numShards) * (1. + shardToleranceFraction) ) level.Debug(t.logger).Log("msg", "QueueManager.updateShardsLoop", "lowerBound", lowerBound, "desiredShards", desiredShards, "upperBound", upperBound) if lowerBound <= desiredShards && desiredShards <= upperBound { return } numShards := int(math.Ceil(desiredShards)) if numShards > t.cfg.MaxShards { numShards = t.cfg.MaxShards } else if numShards < t.cfg.MinShards { numShards = t.cfg.MinShards } if numShards == t.numShards { return } // Resharding can take some time, and we want this loop // to stay close to shardUpdateDuration. select { case t.reshardChan <- numShards: level.Info(t.logger).Log("msg", "Remote storage resharding", "from", t.numShards, "to", numShards) t.numShards = numShards default: level.Info(t.logger).Log("msg", "Currently resharding, skipping.") } } func (t *QueueManager) reshardLoop() { defer t.wg.Done() for { select { case numShards := <-t.reshardChan: // We start the newShards after we have stopped (the therefore completely // flushed) the oldShards, to guarantee we only every deliver samples in // order. t.shards.stop() t.shards.start(numShards) case <-t.quit: return } } } func (t *QueueManager) newShards() *shards { s := &shards{ qm: t, done: make(chan struct{}), } return s } // Check and set highestSentTimestamp func (t *QueueManager) setHighestSentTimestamp(highest int64) { t.timestampLock.Lock() defer t.timestampLock.Unlock() if highest > t.highestSentTimestamp { t.highestSentTimestamp = highest t.highestSentTimestampMetric.Set(float64(t.highestSentTimestamp) / 1000.) } } func (t *QueueManager) setLastSendTimestamp(now time.Time) { t.timestampLock.Lock() defer t.timestampLock.Unlock() t.lastSendTimestampMetric.Set(float64(now.UnixNano()) / 1e9) t.lastSendTimestamp = now.Unix() } type shards struct { mtx sync.RWMutex // With the WAL, this is never actually contended. qm *QueueManager queues []chan prompb.TimeSeries // Emulate a wait group with a channel and an atomic int, as you // cannot select on a wait group. done chan struct{} running int32 // Soft shutdown context will prevent new enqueues and deadlocks. softShutdown chan struct{} // Hard shutdown context is used to terminate outgoing HTTP connections // after giving them a chance to terminate. hardShutdown context.CancelFunc } // start the shards; must be called before any call to enqueue. func (s *shards) start(n int) { s.mtx.Lock() defer s.mtx.Unlock() newQueues := make([]chan prompb.TimeSeries, n) for i := 0; i < n; i++ { newQueues[i] = make(chan prompb.TimeSeries, s.qm.cfg.Capacity) } s.queues = newQueues var hardShutdownCtx context.Context hardShutdownCtx, s.hardShutdown = context.WithCancel(context.Background()) s.softShutdown = make(chan struct{}) s.running = int32(n) s.done = make(chan struct{}) for i := 0; i < n; i++ { go s.runShard(hardShutdownCtx, i, newQueues[i]) } numShards.WithLabelValues(s.qm.queueName).Set(float64(n)) } // stop the shards; subsequent call to enqueue will return false. func (s *shards) stop() { // Attempt a clean shutdown, but only wait flushDeadline for all the shards // to cleanly exit. As we're doing RPCs, enqueue can block indefinately. // We must be able so call stop concurrently, hence we can only take the // RLock here. s.mtx.RLock() close(s.softShutdown) s.mtx.RUnlock() // Enqueue should now be unblocked, so we can take the write lock. This // also ensures we don't race with writes to the queues, and get a panic: // send on closed channel. s.mtx.Lock() defer s.mtx.Unlock() for _, queue := range s.queues { close(queue) } select { case <-s.done: return case <-time.After(s.qm.flushDeadline): level.Error(s.qm.logger).Log("msg", "Failed to flush all samples on shutdown") } // Force an unclean shutdown. s.hardShutdown() <-s.done } // enqueue a sample. If we are currently in the process of shutting down or resharding, // will return false; in this case, you should back off and retry. func (s *shards) enqueue(ref uint64, sample prompb.TimeSeries) bool { s.mtx.RLock() defer s.mtx.RUnlock() select { case <-s.softShutdown: return false default: } shard := uint64(ref) % uint64(len(s.queues)) select { case <-s.softShutdown: return false case s.queues[shard] <- sample: return true } } func (s *shards) runShard(ctx context.Context, i int, queue chan prompb.TimeSeries) { defer func() { if atomic.AddInt32(&s.running, -1) == 0 { close(s.done) } }() shardNum := strconv.Itoa(i) // Send batches of at most MaxSamplesPerSend samples to the remote storage. // If we have fewer samples than that, flush them out after a deadline // anyways. pendingSamples := []prompb.TimeSeries{} max := s.qm.cfg.MaxSamplesPerSend timer := time.NewTimer(time.Duration(s.qm.cfg.BatchSendDeadline)) stop := func() { if !timer.Stop() { select { case <-timer.C: default: } } } defer stop() for { select { case <-ctx.Done(): return case sample, ok := <-queue: if !ok { if len(pendingSamples) > 0 { level.Debug(s.qm.logger).Log("msg", "Flushing samples to remote storage...", "count", len(pendingSamples)) s.sendSamples(ctx, pendingSamples) s.qm.pendingSamplesMetric.Sub(float64(len(pendingSamples))) level.Debug(s.qm.logger).Log("msg", "Done flushing.") } return } // Number of pending samples is limited by the fact that sendSamples (via sendSamplesWithBackoff) // retries endlessly, so once we reach > 100 samples, if we can never send to the endpoint we'll // stop reading from the queue (which has a size of 10). pendingSamples = append(pendingSamples, sample) s.qm.pendingSamplesMetric.Inc() if len(pendingSamples) >= max { s.sendSamples(ctx, pendingSamples[:max]) pendingSamples = pendingSamples[max:] s.qm.pendingSamplesMetric.Sub(float64(max)) stop() timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline)) } case <-timer.C: if len(pendingSamples) > 0 { level.Debug(s.qm.logger).Log("msg", "runShard timer ticked, sending samples", "samples", len(pendingSamples), "shard", shardNum) n := len(pendingSamples) s.sendSamples(ctx, pendingSamples) pendingSamples = pendingSamples[:0] s.qm.pendingSamplesMetric.Sub(float64(n)) } timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline)) } } } func (s *shards) sendSamples(ctx context.Context, samples []prompb.TimeSeries) { begin := time.Now() err := s.sendSamplesWithBackoff(ctx, samples) if err != nil { level.Error(s.qm.logger).Log("msg", "non-recoverable error", "count", len(samples), "err", err) failedSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples))) } // These counters are used to calculate the dynamic sharding, and as such // should be maintained irrespective of success or failure. s.qm.samplesOut.incr(int64(len(samples))) s.qm.samplesOutDuration.incr(int64(time.Since(begin))) } // sendSamples to the remote storage with backoff for recoverable errors. func (s *shards) sendSamplesWithBackoff(ctx context.Context, samples []prompb.TimeSeries) error { backoff := s.qm.cfg.MinBackoff req, highest, err := buildWriteRequest(samples) // Failing to build the write request is non-recoverable, since it will // only error if marshaling the proto to bytes fails. if err != nil { return err } for { select { case <-ctx.Done(): return ctx.Err() default: } begin := time.Now() err := s.qm.client.Store(ctx, req) sentBatchDuration.WithLabelValues(s.qm.queueName).Observe(time.Since(begin).Seconds()) if err == nil { succeededSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples))) now := time.Now() s.qm.setLastSendTimestamp(now) s.qm.setHighestSentTimestamp(highest) return nil } if _, ok := err.(recoverableError); !ok { return err } retriedSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples))) level.Error(s.qm.logger).Log("err", err) time.Sleep(time.Duration(backoff)) backoff = backoff * 2 if backoff > s.qm.cfg.MaxBackoff { backoff = s.qm.cfg.MaxBackoff } } } func buildWriteRequest(samples []prompb.TimeSeries) ([]byte, int64, error) { var highest int64 for _, ts := range samples { // At the moment we only ever append a TimeSeries with a single sample in it. if ts.Samples[0].Timestamp > highest { highest = ts.Samples[0].Timestamp } } req := &prompb.WriteRequest{ Timeseries: samples, } data, err := proto.Marshal(req) if err != nil { return nil, highest, err } compressed := snappy.Encode(nil, data) return compressed, highest, nil }