// Copyright 2020 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package labels import ( "slices" "strings" "github.com/grafana/regexp" "github.com/grafana/regexp/syntax" ) const ( maxSetMatches = 256 // The minimum number of alternate values a regex should have to trigger // the optimization done by optimizeEqualStringMatchers() and so use a map // to match values instead of iterating over a list. This value has // been computed running BenchmarkOptimizeEqualStringMatchers. minEqualMultiStringMatcherMapThreshold = 16 ) type FastRegexMatcher struct { // Under some conditions, re is nil because the expression is never parsed. // We store the original string to be able to return it in GetRegexString(). reString string re *regexp.Regexp setMatches []string stringMatcher StringMatcher prefix string suffix string contains string // matchString is the "compiled" function to run by MatchString(). matchString func(string) bool } func NewFastRegexMatcher(v string) (*FastRegexMatcher, error) { m := &FastRegexMatcher{ reString: v, } m.stringMatcher, m.setMatches = optimizeAlternatingLiterals(v) if m.stringMatcher != nil { // If we already have a string matcher, we don't need to parse the regex // or compile the matchString function. This also avoids the behavior in // compileMatchStringFunction where it prefers to use setMatches when // available, even if the string matcher is faster. m.matchString = m.stringMatcher.Matches } else { parsed, err := syntax.Parse(v, syntax.Perl) if err != nil { return nil, err } // Simplify the syntax tree to run faster. parsed = parsed.Simplify() m.re, err = regexp.Compile("^(?:" + parsed.String() + ")$") if err != nil { return nil, err } if parsed.Op == syntax.OpConcat { m.prefix, m.suffix, m.contains = optimizeConcatRegex(parsed) } if matches, caseSensitive := findSetMatches(parsed); caseSensitive { m.setMatches = matches } m.stringMatcher = stringMatcherFromRegexp(parsed) m.matchString = m.compileMatchStringFunction() } return m, nil } // compileMatchStringFunction returns the function to run by MatchString(). func (m *FastRegexMatcher) compileMatchStringFunction() func(string) bool { // If the only optimization available is the string matcher, then we can just run it. if len(m.setMatches) == 0 && m.prefix == "" && m.suffix == "" && m.contains == "" && m.stringMatcher != nil { return m.stringMatcher.Matches } return func(s string) bool { if len(m.setMatches) != 0 { for _, match := range m.setMatches { if match == s { return true } } return false } if m.prefix != "" && !strings.HasPrefix(s, m.prefix) { return false } if m.suffix != "" && !strings.HasSuffix(s, m.suffix) { return false } if m.contains != "" && !strings.Contains(s, m.contains) { return false } if m.stringMatcher != nil { return m.stringMatcher.Matches(s) } return m.re.MatchString(s) } } // IsOptimized returns true if any fast-path optimization is applied to the // regex matcher. func (m *FastRegexMatcher) IsOptimized() bool { return len(m.setMatches) > 0 || m.stringMatcher != nil || m.prefix != "" || m.suffix != "" || m.contains != "" } // findSetMatches extract equality matches from a regexp. // Returns nil if we can't replace the regexp by only equality matchers or the regexp contains // a mix of case sensitive and case insensitive matchers. func findSetMatches(re *syntax.Regexp) (matches []string, caseSensitive bool) { clearBeginEndText(re) return findSetMatchesInternal(re, "") } func findSetMatchesInternal(re *syntax.Regexp, base string) (matches []string, caseSensitive bool) { switch re.Op { case syntax.OpBeginText: // Correctly handling the begin text operator inside a regex is tricky, // so in this case we fallback to the regex engine. return nil, false case syntax.OpEndText: // Correctly handling the end text operator inside a regex is tricky, // so in this case we fallback to the regex engine. return nil, false case syntax.OpLiteral: return []string{base + string(re.Rune)}, isCaseSensitive(re) case syntax.OpEmptyMatch: if base != "" { return []string{base}, isCaseSensitive(re) } case syntax.OpAlternate: return findSetMatchesFromAlternate(re, base) case syntax.OpCapture: clearCapture(re) return findSetMatchesInternal(re, base) case syntax.OpConcat: return findSetMatchesFromConcat(re, base) case