// Copyright 2013 Prometheus Team // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package metric import ( "fmt" "github.com/prometheus/prometheus/model" "github.com/prometheus/prometheus/storage" "sync" "time" ) // tieredStorage both persists samples and generates materialized views for // queries. type tieredStorage struct { appendToDiskQueue chan model.Sample appendToMemoryQueue chan model.Sample diskStorage *LevelDBMetricPersistence flushMemoryInterval time.Duration memoryArena memorySeriesStorage memoryTTL time.Duration mutex sync.Mutex viewQueue chan viewJob writeMemoryInterval time.Duration } // viewJob encapsulates a request to extract sample values from the datastore. type viewJob struct { builder ViewRequestBuilder output chan View err chan error } type Storage interface { AppendSample(model.Sample) MakeView(ViewRequestBuilder, time.Duration) (View, error) Serve() Expose() } func NewTieredStorage(appendToMemoryQueueDepth, appendToDiskQueueDepth, viewQueueDepth uint, flushMemoryInterval, writeMemoryInterval, memoryTTL time.Duration) Storage { diskStorage, err := NewLevelDBMetricPersistence("/tmp/metrics-foof") if err != nil { panic(err) } return &tieredStorage{ appendToDiskQueue: make(chan model.Sample, appendToDiskQueueDepth), appendToMemoryQueue: make(chan model.Sample, appendToMemoryQueueDepth), diskStorage: diskStorage, flushMemoryInterval: flushMemoryInterval, memoryArena: NewMemorySeriesStorage(), memoryTTL: memoryTTL, viewQueue: make(chan viewJob, viewQueueDepth), writeMemoryInterval: writeMemoryInterval, } } func (t *tieredStorage) AppendSample(s model.Sample) { t.appendToMemoryQueue <- s } func (t *tieredStorage) MakeView(builder ViewRequestBuilder, deadline time.Duration) (view View, err error) { result := make(chan View) errChan := make(chan error) t.viewQueue <- viewJob{ builder: builder, output: result, err: errChan, } select { case value := <-result: view = value case err = <-errChan: return case <-time.After(deadline): err = fmt.Errorf("MakeView timed out after %s.", deadline) } return } func (t *tieredStorage) Expose() { ticker := time.Tick(5 * time.Second) f := model.NewFingerprintFromRowKey("05232115763668508641-g-97-d") for { <-ticker var ( first = time.Now() second = first.Add(1 * time.Minute) third = first.Add(2 * time.Minute) ) vrb := NewViewRequestBuilder() fmt.Printf("vrb -> %s\n", vrb) vrb.GetMetricRange(f, first, second) vrb.GetMetricRange(f, first, third) js := vrb.ScanJobs() consume(js[0]) // fmt.Printf("js -> %s\n", js) // js.Represent(t.diskStorage, t.memoryArena) // i, c, _ := t.diskStorage.metricSamples.GetIterator() // start := time.Now() // f, _ := newDiskFrontier(i) // fmt.Printf("df -> %s\n", time.Since(start)) // fmt.Printf("df -- -> %s\n", f) // start = time.Now() // // sf, _ := newSeriesFrontier(model.NewFingerprintFromRowKey("05232115763668508641-g-97-d"), *f, i) // // sf, _ := newSeriesFrontier(model.NewFingerprintFromRowKey("16879485108969112708-g-184-s"), *f, i) // sf, _ := newSeriesFrontier(model.NewFingerprintFromRowKey("08437776163162606855-g-169-s"), *f, i) // fmt.Printf("sf -> %s\n", time.Since(start)) // fmt.Printf("sf -- -> %s\n", sf) // c.Close() } } func (t *tieredStorage) Serve() { var ( flushMemoryTicker = time.Tick(t.flushMemoryInterval) writeMemoryTicker = time.Tick(t.writeMemoryInterval) ) for { select { case <-writeMemoryTicker: t.writeMemory() case <-flushMemoryTicker: t.flushMemory() case viewRequest := <-t.viewQueue: t.renderView(viewRequest) } } } func (t *tieredStorage) writeMemory() { t.mutex.Lock() defer t.mutex.Unlock() pendingLength := len(t.appendToMemoryQueue) for i := 0; i < pendingLength; i++ { t.memoryArena.AppendSample(<-t.appendToMemoryQueue) } } // Write all pending appends. func (t *tieredStorage) flush() (err error) { t.writeMemory() t.flushMemory() return } type memoryToDiskFlusher struct { toDiskQueue chan model.Sample disk MetricPersistence olderThan time.Time valuesAccepted int valuesRejected int } type memoryToDiskFlusherVisitor struct { stream stream flusher *memoryToDiskFlusher } func (f memoryToDiskFlusherVisitor) DecodeKey(in interface{}) (out interface{}, err error) { out = time.Time(in.(skipListTime)) return } func (f memoryToDiskFlusherVisitor) DecodeValue(in interface{}) (out interface{}, err error) { out = in.(value).get() return } func (f memoryToDiskFlusherVisitor) Filter(key, value interface{}) (filterResult storage.FilterResult) { var ( recordTime = key.(time.Time) ) if recordTime.Before(f.flusher.olderThan) { f.flusher.valuesAccepted++ return storage.ACCEPT } f.flusher.valuesRejected++ return storage.STOP } func (f memoryToDiskFlusherVisitor) Operate(key, value interface{}) (err *storage.OperatorError) { var ( recordTime = key.(time.Time) recordValue = value.