// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package tsdb implements a time series storage for float64 sample data. package tsdb import ( "context" "errors" "fmt" "io" "io/fs" "math" "os" "path/filepath" "slices" "strings" "sync" "time" "github.com/go-kit/log" "github.com/go-kit/log/level" "github.com/oklog/ulid" "github.com/prometheus/client_golang/prometheus" "go.uber.org/atomic" "golang.org/x/sync/errgroup" "github.com/prometheus/prometheus/config" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/tsdb/chunkenc" "github.com/prometheus/prometheus/tsdb/chunks" tsdb_errors "github.com/prometheus/prometheus/tsdb/errors" "github.com/prometheus/prometheus/tsdb/fileutil" _ "github.com/prometheus/prometheus/tsdb/goversion" // Load the package into main to make sure minimum Go version is met. "github.com/prometheus/prometheus/tsdb/tsdbutil" "github.com/prometheus/prometheus/tsdb/wlog" ) const ( // Default duration of a block in milliseconds. DefaultBlockDuration = int64(2 * time.Hour / time.Millisecond) // Block dir suffixes to make deletion and creation operations atomic. // We decided to do suffixes instead of creating meta.json as last (or delete as first) one, // because in error case you still can recover meta.json from the block content within local TSDB dir. // TODO(bwplotka): TSDB can end up with various .tmp files (e.g meta.json.tmp, WAL or segment tmp file. Think // about removing those too on start to save space. Currently only blocks tmp dirs are removed. tmpForDeletionBlockDirSuffix = ".tmp-for-deletion" tmpForCreationBlockDirSuffix = ".tmp-for-creation" // Pre-2.21 tmp dir suffix, used in clean-up functions. tmpLegacy = ".tmp" ) // ErrNotReady is returned if the underlying storage is not ready yet. var ErrNotReady = errors.New("TSDB not ready") // DefaultOptions used for the DB. They are reasonable for setups using // millisecond precision timestamps. func DefaultOptions() *Options { return &Options{ WALSegmentSize: wlog.DefaultSegmentSize, MaxBlockChunkSegmentSize: chunks.DefaultChunkSegmentSize, RetentionDuration: int64(15 * 24 * time.Hour / time.Millisecond), MinBlockDuration: DefaultBlockDuration, MaxBlockDuration: DefaultBlockDuration, NoLockfile: false, SamplesPerChunk: DefaultSamplesPerChunk, WALCompression: wlog.CompressionNone, StripeSize: DefaultStripeSize, HeadChunksWriteBufferSize: chunks.DefaultWriteBufferSize, IsolationDisabled: defaultIsolationDisabled, HeadChunksWriteQueueSize: chunks.DefaultWriteQueueSize, OutOfOrderCapMax: DefaultOutOfOrderCapMax, EnableOverlappingCompaction: true, EnableSharding: false, } } // Options of the DB storage. type Options struct { // Segments (wal files) max size. // WALSegmentSize = 0, segment size is default size. // WALSegmentSize > 0, segment size is WALSegmentSize. // WALSegmentSize < 0, wal is disabled. WALSegmentSize int // MaxBlockChunkSegmentSize is the max size of block chunk segment files. // MaxBlockChunkSegmentSize = 0, chunk segment size is default size. // MaxBlockChunkSegmentSize > 0, chunk segment size is MaxBlockChunkSegmentSize. MaxBlockChunkSegmentSize int64 // Duration of persisted data to keep. // Unit agnostic as long as unit is consistent with MinBlockDuration and MaxBlockDuration. // Typically it is in milliseconds. RetentionDuration int64 // Maximum number of bytes in blocks to be retained. // 0 or less means disabled. // NOTE: For proper storage calculations need to consider // the size of the WAL folder which is not added when calculating // the current size of the database. MaxBytes int64 // NoLockfile disables creation and consideration of a lock file. NoLockfile bool // WALCompression configures the compression type to use on records in the WAL. WALCompression wlog.CompressionType // Maximum number of CPUs that can simultaneously processes WAL replay. // If it is <=0, then GOMAXPROCS is used. WALReplayConcurrency int // StripeSize is the size in entries of the series hash map. Reducing the size will save memory but impact performance. StripeSize int // The timestamp range of head blocks after which they get persisted. // It's the minimum duration of any persisted block. // Unit agnostic as long as unit is consistent with RetentionDuration and MaxBlockDuration. // Typically it is in milliseconds. MinBlockDuration int64 // The maximum timestamp range of compacted blocks. // Unit agnostic as long as unit is consistent with MinBlockDuration and RetentionDuration. // Typically it is in milliseconds. MaxBlockDuration int64 // HeadChunksWriteBufferSize configures the write buffer size used by the head chunks mapper. HeadChunksWriteBufferSize int // HeadChunksWriteQueueSize configures the size of the chunk write queue used in the head chunks mapper. HeadChunksWriteQueueSize int // SamplesPerChunk configures the target number of samples per chunk. SamplesPerChunk int // SeriesLifecycleCallback specifies a list of callbacks that will be called during a lifecycle of a series. // It is always a no-op in Prometheus and mainly meant for external users who import TSDB. SeriesLifecycleCallback SeriesLifecycleCallback // BlocksToDelete is a function which returns the blocks which can be deleted. // It is always the default time and size based retention in Prometheus and // mainly meant for external users who import TSDB. BlocksToDelete BlocksToDeleteFunc // Enables the in memory exemplar storage. EnableExemplarStorage bool // Enables the snapshot of in-memory chunks on shutdown. This makes restarts faster. EnableMemorySnapshotOnShutdown bool // MaxExemplars sets the size, in # of exemplars stored, of the single circular buffer used to store exemplars in memory. // See tsdb/exemplar.go, specifically the CircularExemplarStorage struct and it's constructor NewCircularExemplarStorage. MaxExemplars int64 // Disables isolation between reads and in-flight appends. IsolationDisabled bool // EnableNativeHistograms enables the ingestion of native histograms. EnableNativeHistograms bool // OutOfOrderTimeWindow specifies how much out of order is allowed, if any. // This can change during run-time, so this value from here should only be used // while initialising. OutOfOrderTimeWindow int64 // OutOfOrderCapMax is maximum capacity for OOO chunks (in samples). // If it is <=0, the default value is assumed. OutOfOrderCapMax int64 // Compaction of overlapping blocks are allowed if EnableOverlappingCompaction is true. // This is an optional flag for overlapping blocks. // The reason why this flag exists is because there are various users of the TSDB // that do not want vertical compaction happening on ingest time. Instead, // they'd rather keep overlapping blocks and let another component do the overlapping compaction later. // For Prometheus, this will always be true. EnableOverlappingCompaction bool // EnableSharding enables query sharding support in TSDB. EnableSharding bool } type BlocksToDeleteFunc func(blocks []*Block) map[ulid.ULID]struct{} // DB handles reads and writes of time series falling into // a hashed partition of a seriedb. type DB struct { dir string locker *tsdbutil.DirLocker logger log.Logger metrics *dbMetrics opts *Options chunkPool chunkenc.Pool compactor Compactor blocksToDelete BlocksToDeleteFunc // Mutex for that must be held when modifying the general block layout or lastGarbageCollectedMmapRef. mtx sync.RWMutex blocks []*Block // The last OOO chunk that was compacted and written to disk. New queriers must not read chunks less // than or equal to this reference, as these chunks could be garbage collected at any time. lastGarbageCollectedMmapRef chunks.ChunkDiskMapperRef head *Head compactc chan struct{} donec chan struct{} stopc chan struct{} // cmtx ensures that compactions and deletions don't run simultaneously. cmtx sync.Mutex // autoCompactMtx ensures that no compaction gets triggered while // changing the autoCompact var. autoCompactMtx sync.Mutex autoCompact bool // Cancel a running compaction when a shutdown is initiated. compactCancel context.CancelFunc // oooWasEnabled is true if out of order support was enabled at least one time // during the time TSDB was up. In which case we need to keep supporting // out-of-order compaction and vertical queries. oooWasEnabled atomic.Bool writeNotified wlog.WriteNotified registerer prometheus.Registerer } type dbMetrics struct { loadedBlocks prometheus.GaugeFunc symbolTableSize prometheus.GaugeFunc reloads prometheus.Counter reloadsFailed prometheus.Counter compactionsFailed prometheus.Counter compactionsTriggered prometheus.Counter compactionsSkipped prometheus.Counter sizeRetentionCount prometheus.Counter timeRetentionCount prometheus.Counter startTime prometheus.GaugeFunc tombCleanTimer prometheus.Histogram blocksBytes prometheus.Gauge maxBytes prometheus.Gauge retentionDuration prometheus.Gauge } func newDBMetrics(db *DB, r prometheus.Registerer) *dbMetrics { m := &dbMetrics{} m.loadedBlocks = prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_blocks_loaded", Help: "Number of currently loaded data blocks", }, func() float64 { db.mtx.RLock() defer db.mtx.RUnlock() return float64(len(db.blocks)) }) m.symbolTableSize = prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_symbol_table_size_bytes", Help: "Size of symbol table in memory for loaded blocks", }, func() float64 { db.mtx.RLock() blocks := db.blocks db.mtx.RUnlock() symTblSize := uint64(0) for _, b := range blocks { symTblSize += b.GetSymbolTableSize() } return float64(symTblSize) }) m.reloads = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_reloads_total", Help: "Number of times the database reloaded block data from disk.", }) m.reloadsFailed = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_reloads_failures_total", Help: "Number of times the database failed to reloadBlocks block data from disk.", }) m.compactionsTriggered = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_compactions_triggered_total", Help: "Total number of triggered compactions for the partition.", }) m.compactionsFailed = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_compactions_failed_total", Help: "Total number of compactions that failed for the partition.", }) m.timeRetentionCount = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_time_retentions_total", Help: "The number of times that blocks were deleted because the maximum time limit was exceeded.", }) m.compactionsSkipped = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_compactions_skipped_total", Help: "Total number of skipped compactions due to disabled auto compaction.", }) m.startTime = prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_lowest_timestamp", Help: "Lowest timestamp value stored in the database. The unit is decided by the library consumer.", }, func() float64 { db.mtx.RLock() defer db.mtx.RUnlock() if len(db.blocks) == 0 { return float64(db.head.MinTime()) } return float64(db.blocks[0].meta.MinTime) }) m.tombCleanTimer = prometheus.NewHistogram(prometheus.HistogramOpts{ Name: "prometheus_tsdb_tombstone_cleanup_seconds", Help: "The time taken to recompact blocks to remove tombstones.", NativeHistogramBucketFactor: 1.1, NativeHistogramMaxBucketNumber: 100, NativeHistogramMinResetDuration: 1 * time.Hour, }) m.blocksBytes = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "prometheus_tsdb_storage_blocks_bytes", Help: "The number of bytes that are currently used for local storage by all blocks.", }) m.maxBytes = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "prometheus_tsdb_retention_limit_bytes", Help: "Max number of bytes to be retained in the tsdb blocks, configured 0 means disabled", }) m.retentionDuration = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "prometheus_tsdb_retention_limit_seconds", Help: "How long to retain samples in storage.", }) m.sizeRetentionCount = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_size_retentions_total", Help: "The number of times that blocks were deleted because the maximum number of bytes was exceeded.", }) if r != nil { r.MustRegister( m.loadedBlocks, m.symbolTableSize, m.reloads, m.reloadsFailed, m.compactionsFailed, m.compactionsTriggered, m.compactionsSkipped, m.sizeRetentionCount, m.timeRetentionCount, m.startTime, m.tombCleanTimer, m.blocksBytes, m.maxBytes, m.retentionDuration, ) } return m } // DBStats contains statistics about the DB separated by component (eg. head). // They are available before the DB has finished initializing. type DBStats struct { Head *HeadStats } // NewDBStats returns a new DBStats object initialized using the // new function from each component. func NewDBStats() *DBStats { return &DBStats{ Head: NewHeadStats(), } } // ErrClosed