syntax.OpCharClass: if len(re.Rune)%2 != 0 { return nil, false } var matches []string var totalSet int for i := 0; i+1 < len(re.Rune); i += 2 { totalSet += int(re.Rune[i+1]-re.Rune[i]) + 1 } // limits the total characters that can be used to create matches. // In some case like negation [^0-9] a lot of possibilities exists and that // can create thousands of possible matches at which points we're better off using regexp. if totalSet > maxSetMatches { return nil, false } for i := 0; i+1 < len(re.Rune); i += 2 { lo, hi := re.Rune[i], re.Rune[i+1] for c := lo; c <= hi; c++ { matches = append(matches, base+string(c)) } } return matches, isCaseSensitive(re) default: return nil, false } return nil, false } func findSetMatchesFromConcat(re *syntax.Regexp, base string) (matches []string, matchesCaseSensitive bool) { if len(re.Sub) == 0 { return nil, false } clearCapture(re.Sub...) matches = []string{base} for i := 0; i < len(re.Sub); i++ { var newMatches []string for j, b := range matches { m, caseSensitive := findSetMatchesInternal(re.Sub[i], b) if m == nil { return nil, false } if tooManyMatches(newMatches, m...) { return nil, false } // All matches must have the same case sensitivity. If it's the first set of matches // returned, we store its sensitivity as the expected case, and then we'll check all // other ones. if i == 0 && j == 0 { matchesCaseSensitive = caseSensitive } if matchesCaseSensitive != caseSensitive { return nil, false } newMatches = append(newMatches, m...) } matches = newMatches } return matches, matchesCaseSensitive } func findSetMatchesFromAlternate(re *syntax.Regexp, base string) (matches []string, matchesCaseSensitive bool) { for i, sub := range re.Sub { found, caseSensitive := findSetMatchesInternal(sub, base) if found == nil { return nil, false } if tooManyMatches(matches, found...) { return nil, false } // All matches must have the same case sensitivity. If it's the first set of matches // returned, we store its sensitivity as the expected case, and then we'll check all // other ones. if i == 0 { matchesCaseSensitive = caseSensitive } if matchesCaseSensitive != caseSensitive { return nil, false } matches = append(matches, found...) } return matches, matchesCaseSensitive } // clearCapture removes capture operation as they are not used for matching. func clearCapture(regs ...*syntax.Regexp) { for _, r := range regs { // Iterate on the regexp because capture groups could be nested. for r.Op == syntax.OpCapture { *r = *r.Sub[0] } } } // clearBeginEndText removes the begin and end text from the regexp. Prometheus regexp are anchored to the beginning and end of the string. func clearBeginEndText(re *syntax.Regexp) { // Do not clear begin/end text from an alternate operator because it could // change the actual regexp properties. if re.Op == syntax.OpAlternate { return } if len(re.Sub) == 0 { return } if len(re.Sub) == 1 { if re.Sub[0].Op == syntax.OpBeginText || re.Sub[0].Op == syntax.OpEndText { // We need to remove this element. Since it's the only one, we convert into a matcher of an empty string. // OpEmptyMatch is regexp's nop operator. re.Op = syntax.OpEmptyMatch re.Sub = nil return } } if re.Sub[0].Op == syntax.OpBeginText { re.Sub = re.Sub[1:] } if re.Sub[len(re.Sub)-1].Op == syntax.OpEndText { re.Sub = re.Sub[:len(re.Sub)-1] } } // isCaseInsensitive tells if a regexp is case insensitive. // The flag should be check at each level of the syntax tree. func isCaseInsensitive(reg *syntax.Regexp) bool { return (reg.Flags & syntax.FoldCase) != 0 } // isCaseSensitive tells if a regexp is case sensitive. // The flag should be check at each level of the syntax tree. func isCaseSensitive(reg *syntax.Regexp) bool { return !isCaseInsensitive(reg) } // tooManyMatches guards against creating too many set matches. func tooManyMatches(matches []string, added ...string) bool { return len(matches)+len(added) > maxSetMatches } func (m *FastRegexMatcher) MatchString(s string) bool { return m.matchString(s) } func (m *FastRegexMatcher) SetMatches() []string { // IMPORTANT: always return a copy, otherwise if the caller manipulate this slice it will // also get manipulated in the cached FastRegexMatcher instance. return slices.Clone(m.setMatches) } func (m *FastRegexMatcher) GetRegexString() string { return m.reString } // optimizeAlternatingLiterals optimizes a regex of the form // // `literal1|literal2|literal3|...