// Copyright 2021 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package chunkenc import ( "encoding/binary" "math" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/value" ) // HistogramChunk holds encoded sample data for a sparse, high-resolution // histogram. // // Each sample has multiple "fields", stored in the following way (raw = store // number directly, delta = store delta to the previous number, dod = store // delta of the delta to the previous number, xor = what we do for regular // sample values): // // field → ts count zeroCount sum []posbuckets []negbuckets // sample 1 raw raw raw raw []raw []raw // sample 2 delta delta delta xor []delta []delta // sample >2 dod dod dod xor []dod []dod type HistogramChunk struct { b bstream } // NewHistogramChunk returns a new chunk with histogram encoding of the given // size. func NewHistogramChunk() *HistogramChunk { b := make([]byte, 3, 128) return &HistogramChunk{b: bstream{stream: b, count: 0}} } // Encoding returns the encoding type. func (c *HistogramChunk) Encoding() Encoding { return EncHistogram } // Bytes returns the underlying byte slice of the chunk. func (c *HistogramChunk) Bytes() []byte { return c.b.bytes() } // NumSamples returns the number of samples in the chunk. func (c *HistogramChunk) NumSamples() int { return int(binary.BigEndian.Uint16(c.Bytes())) } // Layout returns the histogram layout. Only call this on chunks that have at // least one sample. func (c *HistogramChunk) Layout() ( schema int32, zeroThreshold float64, negativeSpans, positiveSpans []histogram.Span, err error, ) { if c.NumSamples() == 0 { panic("HistoChunk.Layout() called on an empty chunk") } b := newBReader(c.Bytes()[2:]) return readHistogramChunkLayout(&b) } // CounterResetHeader defines the first 2 bits of the chunk header. type CounterResetHeader byte const ( // CounterReset means there was definitely a counter reset that resulted in this chunk. CounterReset CounterResetHeader = 0b10000000 // NotCounterReset means there was definitely no counter reset when cutting this chunk. NotCounterReset CounterResetHeader = 0b01000000 // GaugeType means this chunk contains a gauge histogram, where counter resets do not happen. GaugeType CounterResetHeader = 0b11000000 // UnknownCounterReset means we cannot say if this chunk was created due to a counter reset or not. // An explicit counter reset detection needs to happen during query time. UnknownCounterReset CounterResetHeader = 0b00000000 ) // SetCounterResetHeader sets the counter reset header. func (c *HistogramChunk) SetCounterResetHeader(h CounterResetHeader) { switch h { case CounterReset, NotCounterReset, GaugeType, UnknownCounterReset: bytes := c.Bytes() bytes[2] = (bytes[2] & 0b00111111) | byte(h) default: panic("invalid CounterResetHeader type") } } // GetCounterResetHeader returns the info about the first 2 bits of the chunk // header. func (c *HistogramChunk) GetCounterResetHeader() CounterResetHeader { return CounterResetHeader(c.Bytes()[2] & 0b11000000) } // Compact implements the Chunk interface. func (c *HistogramChunk) Compact() { if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold { buf := make([]byte, l) copy(buf, c.b.stream) c.b.stream = buf } } // Appender implements the Chunk interface. func (c *HistogramChunk) Appender() (Appender, error) { it := c.iterator(nil) // To get an appender, we must know the state it would have if we had // appended all existing data from scratch. We iterate through the end // and populate via the iterator's state. for it.Next() == ValHistogram { } if err := it.Err(); err != nil { return nil, err } a := &HistogramAppender{ b: &c.b, schema: it.schema, zThreshold: it.zThreshold, pSpans: it.pSpans, nSpans: it.nSpans, t: it.t, cnt: it.cnt, zCnt: it.zCnt, tDelta: it.tDelta, cntDelta: it.cntDelta, zCntDelta: it.zCntDelta, pBuckets: it.pBuckets, nBuckets: it.nBuckets, pBucketsDelta: it.pBucketsDelta, nBucketsDelta: it.nBucketsDelta, sum: it.sum, leading: it.leading, trailing: it.trailing, } if it.numTotal == 0 { a.leading = 0xff } return a, nil } func countSpans(spans []histogram.Span) int { var cnt int for _, s := range spans { cnt += int(s.Length) } return cnt } func newHistogramIterator(b []byte) *histogramIterator { it := &histogramIterator{ br: newBReader(b), numTotal: binary.BigEndian.Uint16(b), t: math.MinInt64, } // The first 3 bytes contain chunk headers. // We skip that for actual samples. _, _ = it.br.readBits(24) return it } func (c *HistogramChunk) iterator(it Iterator) *histogramIterator { // This commet is copied from XORChunk.iterator: // Should iterators guarantee to act on a copy of the data so it doesn't lock append? // When using striped locks to guard access to chunks, probably yes. // Could only copy data if the chunk is not completed yet. if histogramIter, ok := it.(*histogramIterator); ok { histogramIter.Reset(c.b.bytes()) return histogramIter } return newHistogramIterator(c.b.bytes()) } // Iterator implements the Chunk interface. func (c *HistogramChunk) Iterator(it Iterator) Iterator { return c.iterator(it) } // HistogramAppender is an Appender implementation for sparse histograms. type HistogramAppender struct { b *bstream // Layout: schema int32 zThreshold float64 pSpans, nSpans []histogram.Span // Although we intend to start new chunks on counter resets, we still // have to handle negative deltas for gauge histograms. Therefore, even // deltas are signed types here (even for tDelta to not treat that one // specially). t int64 cnt, zCnt uint64 tDelta, cntDelta, zCntDelta int64 pBuckets, nBuckets []int64 pBucketsDelta, nBucketsDelta []int64 // The sum is Gorilla xor encoded. sum float64 leading uint8 trailing uint8 } // Append implements Appender. This implementation panics because normal float // samples must never be appended to a histogram chunk. func (a *HistogramAppender) Append(int64, float64) { panic("appended a float sample to a histogram chunk") } // Appendable returns whether the chunk can be appended to, and if so // whether any recoding needs to happen using the provided interjections // (in case of any new buckets, positive or negative range, respectively). // // The chunk is not appendable in the following cases: // // • The schema has changed. // // • The threshold for the zero bucket has changed. // // • Any buckets have disappeared. // // • There was a counter reset in the count of observations or in any bucket, // including the zero bucket. // // • The last sample in the chunk was stale while the current sample is not stale. // // The method returns an additional boolean set to true if it is not appendable // because of a counter reset. If the given sample is stale, it is always ok to // append. If counterReset is true, okToAppend is always false. func (a *HistogramAppender) Appendable(h *histogram.Histogram) ( positiveInterjections, negativeInterjections []Interjection, okToAppend, counterReset bool, ) { if value.IsStaleNaN(h.Sum) { // This is a stale sample whose buckets and spans don't matter. okToAppend = true return } if value.IsStaleNaN(a.sum) { // If the last sample was stale, then we can only accept stale // samples in this chunk. return } if h.Count < a.cnt { // There has been a counter reset. counterReset = true return } if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold { return } if h.ZeroCount < a.zCnt { // There has been a counter reset since ZeroThreshold didn't change. counterReset = true return } var ok bool positiveInterjections, ok = compareSpans(a.pSpans, h.PositiveSpans) if !ok { counterReset = true return } negativeInterjections, ok = compareSpans(a.nSpans, h.NegativeSpans) if !ok { counterReset = true return } if counterResetInAnyBucket(a.pBuckets, h.PositiveBuckets, a.pSpans, h.PositiveSpans) || counterResetInAnyBucket(a.nBuckets, h.NegativeBuckets, a.nSpans, h.NegativeSpans) { counterReset, positiveInterjections, negativeInterjections = true, nil, nil return } okToAppend = true return } // counterResetInAnyBucket returns true if there was a counter reset for any // bucket. This should be called only when the bucket layout is the same or new // buckets were added. It does not handle the case of buckets missing. func counterResetInAnyBucket(oldBuckets, newBuckets []int64, oldSpans, newSpans []histogram.Span) bool { if len(oldSpans) == 0 || len(oldBuckets) == 0 { return false } oldSpanSliceIdx, newSpanSliceIdx := 0, 0 // Index for the span slices. oldInsideSpanIdx, newInsideSpanIdx := uint32(0), uint32(0) // Index inside a span. oldIdx, newIdx := oldSpans[0].Offset, newSpans[0].Offset oldBucketSliceIdx, newBucketSliceIdx := 0, 0 // Index inside bucket slice. oldVal, newVal := oldBuckets[0], newBuckets[0] // Since we assume that new spans won't have missing buckets, there will never be a case // where the old index will not find a matching new index. for { if oldIdx == newIdx { if newVal < oldVal { return true } } if oldIdx <= newIdx { // Moving ahead old bucket and span by 1 index. if oldInsideSpanIdx == oldSpans[oldSpanSliceIdx].Length-1 { // Current span is over. oldSpanSliceIdx++ oldInsideSpanIdx = 0 if oldSpanSliceIdx >= len(oldSpans) { // All old spans are over. break } oldIdx += 1 + oldSpans[oldSpanSliceIdx].Offset } else { oldInsideSpanIdx++ oldIdx++ } oldBucketSliceIdx++ oldVal += oldBuckets[oldBucketSliceIdx] } if oldIdx > newIdx { // Moving ahead new bucket and span by 1 index. if newInsideSpanIdx == newSpans[newSpanSliceIdx].Length-1 { // Current span is over. newSpanSliceIdx++ newInsideSpanIdx = 0 if newSpanSliceIdx >= len(newSpans) { // All new spans are over. // This should not happen, old spans above should catch this first. panic("new spans over before old spans in counterReset") } newIdx += 1 + newSpans[newSpanSliceIdx].Offset } else { newInsideSpanIdx++ newIdx++ } newBucketSliceIdx++ newVal += newBuckets[newBucketSliceIdx] } } return false } // AppendHistogram appends a histogram to the chunk. The caller must ensure that // the histogram is properly structured, e.g. the number of buckets used // corresponds to the number conveyed by the span structures. First call // Appendable() and act accordingly! func (a *HistogramAppender) AppendHistogram(t int64, h *histogram.Histogram) { var tDelta, cntDelta, zCntDelta int64 num := binary.BigEndian.Uint16(a.b.bytes()) if value.IsStaleNaN(h.Sum) { // Emptying out other fields to write no buckets, and an empty // layout in case of first histogram in the chunk. h = &histogram.Histogram{Sum: h.Sum} } if num == 0 { // The first append gets the privilege to dictate the layout // but it's also responsible for encoding it into the chunk! writeHistogramChunkLayout(a.b, h.Schema, h.ZeroThreshold, h.PositiveSpans, h.NegativeSpans) a.schema = h.Schema a.zThreshold = h.ZeroThreshold if len(h.PositiveSpans) > 0 { a.pSpans = make([]histogram.Span, len(h.PositiveSpans)) copy(a.pSpans, h.PositiveSpans) } else { a.pSpans = nil } if len(h.NegativeSpans) > 0 { a.nSpans = make([]histogram.Span, len(h.NegativeSpans)) copy(a.nSpans, h.NegativeSpans) } else { a.nSpans = nil } numPBuckets, numNBuckets := countSpans(h.PositiveSpans), countSpans(h.NegativeSpans) if numPBuckets > 0 { a.pBuckets = make([]int64, numPBuckets) a.pBucketsDelta = make([]int64, numPBuckets) } else { a.pBuckets = nil a.pBucketsDelta = nil } if numNBuckets > 