is returned when the db is closed. var ErrClosed = errors.New("db already closed") // DBReadOnly provides APIs for read only operations on a database. // Current implementation doesn't support concurrency so // all API calls should happen in the same go routine. type DBReadOnly struct { logger log.Logger dir string closers []io.Closer closed chan struct{} } // OpenDBReadOnly opens DB in the given directory for read only operations. func OpenDBReadOnly(dir string, l log.Logger) (*DBReadOnly, error) { if _, err := os.Stat(dir); err != nil { return nil, fmt.Errorf("opening the db dir: %w", err) } if l == nil { l = log.NewNopLogger() } return &DBReadOnly{ logger: l, dir: dir, closed: make(chan struct{}), }, nil } // FlushWAL creates a new block containing all data that's currently in the memory buffer/WAL. // Samples that are in existing blocks will not be written to the new block. // Note that if the read only database is running concurrently with a // writable database then writing the WAL to the database directory can race. func (db *DBReadOnly) FlushWAL(dir string) (returnErr error) { blockReaders, err := db.Blocks() if err != nil { return fmt.Errorf("read blocks: %w", err) } maxBlockTime := int64(math.MinInt64) if len(blockReaders) > 0 { maxBlockTime = blockReaders[len(blockReaders)-1].Meta().MaxTime } w, err := wlog.Open(db.logger, filepath.Join(db.dir, "wal")) if err != nil { return err } var wbl *wlog.WL wblDir := filepath.Join(db.dir, wlog.WblDirName) if _, err := os.Stat(wblDir); !os.IsNotExist(err) { wbl, err = wlog.Open(db.logger, wblDir) if err != nil { return err } } opts := DefaultHeadOptions() opts.ChunkDirRoot = db.dir head, err := NewHead(nil, db.logger, w, wbl, opts, NewHeadStats()) if err != nil { return err } defer func() { errs := tsdb_errors.NewMulti(returnErr) if err := head.Close(); err != nil { errs.Add(fmt.Errorf("closing Head: %w", err)) } returnErr = errs.Err() }() // Set the min valid time for the ingested wal samples // to be no lower than the maxt of the last block. if err := head.Init(maxBlockTime); err != nil { return fmt.Errorf("read WAL: %w", err) } mint := head.MinTime() maxt := head.MaxTime() rh := NewRangeHead(head, mint, maxt) compactor, err := NewLeveledCompactor( context.Background(), nil, db.logger, ExponentialBlockRanges(DefaultOptions().MinBlockDuration, 3, 5), chunkenc.NewPool(), nil, ) if err != nil { return fmt.Errorf("create leveled compactor: %w", err) } // Add +1 millisecond to block maxt because block intervals are half-open: [b.MinTime, b.MaxTime). // Because of this block intervals are always +1 than the total samples it includes. _, err = compactor.Write(dir, rh, mint, maxt+1, nil) if err != nil { return fmt.Errorf("writing WAL: %w", err) } return nil } func (db *DBReadOnly) loadDataAsQueryable(maxt int64) (storage.SampleAndChunkQueryable, error) { select { case <-db.closed: return nil, ErrClosed default: } blockReaders, err := db.Blocks() if err != nil { return nil, err } blocks := make([]*Block, len(blockReaders)) for i, b := range blockReaders { b, ok := b.(*Block) if !ok { return nil, errors.New("unable to convert a read only block to a normal block") } blocks[i] = b } opts := DefaultHeadOptions() opts.ChunkDirRoot = db.dir head, err := NewHead(nil, db.logger, nil, nil, opts, NewHeadStats()) if err != nil { return nil, err } maxBlockTime := int64(math.MinInt64) if len(blocks) > 0 { maxBlockTime = blocks[len(blocks)-1].Meta().MaxTime } // Also add the WAL if the current blocks don't cover the requests time range. if maxBlockTime <= maxt { if err := head.Close(); err != nil { return nil, err } w, err := wlog.Open(db.logger, filepath.Join(db.dir, "wal")) if err != nil { return nil, err } var wbl *wlog.WL wblDir := filepath.Join(db.dir, wlog.WblDirName) if _, err := os.Stat(wblDir); !os.IsNotExist(err) { wbl, err = wlog.Open(db.logger, wblDir) if err != nil { return nil, err } } opts := DefaultHeadOptions() opts.ChunkDirRoot = db.dir head, err = NewHead(nil, db.logger, w, wbl, opts, NewHeadStats()) if err != nil { return nil, err } // Set the min valid time for the ingested wal samples // to be no lower than the maxt of the last block. if err := head.Init(maxBlockTime); err != nil { return nil, fmt.Errorf("read WAL: %w", err) } // Set the wal and the wbl to nil to disable related operations. // This is mainly to avoid blocking when closing the head. head.wal = nil head.wbl = nil } db.closers = append(db.closers, head) return &DB{ dir: db.dir, logger: db.logger, blocks: blocks, head: head, }, nil } // Querier loads the blocks and wal and returns a new querier over the data partition for the given time range. // Current implementation doesn't support multiple Queriers. func (db *DBReadOnly) Querier(mint, maxt int64) (storage.Querier, error) { q, err := db.loadDataAsQueryable(maxt) if err != nil { return nil, err } return q.Querier(mint, maxt) } // ChunkQuerier loads blocks and the wal and returns a new chunk querier over the data partition for the given time range. // Current implementation doesn't support multiple ChunkQueriers. func (db *DBReadOnly) ChunkQuerier(mint, maxt int64) (storage.ChunkQuerier, error) { q, err := db.loadDataAsQueryable(maxt) if err != nil { return nil, err } return q.ChunkQuerier(mint, maxt) } // Blocks returns a slice of block readers for persisted blocks. func (db *DBReadOnly) Blocks() ([]BlockReader, error) { select { case <-db.closed: return nil, ErrClosed default: } loadable, corrupted, err := openBlocks(db.logger, db.dir, nil, nil) if err != nil { return nil, err } // Corrupted blocks that have been superseded by a loadable block can be safely ignored. for _, block := range loadable { for _, b := range block.Meta().Compaction.Parents { delete(corrupted, b.ULID) } } if len(corrupted) > 0 { for _, b := range loadable { if err := b.Close(); err != nil { level.Warn(db.logger).Log("msg", "Closing block failed", "err", err, "block", b) } } errs := tsdb_errors.NewMulti() for ulid, err := range corrupted { if err != nil { errs.Add(fmt.Errorf("corrupted block %s: %w", ulid.String(), err)) } } return nil, errs.Err() } if len(loadable) == 0 { return nil, nil } slices.SortFunc(loadable, func(a, b *Block) int { switch { case a.Meta().MinTime < b.Meta().MinTime: return -1 case a.Meta().MinTime > b.Meta().MinTime: return 1 default: return 0 } }) blockMetas := make([]BlockMeta, 0, len(loadable)) for _, b := range loadable { blockMetas = append(blockMetas, b.Meta()) } if overlaps := OverlappingBlocks(blockMetas); len(overlaps) > 0 { level.Warn(db.logger).Log("msg", "Overlapping blocks found during opening", "detail", overlaps.String()) } // Close all previously open readers and add the new ones to the cache. for _, closer := range db.closers { closer.Close() } blockClosers := make([]io.Closer, len(loadable)) blockReaders := make([]BlockReader, len(loadable)) for i, b := range loadable { blockClosers[i] = b blockReaders[i] = b } db.closers = blockClosers return blockReaders, nil } // LastBlockID returns the BlockID of latest block. func (db *DBReadOnly) LastBlockID() (string, error) { entries, err := os.ReadDir(db.dir) if err != nil { return "", err } max := uint64(0) lastBlockID := "" for _, e := range entries { // Check if dir is a block dir or not. dirName := e.Name() ulidObj, err := ulid.ParseStrict(dirName) if err != nil { continue // Not a block dir. } timestamp := ulidObj.Time() if timestamp > max { max = timestamp lastBlockID = dirName } } if lastBlockID == "" { return "", errors.New("no blocks found") } return lastBlockID, nil } // Block returns a block reader by given block id. func (db *DBReadOnly) Block(blockID string) (BlockReader, error) { select { case <-db.closed: return nil, ErrClosed default: } _, err := os.Stat(filepath.Join(db.dir, blockID)) if os.IsNotExist(err) { return nil, fmt.Errorf("invalid block ID %s", blockID) } block, err := OpenBlock(db.logger, filepath.Join(db.dir, blockID), nil) if err != nil { return nil, err } db.closers = append(db.closers, block) return block, nil } // Close all block readers. func (db *DBReadOnly) Close() error { select { case <-db.closed: return ErrClosed default: } close(db.closed) return tsdb_errors.CloseAll(db.closers) } // Open returns a new DB in the given directory. If options are empty, DefaultOptions will be used. func Open(dir string, l log.Logger, r prometheus.Registerer, opts *Options, stats *DBStats) (db *DB, err error) { var rngs []int64 opts, rngs = validateOpts(opts, nil) return open(dir, l, r, opts, rngs, stats) } func validateOpts(opts *Options, rngs []int64) (*Options, []int64) { if opts == nil { opts = DefaultOptions() } if opts.StripeSize <= 0 { opts.StripeSize = DefaultStripeSize } if opts.HeadChunksWriteBufferSize <= 0 { opts.HeadChunksWriteBufferSize = chunks.DefaultWriteBufferSize } if opts.HeadChunksWriteQueueSize < 0 { opts.HeadChunksWriteQueueSize = chunks.DefaultWriteQueueSize } if opts.SamplesPerChunk <= 0 { opts.SamplesPerChunk = DefaultSamplesPerChunk } if opts.MaxBlockChunkSegmentSize <= 0 { opts.MaxBlockChunkSegmentSize = chunks.DefaultChunkSegmentSize } if opts.MinBlockDuration <= 0 { opts.MinBlockDuration = DefaultBlockDuration } if opts.MinBlockDuration > opts.MaxBlockDuration { opts.MaxBlockDuration = opts.MinBlockDuration } if opts.OutOfOrderCapMax <= 0 { opts.OutOfOrderCapMax = DefaultOutOfOrderCapMax } if opts.OutOfOrderTimeWindow < 0 { opts.OutOfOrderTimeWindow = 0 } if len(rngs) == 0 { // Start with smallest block duration and create exponential buckets until the exceed the // configured maximum block duration. rngs = ExponentialBlockRanges(opts.MinBlockDuration, 10, 3) } return opts, rngs } // open returns a new DB in the given directory. // It initializes the lockfile, WAL, compactor, and Head (by replaying the WAL), and runs the database. // It is not safe to open more than one DB in the same directory. func open(dir string, l log.Logger, r prometheus.Registerer, opts *Options, rngs []int64, stats *DBStats) (_ *DB, returnedErr error) { if err := os.MkdirAll(dir, 0o777); err != nil { return nil, err } if l == nil { l = log.NewNopLogger() } if stats == nil { stats = NewDBStats() } for i, v := range rngs { if v > opts.MaxBlockDuration { rngs = rngs[:i] break } } // Fixup bad format written by Prometheus 2.1. if err := repairBadIndexVersion(l, dir); err != nil { return nil, fmt.Errorf("repair bad index version: %w", err) } walDir := filepath.Join(dir, "wal") wblDir := filepath.Join(dir, wlog.WblDirName) for _, tmpDir := range []string{walDir, dir} { // Remove tmp dirs. if err := removeBestEffortTmpDirs(l, tmpDir); err != nil { return nil, fmt.Errorf("remove tmp dirs: %w", err) } } db := &DB{ dir: dir, logger: l, opts: opts, compactc: make(chan struct{}, 1), donec: make(chan struct{}), stopc: make(chan struct{}), autoCompact: true, chunkPool: chunkenc.NewPool(), blocksToDelete: opts.BlocksToDelete, registerer: r, } defer func() { // Close files if startup fails somewhere. if returnedErr == nil { return } close(db.donec) // DB is never run if it was an error, so close this channel here. errs := tsdb_errors.NewMulti(returnedErr) if err := db.Close(); err != nil { errs.Add(fmt.Errorf("close DB after failed startup: %w", err)) } returnedErr = errs.Err() }() if db.blocksToDelete == nil { db.blocksToDelete = DefaultBlocksToDelete(db) } var err error db.locker, err = tsdbutil.NewDirLocker(dir, "tsdb", db.logger, r) if err != nil { return nil, err } if !opts.NoLockfile { if err := db.locker.Lock(); err != nil { return nil, err } } ctx, cancel := context.WithCancel(context.Background()) db.compactor, err = NewLeveledCompactorWithOptions(ctx, r, l, rngs, db.chunkPool, LeveledCompactorOptions{ MaxBlockChunkSegmentSize: opts.MaxBlockChunkSegmentSize, EnableOverlappingCompaction: opts.EnableOverlappingCompaction, }) if err != nil { cancel() return nil, fmt.Errorf("create leveled compactor: %w", err) } db.compactCancel = cancel var wal, wbl *wlog.WL segmentSize := wlog.DefaultSegmentSize // Wal is enabled. if opts.WALSegmentSize >= 0 { // Wal is set to a custom size. if opts.WALSegmentSize > 0 { segmentSize = opts.WALSegmentSize } wal, err = wlog.NewSize(l, r, walDir, segmentSize, opts.WALCompression) if err != nil { return nil, err } // Check if there is a WBL on disk, in which case we should replay that data. wblSize, err := fileutil.DirSize(wblDir) if err != nil && !os.IsNotExist(err) { return nil, err } if opts.OutOfOrderTimeWindow > 0 || wblSize > 0 { wbl, err = wlog.NewSize(l, r, wblDir, segmentSize, opts.WALCompression) if err != nil { return nil, err } } } db.oooWasEnabled.Store(opts.OutOfOrderTimeWindow > 0) headOpts := DefaultHeadOptions() headOpts.ChunkRange = rngs[0] headOpts.ChunkDirRoot = dir headOpts.ChunkPool = db.chunkPool headOpts.ChunkWriteBufferSize = opts.HeadChunksWriteBufferSize headOpts.ChunkWriteQueueSize = opts.HeadChunksWriteQueueSize headOpts.SamplesPerChunk = opts.SamplesPerChunk headOpts.StripeSize = opts.StripeSize headOpts.SeriesCallback = opts.SeriesLifecycleCallback headOpts.EnableExemplarStorage = opts.EnableExemplarStorage headOpts.MaxExemplars.Store(opts.MaxExemplars) headOpts.EnableMemorySnapshotOnShutdown = opts.EnableMemorySnapshotOnShutdown headOpts.EnableNativeHistograms.Store(opts.EnableNativeHistograms) headOpts.OutOfOrderTimeWindow.Store(opts.OutOfOrderTimeWindow) headOpts.OutOfOrderCapMax.Store(opts.OutOfOrderCapMax) headOpts.EnableSharding = opts.EnableSharding if opts.WALReplayConcurrency > 0 { headOpts.WALReplayConcurrency = opts.WALReplayConcurrency } if opts.IsolationDisabled { // We only override this flag if isolation is disabled at DB level. We use the default otherwise. headOpts.IsolationDisabled = opts.IsolationDisabled } db.head, err = NewHead(r, l, wal, wbl, headOpts, stats.Head) if err != nil { return nil, err } db.head.writeNotified = db.writeNotified // Register metrics after assigning the head block. db.metrics = newDBMetrics(db, r) maxBytes := opts.MaxBytes if maxBytes < 0 { maxBytes = 0 } db.metrics.maxBytes.Set(float64(maxBytes)) db.metrics.retentionDuration.Set((time.Duration(opts.RetentionDuration) * time.Millisecond).Seconds()) if err := db.reload(); err != nil { return nil, err } // Set the min valid time for the ingested samples // to be no lower than the maxt of the last block. minValidTime := int64(math.MinInt64) // We do not consider blocks created from out-of-order samples for Head's minValidTime // since minValidTime is only for the in-order data and we do not want to discard unnecessary // samples from the Head. inOrderMaxTime, ok := db.inOrderBlocksMaxTime() if ok { minValidTime = inOrderMaxTime } if initErr := db.head.Init(minValidTime); initErr != nil { db.head.metrics.walCorruptionsTotal.Inc() var e *errLoadWbl if errors.As(initErr, &e) { level.Warn(db.logger).Log("msg", "Encountered WBL read error, attempting repair", "err", initErr) if err := wbl.Repair(e.err); err != nil { return nil, fmt.Errorf("repair corrupted WBL: %w", err) } level.Info(db.logger).Log("msg", "Successfully repaired WBL") } else { level.Warn(db.logger).Log("msg", "Encountered WAL read error, attempting repair", "err", initErr) if err := wal.Repair(initErr); err != nil { return nil, fmt.Errorf("repair corrupted WAL: %w", err) } level.Info(db.logger).Log("msg", "Successfully repaired WAL") } } if db.head.MinOOOTime() != int64(math.MaxInt64) { // Some OOO data was replayed from the disk that needs compaction and cleanup. db.oooWasEnabled.Store(true) } go db.run(ctx) return db, nil } func removeBestEffortTmpDirs(l log.Logger, dir string) error { files, err := os.ReadDir(dir) if os.IsNotExist(err) { return nil } if err != nil { return err } for _, f := range files { if isTmpDir(f) { if err := os.RemoveAll(filepath.Join(dir, f.Name())); err != nil { level.Error(l).Log("msg", "failed to delete tmp block dir", "dir", filepath.Join(dir, f.Name()), "err", err) continue } level.Info(l).Log("msg", "Found and deleted tmp block dir", "dir", filepath.Join(dir, f.Name())) } } return nil } // StartTime implements the Storage interface. func (db *DB) StartTime() (int64, error) { db.mtx.RLock() defer db.mtx.RUnlock() if len(db.blocks) > 0 { return db.blocks[0].Meta().MinTime, nil } return db.head.MinTime(), nil } // Dir returns the directory of the database. func (db *DB) Dir() string { return db.dir } func (db *DB) run(ctx context.Context) { defer close(db.donec) backoff := time.Duration(0) for { select { case <-db.stopc: return case <-time.After(backoff): } select { case <-time.After(1 * time.Minute): db.cmtx.Lock() if err := db.reloadBlocks(); err != nil { level.Error(db.logger).Log("msg", "reloadBlocks", "err", err) } db.cmtx.Unlock() select { case db.compactc <- struct{}{}: default: } // We attempt mmapping of head chunks regularly. db.head.mmapHeadChunks() case <-db.compactc: db.metrics.compactionsTriggered.Inc() db.autoCompactMtx.Lock() if db.autoCompact { if err := db.Compact(ctx); err != nil { level.Error(db.logger).Log("msg", "compaction failed", "err", err) backoff = exponential(backoff, 1*time.Second, 1*time.Minute) } else { backoff = 0 } } else { db.metrics.compactionsSkipped.Inc() } db.autoCompactMtx.Unlock() case <-db.stopc: return } } } // Appender opens a new appender against the database. func (db *DB) Appender(ctx context.Context) storage.Appender { return dbAppender{db: db, Appender: db.head.Appender(ctx)} } // ApplyConfig applies a new config to the DB. // Behaviour of 'OutOfOrderTimeWindow' is as follows: // OOO enabled = oooTimeWindow > 0. OOO disabled = oooTimeWindow is 0. // 1) Before: OOO disabled, Now: OOO enabled => // - A new WBL is created for the head block. // - OOO compaction is enabled. // - Overlapping queries are enabled. // // 2) Before: OOO enabled, Now: OOO enabled => // - Only the time window is updated. // // 3) Before: OOO enabled, Now: OOO disabled => // - Time Window set to 0. So no new OOO samples will be allowed. // - OOO WBL will stay and will be eventually cleaned up. // - OOO Compaction and overlapping queries will remain enabled until a restart or until all OOO samples are compacted. // // 4) Before: OOO disabled, Now: OOO disabled => no-op. func (db *DB) ApplyConfig(conf *config.Config) error { oooTimeWindow := int64(0) if conf.StorageConfig.TSDBConfig != nil { oooTimeWindow = conf.StorageConfig.TSDBConfig.OutOfOrderTimeWindow } if oooTimeWindow < 0 { oooTimeWindow = 0 } // Create WBL if it was not present and if OOO is enabled with WAL enabled. var wblog *wlog.WL var err error switch { case db.head.wbl != nil: // The existing WBL from the disk might have been replayed while OOO was disabled. wblog = db.head.wbl case !db.oooWasEnabled.Load() && oooTimeWindow > 0 && db.opts.WALSegmentSize >= 0: segmentSize := wlog.DefaultSegmentSize // Wal is set to a custom size. if db.opts.WALSegmentSize > 0 { segmentSize = db.opts.WALSegmentSize } oooWalDir := filepath.Join(db.dir, wlog.WblDirName) wblog, err = wlog.NewSize(db.logger, db.registerer, oooWalDir, segmentSize, db.opts.WALCompression) if err != nil { return err } } db.opts.OutOfOrderTimeWindow = oooTimeWindow db.head.ApplyConfig(conf, wblog) if !db.oooWasEnabled.Load() { db.oooWasEnabled.Store(oooTimeWindow > 0) } return nil } // EnableNativeHistograms enables the native histogram feature. func (db *DB) EnableNativeHistograms() { db.head.EnableNativeHistograms() } // DisableNativeHistograms disables the native histogram feature. func (db *DB) DisableNativeHistograms() { db.head.DisableNativeHistograms() } // dbAppender wraps the DB's head appender and triggers compactions on commit // if necessary. type dbAppender struct { storage.Appender db *DB } var _ storage.GetRef = dbAppender{} func (a dbAppender) GetRef(lset labels.Labels, hash uint64) (storage.SeriesRef, labels.Labels) { if g, ok := a.Appender.