` // // this function returns an optimized StringMatcher or nil if the regex // cannot be optimized in this way, and a list of setMatches up to maxSetMatches. func optimizeAlternatingLiterals(s string) (StringMatcher, []string) { if len(s) == 0 { return emptyStringMatcher{}, nil } estimatedAlternates := strings.Count(s, "|") + 1 // If there are no alternates, check if the string is a literal if estimatedAlternates == 1 { if regexp.QuoteMeta(s) == s { return &equalStringMatcher{s: s, caseSensitive: true}, []string{s} } return nil, nil } multiMatcher := newEqualMultiStringMatcher(true, estimatedAlternates) for end := strings.IndexByte(s, '|'); end > -1; end = strings.IndexByte(s, '|') { // Split the string into the next literal and the remainder subMatch := s[:end] s = s[end+1:] // break if any of the submatches are not literals if regexp.QuoteMeta(subMatch) != subMatch { return nil, nil } multiMatcher.add(subMatch) } // break if the remainder is not a literal if regexp.QuoteMeta(s) != s { return nil, nil } multiMatcher.add(s) return multiMatcher, multiMatcher.setMatches() } // optimizeConcatRegex returns literal prefix/suffix text that can be safely // checked against the label value before running the regexp matcher. func optimizeConcatRegex(r *syntax.Regexp) (prefix, suffix, contains string) { sub := r.Sub // We can safely remove begin and end text matchers respectively // at the beginning and end of the regexp. if len(sub) > 0 && sub[0].Op == syntax.OpBeginText { sub = sub[1:] } if len(sub) > 0 && sub[len(sub)-1].Op == syntax.OpEndText { sub = sub[:len(sub)-1] } if len(sub) == 0 { return } // Given Prometheus regex matchers are always anchored to the begin/end // of the text, if the first/last operations are literals, we can safely // treat them as prefix/suffix. if sub[0].Op == syntax.OpLiteral && (sub[0].Flags&syntax.FoldCase) == 0 { prefix = string(sub[0].Rune) } if last := len(sub) - 1; sub[last].Op == syntax.OpLiteral && (sub[last].Flags&syntax.FoldCase) == 0 { suffix = string(sub[last].Rune) } // If contains any literal which is not a prefix/suffix, we keep the // 1st one. We do not keep the whole list of literals to simplify the // fast path. for i := 1; i < len(sub)-1; i++ { if sub[i].Op == syntax.OpLiteral && (sub[i].Flags&syntax.FoldCase) == 0 { contains = string(sub[i].Rune) break } } return } // StringMatcher is a matcher that matches a string in place of a regular expression. type StringMatcher interface { Matches(s string) bool } // stringMatcherFromRegexp attempts to replace a common regexp with a string matcher. // It returns nil if the regexp is not supported. func stringMatcherFromRegexp(re *syntax.Regexp) StringMatcher { clearBeginEndText(re) m := stringMatcherFromRegexpInternal(re) m = optimizeEqualStringMatchers(m, minEqualMultiStringMatcherMapThreshold) return m } func stringMatcherFromRegexpInternal(re *syntax.Regexp) StringMatcher { clearCapture(re) switch re.Op { case syntax.OpBeginText: // Correctly handling the begin text operator inside a regex is tricky, // so in this case we fallback to the regex engine. return nil case syntax.OpEndText: // Correctly handling the end text operator inside a regex is tricky, // so in this case we fallback to the regex engine. return nil case syntax.OpPlus: if re.Sub[0].Op != syntax.OpAnyChar && re.Sub[0].Op != syntax.OpAnyCharNotNL { return nil } return &anyNonEmptyStringMatcher{ matchNL: re.Sub[0].Op == syntax.OpAnyChar, } case syntax.OpStar: if re.Sub[0].Op != syntax.OpAnyChar && re.Sub[0].Op != syntax.OpAnyCharNotNL { return nil } // If the newline is valid, than this matcher literally match any string (even empty). if re.Sub[0].Op == syntax.OpAnyChar { return trueMatcher{} } // Any string is fine (including an empty one), as far as it doesn't contain any newline. return anyStringWithoutNewlineMatcher{} case syntax.OpQuest: // Only optimize for ".?". if len(re.Sub) != 1 || (re.Sub[0].Op != syntax.OpAnyChar && re.Sub[0].Op != syntax.OpAnyCharNotNL) { return nil } return &zeroOrOneCharacterStringMatcher{ matchNL: re.Sub[0].Op == syntax.OpAnyChar, } case syntax.OpEmptyMatch: return emptyStringMatcher{} case