(model.SampleValue) ) if len(f.flusher.toDiskQueue) == cap(f.flusher.toDiskQueue) { f.flusher.Flush() } f.flusher.toDiskQueue <- model.Sample{ Metric: f.stream.metric, Timestamp: recordTime, Value: recordValue, } f.stream.values.Delete(skipListTime(recordTime)) return } func (f *memoryToDiskFlusher) ForStream(stream stream) (decoder storage.RecordDecoder, filter storage.RecordFilter, operator storage.RecordOperator) { visitor := memoryToDiskFlusherVisitor{ stream: stream, flusher: f, } fmt.Printf("fingerprint -> %s\n", model.NewFingerprintFromMetric(stream.metric).ToRowKey()) return visitor, visitor, visitor } func (f *memoryToDiskFlusher) Flush() { length := len(f.toDiskQueue) samples := model.Samples{} for i := 0; i < length; i++ { samples = append(samples, <-f.toDiskQueue) } fmt.Printf("%d samples to write\n", length) f.disk.AppendSamples(samples) } func (f memoryToDiskFlusher) Close() { fmt.Println("memory flusher close") f.Flush() } // Persist a whole bunch of samples to the datastore. func (t *tieredStorage) flushMemory() { t.mutex.Lock() defer t.mutex.Unlock() flusher := &memoryToDiskFlusher{ disk: t.diskStorage, olderThan: time.Now().Add(-1 * t.memoryTTL), toDiskQueue: t.appendToDiskQueue, } defer flusher.Close() v := time.Now() t.memoryArena.ForEachSample(flusher) fmt.Printf("Done flushing memory in %s", time.Since(v)) return } func (t *tieredStorage) renderView(viewJob viewJob) (err error) { t.mutex.Lock() defer t.mutex.Unlock() return } func consume(s scanJob) { var ( standingOperations = ops{} lastTime = time.Time{} ) for { if len(s.operations) == 0 { if len(standingOperations) > 0 { var ( intervals = collectIntervals(standingOperations) ranges = collectRanges(standingOperations) ) if len(intervals) > 0 { } if len(ranges) > 0 { if len(ranges) > 0 { } } break } } operation := s.operations[0] if operation.StartsAt().Equal(lastTime) { standingOperations = append(standingOperations, operation) } else { standingOperations = ops{operation} lastTime = operation.StartsAt() } s.operations = s.operations[1:len(s.operations)] } } func (s scanJobs) Represent(d *LevelDBMetricPersistence, m memorySeriesStorage) (storage *memorySeriesStorage, err error) { if len(s) == 0 { return } iterator, closer, err := d.metricSamples.GetIterator() if err != nil { panic(err) return } defer closer.Close() diskFrontier, err := newDiskFrontier(iterator) if err != nil { panic(err) return } if diskFrontier == nil { panic("diskfrontier == nil") } for _, job := range s { if len(job.operations) == 0 { panic("len(job.operations) == 0 should never occur") } // Determine if the metric is in the known keyspace. This is used as a // high-level heuristic before comparing the timestamps. var ( fingerprint = job.fingerprint absentDiskKeyspace = fingerprint.Less(diskFrontier.firstFingerprint) || diskFrontier.lastFingerprint.Less(fingerprint) absentMemoryKeyspace = false ) if _, ok := m.fingerprintToSeries[fingerprint]; !ok { absentMemoryKeyspace = true } var ( firstSupertime time.Time lastSupertime time.Time ) var ( _ = absentMemoryKeyspace _ = firstSupertime _ = lastSupertime ) // If the key is present in the disk keyspace, we should find out the maximum // seek points ahead of time. In the LevelDB case, this will save us from // having to dispose of and recreate the iterator. if !absentDiskKeyspace { seriesFrontier, err := newSeriesFrontier(fingerprint, *diskFrontier, iterator) if err != nil { panic(err) return nil, err } if seriesFrontier == nil { panic("ouch") } } } return } // var ( // memoryLowWaterMark time.Time // memoryHighWaterMark time.Time // ) // if !absentMemoryKeyspace { // } // // if firstDiskFingerprint.Equal(job.fingerprint) { // // for _, operation := range job.operations { // // if o, ok := operation.(getMetricAtTimeOperation); ok { // // if o.StartTime().Before(firstDiskSuperTime) { // // } // // } // // if o, ok := operation.(GetMetricAtInterval); ok { // // } // // } // // } // } // // // Compare the metrics on the basis of the keys. // // firstSampleInRange = sort.IsSorted(model.Fingerprints{firstDiskFingerprint, s[0].fingerprint}) // // lastSampleInRange = sort.IsSorted(model.Fingerprints{s[s.Len()-1].fingerprint, lastDiskFingerprint}) // // if firstSampleInRange && firstDiskFingerprint.Equal(s[0].fingerprint) { // // firstSampleInRange = !indexable.DecodeTime(firstKey.Timestamp).After(s.operations[0].StartTime()) // // } // // if lastSampleInRange && lastDiskFingerprint.Equal(s[s.Len()-1].fingerprint) { // // lastSampleInRange = !s.operations[s.Len()-1].StartTime().After(indexable.DecodeTime(lastKey.Timestamp)) // // } // // for _, job := range s { // // operations := job.operations // // numberOfOperations := len(operations) // // for j := 0; j < numberOfOperations; j++ { // // operationTime := operations[j].StartTime() // // group, skipAhead := collectOperationsForTime(operationTime, operations[j:numberOfOperations]) // // ranges := collectRanges(group) // // intervals := collectIntervals(group) // // fmt.Printf("ranges -> %s\n", ranges) // // if len(ranges) > 0 { // // fmt.Printf("d -> %s\n", peekForLongestRange(ranges, ranges[0].through)) // // } // // j += skipAhead // // } // // }