(storage.GetRef); ok { return g.GetRef(lset, hash) } return 0, labels.EmptyLabels() } func (a dbAppender) Commit() error { err := a.Appender.Commit() // We could just run this check every few minutes practically. But for benchmarks // and high frequency use cases this is the safer way. if a.db.head.compactable() { select { case a.db.compactc <- struct{}{}: default: } } return err } // Compact data if possible. After successful compaction blocks are reloaded // which will also delete the blocks that fall out of the retention window. // Old blocks are only deleted on reloadBlocks based on the new block's parent information. // See DB.reloadBlocks documentation for further information. func (db *DB) Compact(ctx context.Context) (returnErr error) { db.cmtx.Lock() defer db.cmtx.Unlock() defer func() { if returnErr != nil && !errors.Is(returnErr, context.Canceled) { // If we got an error because context was canceled then we're most likely // shutting down TSDB and we don't need to report this on metrics db.metrics.compactionsFailed.Inc() } }() lastBlockMaxt := int64(math.MinInt64) defer func() { errs := tsdb_errors.NewMulti(returnErr) if err := db.head.truncateWAL(lastBlockMaxt); err != nil { errs.Add(fmt.Errorf("WAL truncation in Compact defer: %w", err)) } returnErr = errs.Err() }() start := time.Now() // Check whether we have pending head blocks that are ready to be persisted. // They have the highest priority. for { select { case <-db.stopc: return nil default: } if !db.head.compactable() { break } mint := db.head.MinTime() maxt := rangeForTimestamp(mint, db.head.chunkRange.Load()) // Wrap head into a range that bounds all reads to it. // We remove 1 millisecond from maxt because block // intervals are half-open: [b.MinTime, b.MaxTime). But // chunk intervals are closed: [c.MinTime, c.MaxTime]; // so in order to make sure that overlaps are evaluated // consistently, we explicitly remove the last value // from the block interval here. rh := NewRangeHeadWithIsolationDisabled(db.head, mint, maxt-1) // Compaction runs with isolation disabled, because head.compactable() // ensures that maxt is more than chunkRange/2 back from now, and // head.appendableMinValidTime() ensures that no new appends can start within the compaction range. // We do need to wait for any overlapping appenders that started previously to finish. db.head.WaitForAppendersOverlapping(rh.MaxTime()) if err := db.compactHead(rh); err != nil { return fmt.Errorf("compact head: %w", err) } // Consider only successful compactions for WAL truncation. lastBlockMaxt = maxt } // Clear some disk space before compacting blocks, especially important // when Head compaction happened over a long time range. if err := db.head.truncateWAL(lastBlockMaxt); err != nil { return fmt.Errorf("WAL truncation in Compact: %w", err) } compactionDuration := time.Since(start) if compactionDuration.Milliseconds() > db.head.chunkRange.Load() { level.Warn(db.logger).Log( "msg", "Head compaction took longer than the block time range, compactions are falling behind and won't be able to catch up", "duration", compactionDuration.String(), "block_range", db.head.chunkRange.Load(), ) } if lastBlockMaxt != math.MinInt64 { // The head was compacted, so we compact OOO head as well. if err := db.compactOOOHead(ctx); err != nil { return fmt.Errorf("compact ooo head: %w", err) } } return db.compactBlocks() } // CompactHead compacts the given RangeHead. func (db *DB) CompactHead(head *RangeHead) error { db.cmtx.Lock() defer db.cmtx.Unlock() if err := db.compactHead(head); err != nil { return fmt.Errorf("compact head: %w", err) } if err := db.head.truncateWAL(head.BlockMaxTime()); err != nil { return fmt.Errorf("WAL truncation: %w", err) } return nil } // CompactOOOHead compacts the OOO Head. func (db *DB) CompactOOOHead(ctx context.Context) error { db.cmtx.Lock() defer db.cmtx.Unlock() return db.compactOOOHead(ctx) } func (db *DB) compactOOOHead(ctx context.Context) error { if !db.oooWasEnabled.Load() { return nil } oooHead, err := NewOOOCompactionHead(ctx, db.head) if err != nil { return fmt.Errorf("get ooo compaction head: %w", err) } ulids, err := db.compactOOO(db.dir, oooHead) if err != nil { return fmt.Errorf("compact ooo head: %w", err) } if err := db.reloadBlocks(); err != nil { errs := tsdb_errors.NewMulti(err) for _, uid := range ulids { if errRemoveAll := os.RemoveAll(filepath.Join(db.dir, uid.String())); errRemoveAll != nil { errs.Add(errRemoveAll) } } return fmt.Errorf("reloadBlocks blocks after failed compact ooo head: %w", errs.Err()) } lastWBLFile, minOOOMmapRef := oooHead.LastWBLFile(), oooHead.LastMmapRef() if lastWBLFile != 0 || minOOOMmapRef != 0 { if minOOOMmapRef != 0 { // Ensure that no more queriers are created that will reference chunks we're about to garbage collect. // truncateOOO waits for any existing queriers that reference chunks we're about to garbage collect to // complete before running garbage collection, so we don't need to do that here. // // We take mtx to ensure that Querier() and ChunkQuerier() don't miss blocks: without this, they could // capture the list of blocks before the call to reloadBlocks() above runs, but then capture // lastGarbageCollectedMmapRef after we update it here, and therefore not query either the blocks we've just // written or the head chunks those blocks were created from. db.mtx.Lock() db.lastGarbageCollectedMmapRef = minOOOMmapRef db.mtx.Unlock() } if err := db.head.truncateOOO(lastWBLFile, minOOOMmapRef); err != nil { return fmt.Errorf("truncate ooo wbl: %w", err) } } return nil } // compactOOO creates a new block per possible block range in the compactor's directory from the OOO Head given. // Each ULID in the result corresponds to a block in a unique time range. func (db *DB) compactOOO(dest string, oooHead *OOOCompactionHead) (_ []ulid.ULID, err error) { start := time.Now() blockSize := oooHead.ChunkRange() oooHeadMint, oooHeadMaxt := oooHead.MinTime(), oooHead.MaxTime() ulids := make([]ulid.ULID, 0) defer func() { if err != nil { // Best effort removal of created block on any error. for _, uid := range ulids { _ = os.RemoveAll(filepath.Join(db.dir, uid.String())) } } }() for t := blockSize * (oooHeadMint / blockSize); t <= oooHeadMaxt; t += blockSize { mint, maxt := t, t+blockSize // Block intervals are half-open: [b.MinTime, b.MaxTime). Block intervals are always +1 than the total samples it includes. uid, err := db.compactor.Write(dest, oooHead.CloneForTimeRange(mint, maxt-1), mint, maxt, nil) if err != nil { return nil, err } if uid.Compare(ulid.ULID{}) != 0 { ulids = append(ulids, uid) blockDir := filepath.Join(dest, uid.String()) meta, _, err := readMetaFile(blockDir) if err != nil { return ulids, fmt.Errorf("read meta: %w", err) } meta.Compaction.SetOutOfOrder() _, err = writeMetaFile(db.logger, blockDir, meta) if err != nil { return ulids, fmt.Errorf("write meta: %w", err) } } } if len(ulids) == 0 { level.Info(db.logger).Log( "msg", "compact ooo head resulted in no blocks", "duration", time.Since(start), ) return nil, nil } level.Info(db.logger).Log( "msg", "out-of-order compaction completed", "duration", time.Since(start), "ulids", fmt.Sprintf("%v", ulids), ) return ulids, nil } // compactHead compacts the given RangeHead. // The compaction mutex should be held before calling this method. func (db *DB) compactHead(head *RangeHead) error { uid, err := db.compactor.Write(db.dir, head, head.MinTime(), head.BlockMaxTime(), nil) if err != nil { return fmt.Errorf("persist head block: %w", err) } if err := db.reloadBlocks(); err != nil { if errRemoveAll := os.RemoveAll(filepath.Join(db.dir, uid.String())); errRemoveAll != nil { return tsdb_errors.NewMulti( fmt.Errorf("reloadBlocks blocks: %w", err), fmt.Errorf("delete persisted head block after failed db reloadBlocks:%s: %w", uid, errRemoveAll), ).Err() } return fmt.Errorf("reloadBlocks blocks: %w", err) } if err = db.head.truncateMemory(head.BlockMaxTime()); err != nil { return fmt.Errorf("head memory truncate: %w", err) } return nil } // compactBlocks compacts all the eligible on-disk blocks. // The compaction mutex should be held before calling this method. func (db *DB) compactBlocks() (err error) { // Check for compactions of multiple blocks. for { // If we have a lot of blocks to compact the whole process might take // long enough that we end up with a HEAD block that needs to be written. // Check if that's the case and stop compactions early. if db.head.compactable() { level.Warn(db.logger).Log("msg", "aborting block compactions to persit the head block") return nil } plan, err := db.compactor.Plan(db.dir) if err != nil { return fmt.Errorf("plan compaction: %w", err) } if len(plan) == 0 { break } select { case <-db.stopc: return nil default: } uid, err := db.compactor.Compact(db.dir, plan, db.blocks) if err != nil { return fmt.Errorf("compact %s: %w", plan, err) } if err := db.reloadBlocks(); err != nil { if err := os.RemoveAll(filepath.Join(db.dir, uid.String())); err != nil { return fmt.Errorf("delete compacted block after failed db reloadBlocks:%s: %w", uid, err) } return fmt.Errorf("reloadBlocks blocks: %w", err) } } return nil } // getBlock iterates a given block range to find a block by a given id. // If found it returns the block itself and a boolean to indicate that it was found. func getBlock(allBlocks []*Block, id ulid.ULID) (*Block, bool) { for _, b := range allBlocks { if b.Meta().ULID == id { return b, true } } return nil, false } // reload reloads blocks and truncates the head and its WAL. func (db *DB) reload() error { if err := db.reloadBlocks(); err != nil { return fmt.Errorf("reloadBlocks: %w", err) } maxt, ok := db.inOrderBlocksMaxTime() if !ok { return nil } if err := db.head.Truncate(maxt); err != nil { return fmt.Errorf("head truncate: %w", err) } return nil } // reloadBlocks reloads blocks without touching head. // Blocks that are obsolete due to replacement or retention will be deleted. func (db *DB) reloadBlocks() (err error) { defer func() { if err != nil { db.metrics.reloadsFailed.Inc() } db.metrics.reloads.Inc() }() // Now that we reload TSDB every minute, there is high chance for race condition with a reload // triggered by CleanTombstones(). We need to lock the reload to avoid the situation where // a normal reload and CleanTombstones try to delete the same block. db.mtx.Lock() defer db.mtx.Unlock() loadable, corrupted, err := openBlocks(db.logger, db.dir, db.blocks, db.chunkPool) if err != nil { return err } deletableULIDs := db.blocksToDelete(loadable) deletable := make(map[ulid.ULID]*Block, len(deletableULIDs)) // Mark all parents of loaded blocks as deletable (no matter if they exists). This makes it resilient against the process // crashing towards the end of a compaction but before deletions. By doing that, we can pick up the deletion where it left off during a crash. for _, block := range loadable { if _, ok := deletableULIDs[block.meta.ULID]; ok { deletable[block.meta.ULID] = block } for _, b := range block.Meta().Compaction.Parents { if _, ok := corrupted[b.ULID]; ok { delete(corrupted, b.ULID) level.Warn(db.logger).Log("msg", "Found corrupted block, but replaced by compacted one so it's safe to delete. This should not happen with atomic deletes.", "block", b.ULID) } deletable[b.ULID] = nil } } if len(corrupted) > 0 { // Corrupted but no child loaded for it. // Close all new blocks to release the lock for windows. for _, block := range loadable { if _, open := getBlock(db.blocks, block.Meta().ULID); !open { block.Close() } } errs := tsdb_errors.NewMulti() for ulid, err := range corrupted { if err != nil { errs.Add(fmt.Errorf("corrupted block %s: %w", ulid.String(), err)) } } return errs.Err() } var ( toLoad []*Block blocksSize int64 ) // All deletable blocks should be unloaded. // NOTE: We