syntax.OpLiteral: return &equalStringMatcher{ s: string(re.Rune), caseSensitive: !isCaseInsensitive(re), } case syntax.OpAlternate: or := make([]StringMatcher, 0, len(re.Sub)) for _, sub := range re.Sub { m := stringMatcherFromRegexpInternal(sub) if m == nil { return nil } or = append(or, m) } return orStringMatcher(or) case syntax.OpConcat: clearCapture(re.Sub...) if len(re.Sub) == 0 { return emptyStringMatcher{} } if len(re.Sub) == 1 { return stringMatcherFromRegexpInternal(re.Sub[0]) } var left, right StringMatcher // Let's try to find if there's a first and last any matchers. if re.Sub[0].Op == syntax.OpPlus || re.Sub[0].Op == syntax.OpStar || re.Sub[0].Op == syntax.OpQuest { left = stringMatcherFromRegexpInternal(re.Sub[0]) if left == nil { return nil } re.Sub = re.Sub[1:] } if re.Sub[len(re.Sub)-1].Op == syntax.OpPlus || re.Sub[len(re.Sub)-1].Op == syntax.OpStar || re.Sub[len(re.Sub)-1].Op == syntax.OpQuest { right = stringMatcherFromRegexpInternal(re.Sub[len(re.Sub)-1]) if right == nil { return nil } re.Sub = re.Sub[:len(re.Sub)-1] } matches, matchesCaseSensitive := findSetMatchesInternal(re, "") if len(matches) == 0 && len(re.Sub) == 2 { // We have not find fixed set matches. We look for other known cases that // we can optimize. switch { // Prefix is literal. case right == nil && re.Sub[0].Op == syntax.OpLiteral: right = stringMatcherFromRegexpInternal(re.Sub[1]) if right != nil { matches = []string{string(re.Sub[0].Rune)} matchesCaseSensitive = !isCaseInsensitive(re.Sub[0]) } // Suffix is literal. case left == nil && re.Sub[1].Op == syntax.OpLiteral: left = stringMatcherFromRegexpInternal(re.Sub[0]) if left != nil { matches = []string{string(re.Sub[1].Rune)} matchesCaseSensitive = !isCaseInsensitive(re.Sub[1]) } } } // Ensure we've found some literals to match (optionally with a left and/or right matcher). // If not, then this optimization doesn't trigger. if len(matches) == 0 { return nil } // Use the right (and best) matcher based on what we've found. switch { // No left and right matchers (only fixed set matches). case left == nil && right == nil: // if there's no any matchers on both side it's a concat of literals or := make([]StringMatcher, 0, len(matches)) for _, match := range matches { or = append(or, &equalStringMatcher{ s: match, caseSensitive: matchesCaseSensitive, }) } return orStringMatcher(or) // Right matcher with 1 fixed set match. case left == nil && len(matches) == 1: return &literalPrefixStringMatcher{ prefix: matches[0], prefixCaseSensitive: matchesCaseSensitive, right: right, } // Left matcher with 1 fixed set match. case right == nil && len(matches) == 1: return &literalSuffixStringMatcher{ left: left, suffix: matches[0], suffixCaseSensitive: matchesCaseSensitive, } // We found literals in the middle. We can trigger the fast path only if // the matches are case sensitive because containsStringMatcher doesn't // support case insensitive. case matchesCaseSensitive: return &containsStringMatcher{ substrings: matches, left: left, right: right, } } } return nil } // containsStringMatcher matches a string if it contains any of the substrings. // If left and right are not nil, it's a contains operation where left and right must match. // If left is nil, it's a hasPrefix operation and right must match. // Finally, if right is nil it's a hasSuffix operation and left must match. type containsStringMatcher struct { // The matcher that must match the left side. Can be nil. left StringMatcher // At least one of these strings must match in the "middle", between left and right matchers. substrings []string // The matcher that must match the right side. Can be nil. right StringMatcher } func (m *containsStringMatcher) Matches(s string) bool { for _, substr := range m.substrings { switch { case m.right != nil && m.left != nil: searchStartPos := 0 for { pos := strings.Index(s[searchStartPos:], substr) if pos < 0 { break } // Since we started searching from searchStartPos, we have to add that offset // to get the actual position of the substring inside the text. pos += searchStartPos // If both the left and right matchers match, then we can stop searching because // we've found a match. if m.left.Matches(s[:pos]) && m.right.Matches(s[pos+len(substr):]) { return true } // Continue searching for another occurrence of the substring inside the text. searchStartPos = pos + 1 } case m.left != nil: // If we have to check for characters on the left then we need to match a suffix. if strings.HasSuffix(s, substr) && m.left.Matches(s[:len(s)-len(substr)]) { return true } case m.right != nil: if strings.HasPrefix(s, substr) && m.right.Matches(s[len(substr):]) { return true } } } return false } // literalPrefixStringMatcher matches a string with the given literal prefix and right side matcher. type literalPrefixStringMatcher struct { prefix string prefixCaseSensitive bool // The matcher that must match the right side. Can be nil. right StringMatcher } func (m *literalPrefixStringMatcher) Matches(s string) bool { // Ensure the prefix matches. if m.prefixCaseSensitive && !strings.HasPrefix(s, m.prefix) { return false } if !m.prefixCaseSensitive && !hasPrefixCaseInsensitive(s, m.prefix) { return false } // Ensure the right side matches. return m.right.Matches(s[len(m.prefix):]) } // literalSuffixStringMatcher matches a string with the given literal suffix and left side matcher. type literalSuffixStringMatcher struct { // The matcher that must match the left side. Can be nil. left StringMatcher suffix string suffixCaseSensitive bool } func (m *literalSuffixStringMatcher) Matches(s string) bool { // Ensure the suffix matches. if m.suffixCaseSensitive && !strings.HasSuffix(s, m.suffix) { return false } if !m.suffixCaseSensitive && !hasSuffixCaseInsensitive(s, m.suffix) { return false } // Ensure the left side matches. return m.left.Matches(s[:len(s)-len(m.suffix)]) } // emptyStringMatcher matches an empty string. type emptyStringMatcher struct{} func (m emptyStringMatcher) Matches(s string) bool { return len(s) == 0 } // orStringMatcher matches any of the sub-matchers. type orStringMatcher []StringMatcher func (m orStringMatcher) Matches(s string) bool { for _, matcher := range m { if matcher.Matches(s) { return true } } return false } // equalStringMatcher matches a string exactly and support case insensitive. type equalStringMatcher struct { s string caseSensitive bool } func (m *equalStringMatcher) Matches(s string) bool { if m.caseSensitive { return m.s == s } return strings.EqualFold(m.s, s) } type multiStringMatcherBuilder interface { StringMatcher add(s string) setMatches() []string } func newEqualMultiStringMatcher(caseSensitive bool, estimatedSize int) multiStringMatcherBuilder { // If the estimated size is low enough, it's faster to use a slice instead of a map. if estimatedSize < minEqualMultiStringMatcherMapThreshold { return &equalMultiStringSliceMatcher{caseSensitive: caseSensitive, values: make([]string, 0, estimatedSize)} } return &equalMultiStringMapMatcher{ values: make(map[string]struct{}, estimatedSize), caseSensitive: caseSensitive, } } // equalMultiStringSliceMatcher matches a string exactly against a slice of valid values. type equalMultiStringSliceMatcher struct { values []string caseSensitive bool } func (m *equalMultiStringSliceMatcher) add(s string) { m.values = append(m.values, s) } func (m *equalMultiStringSliceMatcher) setMatches() []string { return m.values } func (m *equalMultiStringSliceMatcher) Matches(s string) bool { if m.caseSensitive { for _, v := range m.values { if s == v { return true } } } else { for _, v := range m.values { if strings.EqualFold(s, v) { return true } } } return false } // equalMultiStringMapMatcher matches a string exactly against a map of valid values. type equalMultiStringMapMatcher struct { // values contains values to match a string against. If the matching is case insensitive, // the values here must be lowercase. values map[string]struct{} caseSensitive bool } func (m *equalMultiStringMapMatcher) add(s string) { if !m.caseSensitive { s = strings.ToLower(s) } m.values[s] = struct{}{} } func (m *equalMultiStringMapMatcher) setMatches() []string { if len(m.values) >= maxSetMatches { return nil } matches := make([]string, 0, len(m.values)) for s := range m.values { matches = append(matches, s) } return matches } func (m *equalMultiStringMapMatcher) Matches(s string) bool { if !m.caseSensitive { s = strings.ToLower(s) } _, ok := m.values[s] return ok } // anyStringWithoutNewlineMatcher is a stringMatcher which