0 { a.nBuckets = make([]int64, numNBuckets) a.nBucketsDelta = make([]int64, numNBuckets) } else { a.nBuckets = nil a.nBucketsDelta = nil } // Now store the actual data. putVarbitInt(a.b, t) putVarbitUint(a.b, h.Count) putVarbitUint(a.b, h.ZeroCount) a.b.writeBits(math.Float64bits(h.Sum), 64) for _, b := range h.PositiveBuckets { putVarbitInt(a.b, b) } for _, b := range h.NegativeBuckets { putVarbitInt(a.b, b) } } else { // The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code, // so we don't need a separate single delta logic for the 2nd sample. tDelta = t - a.t cntDelta = int64(h.Count) - int64(a.cnt) zCntDelta = int64(h.ZeroCount) - int64(a.zCnt) tDod := tDelta - a.tDelta cntDod := cntDelta - a.cntDelta zCntDod := zCntDelta - a.zCntDelta if value.IsStaleNaN(h.Sum) { cntDod, zCntDod = 0, 0 } putVarbitInt(a.b, tDod) putVarbitInt(a.b, cntDod) putVarbitInt(a.b, zCntDod) a.writeSumDelta(h.Sum) for i, b := range h.PositiveBuckets { delta := b - a.pBuckets[i] dod := delta - a.pBucketsDelta[i] putVarbitInt(a.b, dod) a.pBucketsDelta[i] = delta } for i, b := range h.NegativeBuckets { delta := b - a.nBuckets[i] dod := delta - a.nBucketsDelta[i] putVarbitInt(a.b, dod) a.nBucketsDelta[i] = delta } } binary.BigEndian.PutUint16(a.b.bytes(), num+1) a.t = t a.cnt = h.Count a.zCnt = h.ZeroCount a.tDelta = tDelta a.cntDelta = cntDelta a.zCntDelta = zCntDelta copy(a.pBuckets, h.PositiveBuckets) copy(a.nBuckets, h.NegativeBuckets) // Note that the bucket deltas were already updated above. a.sum = h.Sum } // Recode converts the current chunk to accommodate an expansion of the set of // (positive and/or negative) buckets used, according to the provided // interjections, resulting in the honoring of the provided new positive and // negative spans. To continue appending, use the returned Appender rather than // the receiver of this method. func (a *HistogramAppender) Recode( positiveInterjections, negativeInterjections []Interjection, positiveSpans, negativeSpans []histogram.Span, ) (Chunk, Appender) { // TODO(beorn7): This currently just decodes everything and then encodes // it again with the new span layout. This can probably be done in-place // by editing the chunk. But let's first see how expensive it is in the // big picture. Also, in-place editing might create concurrency issues. byts := a.b.bytes() it := newHistogramIterator(byts) hc := NewHistogramChunk() app, err := hc.Appender() if err != nil { panic(err) } numPositiveBuckets, numNegativeBuckets := countSpans(positiveSpans), countSpans(negativeSpans) for it.Next() == ValHistogram { tOld, hOld := it.AtHistogram() // We have to newly allocate slices for the modified buckets // here because they are kept by the appender until the next // append. // TODO(beorn7): We might be able to optimize this. var positiveBuckets, negativeBuckets []int64 if numPositiveBuckets > 0 { positiveBuckets = make([]int64, numPositiveBuckets) } if numNegativeBuckets > 0 { negativeBuckets = make([]int64, numNegativeBuckets) } // Save the modified histogram to the new chunk. hOld.PositiveSpans, hOld.NegativeSpans = positiveSpans, negativeSpans if len(positiveInterjections) > 0 { hOld.PositiveBuckets = interject(hOld.PositiveBuckets, positiveBuckets, positiveInterjections) } if len(negativeInterjections) > 0 { hOld.NegativeBuckets = interject(hOld.NegativeBuckets, negativeBuckets, negativeInterjections) } app.AppendHistogram(tOld, hOld) } hc.SetCounterResetHeader(CounterResetHeader(byts[2] & 0b11000000)) return hc, app } func (a *HistogramAppender) writeSumDelta(v float64) { xorWrite(a.b, v, a.sum, &a.leading, &a.trailing) } type histogramIterator struct { br bstreamReader numTotal uint16 numRead uint16 // Layout: schema int32 zThreshold float64 pSpans, nSpans []histogram.Span // For the fields that are tracked as deltas and ultimately dod's. t int64 cnt, zCnt uint64 tDelta, cntDelta, zCntDelta int64 pBuckets, nBuckets []int64 // Delta between buckets. pFloatBuckets, nFloatBuckets []float64 // Absolute counts. pBucketsDelta, nBucketsDelta []int64 // The sum is Gorilla xor encoded. sum float64 leading uint8 trailing uint8 // Track calls to retrieve methods. Once they have been called, we // cannot recycle the bucket slices anymore because we have returned // them in the histogram. atHistogramCalled, atFloatHistogramCalled bool err error } func (it *histogramIterator) Seek(t int64) ValueType { if it.err != nil { return ValNone } for t > it.t || it.numRead == 0 { if it.Next() == ValNone { return ValNone } } return ValHistogram } func (it *histogramIterator) At() (int64, float64) { panic("cannot call histogramIterator.At") } func (it *histogramIterator) AtHistogram() (int64, *histogram.Histogram) { if value.IsStaleNaN(it.sum) { return it.t, &histogram.Histogram{Sum: it.sum} } it.atHistogramCalled = true return it.t, &histogram.Histogram{ Count: it.cnt, ZeroCount: it.zCnt, Sum: it.sum, ZeroThreshold: it.zThreshold, Schema: it.schema, PositiveSpans: it.pSpans, NegativeSpans: it.nSpans, PositiveBuckets: it.pBuckets, NegativeBuckets: it.nBuckets, } } func (it *histogramIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) { if value.IsStaleNaN(it.sum) { return it.t, &histogram.FloatHistogram{Sum: it.sum} } it.atFloatHistogramCalled = true return it.t, &histogram.FloatHistogram{ Count: float64(it.cnt), ZeroCount: float64(it.zCnt), Sum: it.sum, ZeroThreshold: it.zThreshold, Schema: it.schema, PositiveSpans: it.pSpans, NegativeSpans: it.nSpans, PositiveBuckets: it.pFloatBuckets, NegativeBuckets: it.nFloatBuckets, } } func (it *histogramIterator) AtT() int64 { return it.t } func (it *histogramIterator) Err() error { return it.err } func (it *histogramIterator) Reset(b []byte) { // The first 2 bytes contain chunk headers. // We skip that for actual samples. it.br = newBReader(b[2:]) it.numTotal = binary.BigEndian.Uint16(b) it.numRead = 0 it.t, it.cnt, it.zCnt = 0, 0, 0 it.tDelta, it.cntDelta, it.zCntDelta = 0, 0, 0 // Recycle slices that have not been returned yet. Otherwise, start from // scratch. if it.atHistogramCalled { it.atHistogramCalled = false it.pBuckets, it.nBuckets = nil, nil } else { it.pBuckets = it.pBuckets[:0] it.nBuckets = it.nBuckets[:0] } if it.atFloatHistogramCalled { it.atFloatHistogramCalled = false it.pFloatBuckets, it.nFloatBuckets = nil, nil } else { it.pFloatBuckets = it.pFloatBuckets[:0] it.nFloatBuckets = it.nFloatBuckets[:0] } it.pBucketsDelta = it.pBucketsDelta[:0] it.pBucketsDelta = it.pBucketsDelta[:0] it.sum = 0 it.leading = 0 it.trailing = 0 it.err = nil } func (it *histogramIterator) Next() ValueType { if it.err != nil || it.numRead == it.numTotal { return ValNone } if it.numRead == 0 { // The first read is responsible for reading the chunk layout // and for initializing fields that depend on it. We give // counter reset info at chunk level, hence we discard it here. schema, zeroThreshold, posSpans, negSpans, err := readHistogramChunkLayout(&it.br) if err != nil { it.err = err return ValNone } it.schema = schema it.zThreshold = zeroThreshold it.pSpans, it.nSpans = posSpans, negSpans numPBuckets, numNBuckets := countSpans(posSpans), countSpans(negSpans) // Allocate bucket slices as needed, recycling existing slices // in case this iterator was reset and already has slices of a // sufficient capacity. if numPBuckets > 0 { if cap(it.pBuckets) < numPBuckets { it.pBuckets = make([]int64, numPBuckets) // If cap(it.pBuckets) isn't sufficient, neither is the cap of the others. it.pBucketsDelta = make([]int64, numPBuckets) it.pFloatBuckets = make([]float64, numPBuckets) } else { for i := 0; i < numPBuckets; i++ { it.pBuckets = append(it.pBuckets, 0) it.pBucketsDelta = append(it.pBucketsDelta, 0) it.pFloatBuckets = append(it.pFloatBuckets, 0) } } } if numNBuckets > 0 { if cap(it.nBuckets) < numNBuckets { it.nBuckets = make([]int64, numNBuckets) // If cap(it.nBuckets) isn't sufficient, neither is the cap of the others. it.nBucketsDelta = make([]int64, numNBuckets) it.nFloatBuckets = make([]float64, numNBuckets) } else { for i := 0; i < numNBuckets; i++ { it.nBuckets = append(it.nBuckets, 0) it.nBucketsDelta = append(it.nBucketsDelta, 0) it.pFloatBuckets = append(it.pFloatBuckets, 0) } } } // Now read the actual data. t, err := readVarbitInt(&it.br) if err != nil { it.err = err return ValNone } it.t = t cnt, err := readVarbitUint(&it.br) if err != nil { it.err = err return ValNone } it.cnt = cnt zcnt, err := readVarbitUint(&it.br) if err != nil { it.err = err return ValNone } it.zCnt = zcnt sum, err := it.br.readBits(64) if err != nil { it.err = err return ValNone } it.sum = math.Float64frombits(sum) var current int64 for i := range it.pBuckets { v, err := readVarbitInt(&it.br) if err != nil { it.err = err return ValNone } it.pBuckets[i] = v current += it.pBuckets[i] it.pFloatBuckets[i] = float64(current) } current = 0 for i := range it.nBuckets { v, err := readVarbitInt(&it.br) if err != nil { it.err = err return ValNone } it.nBuckets[i] = v current += it.nBuckets[i] it.nFloatBuckets[i] = float64(current) } it.numRead++ return ValHistogram } // The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code, // so we don't need a separate single delta logic for the 2nd sample. // Recycle bucket slices that have not been returned yet. Otherwise, // copy them. if it.atHistogramCalled { it.atHistogramCalled = false if len(it.pBuckets) > 0 { newBuckets := make([]int64, len(it.pBuckets)) copy(newBuckets, it.pBuckets) it.pBuckets = newBuckets } else { it.pBuckets = nil } if len(it.nBuckets) > 0 { newBuckets := make([]int64, len(it.nBuckets)) copy(newBuckets, it.nBuckets) it.nBuckets = newBuckets } else { it.nBuckets = nil } } // FloatBuckets are set from scratch, so simply create empty ones. if it.atFloatHistogramCalled { it.atFloatHistogramCalled = false if len(it.pFloatBuckets) > 0 { it.pFloatBuckets = make([]float64, len(it.pFloatBuckets)) } else { it.pFloatBuckets = nil } if len(it.nFloatBuckets) > 0 { it.nFloatBuckets = make([]float64, len(it.nFloatBuckets)) } else { it.nFloatBuckets = nil } } tDod, err := readVarbitInt(&it.br) if err != nil { it.err = err return ValNone } it.tDelta = it.tDelta + tDod it.t += it.tDelta cntDod, err := readVarbitInt(&it.br) if err != nil { it.err = err return ValNone } it.cntDelta = it.cntDelta + cntDod it.cnt = uint64(int64(it.cnt) + it.cntDelta) zcntDod, err := readVarbitInt(&it.br) if err != nil { it.err = err return ValNone } it.zCntDelta = it.zCntDelta + zcntDod it.zCnt = uint64(int64(it.zCnt) + it.zCntDelta) ok := it.readSum() if !ok { return ValNone } if value.IsStaleNaN(it.sum) { it.numRead++ return ValHistogram } var current int64 for i := range it.pBuckets { dod, err := readVarbitInt(&it.br) if err != nil { it.err = err return ValNone } it.pBucketsDelta[i] += dod it.pBuckets[i] += it.pBucketsDelta[i] current += it.pBuckets[i] it.pFloatBuckets[i] = float64(current) } current = 0 for i := range it.nBuckets { dod, err := readVarbitInt(&it.br) if err != nil { it.err = err return ValNone } it.nBucketsDelta[i] += dod it.nBuckets[i] += it.nBucketsDelta[i] current += it.nBuckets[i] it.nFloatBuckets[i] = float64(current) } it.numRead++ return ValHistogram } func (it *histogramIterator) readSum() bool { err := xorRead(&it.br, &it.sum, &it.leading, &it.trailing) if err != nil { it.err = err return false } return true }