matches any string // (including an empty one) as far as it doesn't contain any newline character. type anyStringWithoutNewlineMatcher struct{} func (m anyStringWithoutNewlineMatcher) Matches(s string) bool { // We need to make sure it doesn't contain a newline. Since the newline is // an ASCII character, we can use strings.IndexByte(). return strings.IndexByte(s, '\n') == -1 } // anyNonEmptyStringMatcher is a stringMatcher which matches any non-empty string. type anyNonEmptyStringMatcher struct { matchNL bool } func (m *anyNonEmptyStringMatcher) Matches(s string) bool { if m.matchNL { // It's OK if the string contains a newline so we just need to make // sure it's non-empty. return len(s) > 0 } // We need to make sure it non-empty and doesn't contain a newline. // Since the newline is an ASCII character, we can use strings.IndexByte(). return len(s) > 0 && strings.IndexByte(s, '\n') == -1 } // zeroOrOneCharacterStringMatcher is a StringMatcher which matches zero or one occurrence // of any character. The newline character is matches only if matchNL is set to true. type zeroOrOneCharacterStringMatcher struct { matchNL bool } func (m *zeroOrOneCharacterStringMatcher) Matches(s string) bool { // Zero or one. if len(s) > 1 { return false } // No need to check for the newline if the string is empty or matching a newline is OK. if m.matchNL || len(s) == 0 { return true } return s[0] != '\n' } // trueMatcher is a stringMatcher which matches any string (always returns true). type trueMatcher struct{} func (m trueMatcher) Matches(_ string) bool { return true } // optimizeEqualStringMatchers optimize a specific case where all matchers are made by an // alternation (orStringMatcher) of strings checked for equality (equalStringMatcher). In // this specific case, when we have many strings to match against we can use a map instead // of iterating over the list of strings. func optimizeEqualStringMatchers(input StringMatcher, threshold int) StringMatcher { var ( caseSensitive bool caseSensitiveSet bool numValues int ) // Analyse the input StringMatcher to count the number of occurrences // and ensure all of them have the same case sensitivity. analyseCallback := func(matcher *equalStringMatcher) bool { // Ensure we don't have mixed case sensitivity. if caseSensitiveSet && caseSensitive != matcher.caseSensitive { return false } else if !caseSensitiveSet { caseSensitive = matcher.caseSensitive caseSensitiveSet = true } numValues++ return true } if !findEqualStringMatchers(input, analyseCallback) { return input } // If the number of values found is less than the threshold, then we should skip the optimization. if numValues < threshold { return input } // Parse again the input StringMatcher to extract all values and storing them. // We can skip the case sensitivity check because we've already checked it and // if the code reach this point then it means all matchers have the same case sensitivity. multiMatcher := newEqualMultiStringMatcher(caseSensitive, numValues) // Ignore the return value because we already iterated over the input StringMatcher // and it was all good. findEqualStringMatchers(input, func(matcher *equalStringMatcher) bool { multiMatcher.add(matcher.s) return true }) return multiMatcher } // findEqualStringMatchers analyze the input StringMatcher and calls the callback for each // equalStringMatcher found. Returns true if and only if the input StringMatcher is *only* // composed by an alternation of equalStringMatcher. func findEqualStringMatchers(input StringMatcher, callback func(matcher *equalStringMatcher) bool) bool { orInput, ok := input.(orStringMatcher) if !ok { return false } for _, m := range orInput { switch casted := m.(type) { case orStringMatcher: if !findEqualStringMatchers(m, callback) { return false } case *equalStringMatcher: if !callback(casted) { return false } default: // It's not an equal string matcher, so we have to stop searching // cause this optimization can't be applied. return false } } return true } func hasPrefixCaseInsensitive(s, prefix string) bool { return len(s) >= len(prefix) && strings.EqualFold(s[0:len(prefix)], prefix) } func hasSuffixCaseInsensitive(s, suffix string) bool { return len(s) >= len(suffix) && strings.EqualFold(s[len(s)-len(suffix):], suffix) }