need to loop through loadable one more time as there might be loadable ready to be removed (replaced by compacted block). for _, block := range loadable { if _, ok := deletable[block.Meta().ULID]; ok { deletable[block.Meta().ULID] = block continue } toLoad = append(toLoad, block) blocksSize += block.Size() } db.metrics.blocksBytes.Set(float64(blocksSize)) slices.SortFunc(toLoad, func(a, b *Block) int { switch { case a.Meta().MinTime < b.Meta().MinTime: return -1 case a.Meta().MinTime > b.Meta().MinTime: return 1 default: return 0 } }) // Swap new blocks first for subsequently created readers to be seen. oldBlocks := db.blocks db.blocks = toLoad blockMetas := make([]BlockMeta, 0, len(toLoad)) for _, b := range toLoad { blockMetas = append(blockMetas, b.Meta()) } if overlaps := OverlappingBlocks(blockMetas); len(overlaps) > 0 { level.Warn(db.logger).Log("msg", "Overlapping blocks found during reloadBlocks", "detail", overlaps.String()) } // Append blocks to old, deletable blocks, so we can close them. for _, b := range oldBlocks { if _, ok := deletable[b.Meta().ULID]; ok { deletable[b.Meta().ULID] = b } } if err := db.deleteBlocks(deletable); err != nil { return fmt.Errorf("delete %v blocks: %w", len(deletable), err) } return nil } func openBlocks(l log.Logger, dir string, loaded []*Block, chunkPool chunkenc.Pool) (blocks []*Block, corrupted map[ulid.ULID]error, err error) { bDirs, err := blockDirs(dir) if err != nil { return nil, nil, fmt.Errorf("find blocks: %w", err) } corrupted = make(map[ulid.ULID]error) for _, bDir := range bDirs { meta, _, err := readMetaFile(bDir) if err != nil { level.Error(l).Log("msg", "Failed to read meta.json for a block during reloadBlocks. Skipping", "dir", bDir, "err", err) continue } // See if we already have the block in memory or open it otherwise. block, open := getBlock(loaded, meta.ULID) if !open { block, err = OpenBlock(l, bDir, chunkPool) if err != nil { corrupted[meta.ULID] = err continue } } blocks = append(blocks, block) } return blocks, corrupted, nil } // DefaultBlocksToDelete returns a filter which decides time based and size based // retention from the options of the db. func DefaultBlocksToDelete(db *DB) BlocksToDeleteFunc { return func(blocks []*Block) map[ulid.ULID]struct{} { return deletableBlocks(db, blocks) } } // deletableBlocks returns all currently loaded blocks past retention policy or already compacted into a new block. func deletableBlocks(db *DB, blocks []*Block) map[ulid.ULID]struct{} { deletable := make(map[ulid.ULID]struct{}) // Sort the blocks by time - newest to oldest (largest to smallest timestamp). // This ensures that the retentions will remove the oldest blocks. slices.SortFunc(blocks, func(a, b *Block) int { switch { case b.Meta().MaxTime < a.Meta().MaxTime: return -1 case b.Meta().MaxTime > a.Meta().MaxTime: return 1 default: return 0 } }) for _, block := range blocks { if block.Meta().Compaction.Deletable { deletable[block.Meta().ULID] = struct{}{} } } for ulid := range BeyondTimeRetention(db, blocks) { deletable[ulid] = struct{}{} } for ulid := range BeyondSizeRetention(db, blocks) { deletable[ulid] = struct{}{} } return deletable } // BeyondTimeRetention returns those blocks which are beyond the time retention // set in the db options. func BeyondTimeRetention(db *DB, blocks []*Block) (deletable map[ulid.ULID]struct{}) { // Time retention is disabled or no blocks to work with. if len(blocks) == 0 || db.opts.RetentionDuration == 0 { return } deletable = make(map[ulid.ULID]struct{}) for i, block := range blocks { // The difference between the first block and this block is greater than or equal to // the retention period so any blocks after that are added as deletable. if i > 0 && blocks[0].Meta().MaxTime-block.Meta().MaxTime >= db.opts.RetentionDuration { for _, b := range blocks[i:] { deletable[b.meta.ULID] = struct{}{} } db.metrics.timeRetentionCount.Inc() break } } return deletable } // BeyondSizeRetention returns those blocks which are beyond the size retention // set in the db options. func BeyondSizeRetention(db *DB, blocks []*Block) (deletable map[ulid.ULID]struct{}) { // Size retention is disabled or no blocks to work with. if len(blocks) == 0 || db.opts.MaxBytes <= 0 { return } deletable = make(map[ulid.ULID]struct{}) // Initializing size counter with WAL size and Head chunks // written to disk, as that is part of the retention strategy. blocksSize := db.Head().Size() for i, block := range blocks { blocksSize += block.Size() if blocksSize > db.opts.MaxBytes { // Add this and all following blocks for deletion. for _, b := range blocks[i:] { deletable[b.meta.ULID] = struct{}{} } db.metrics.sizeRetentionCount.Inc() break } } return deletable } // deleteBlocks closes the block if loaded and deletes blocks from the disk if exists. // When the map contains a non nil block object it means it is loaded in memory // so needs to be closed first as it might need to wait for pending readers to complete. func (db *DB) deleteBlocks(blocks map[ulid.ULID]*Block) error { for ulid, block := range blocks { if block != nil { if err := block.Close(); err != nil { level.Warn(db.logger).Log("msg", "Closing block failed", "err", err, "block", ulid) } } toDelete := filepath.Join(db.dir, ulid.String()) switch _, err := os.Stat(toDelete); { case os.IsNotExist(err): // Noop. continue case err != nil: return fmt.Errorf("stat dir %v: %w", toDelete, err) } // Replace atomically to avoid partial block when process would crash during deletion. tmpToDelete := filepath.Join(db.dir, fmt.Sprintf("%s%s", ulid, tmpForDeletionBlockDirSuffix)) if err := fileutil.Replace(toDelete, tmpToDelete); err != nil { return fmt.Errorf("replace of obsolete block for deletion %s: %w", ulid, err) } if err := os.RemoveAll(tmpToDelete); err != nil { return fmt.Errorf("delete obsolete block %s: %w", ulid, err) } level.Info(db.logger).Log("msg", "Deleting obsolete block", "block", ulid) } return nil } // TimeRange specifies minTime and maxTime range. type TimeRange struct { Min, Max int64 } // Overlaps contains overlapping blocks aggregated by overlapping range. type Overlaps map[TimeRange][]BlockMeta // String returns human readable string form of overlapped blocks. func (o Overlaps) String() string { var res []string for r, overlaps := range o { var groups []string for _, m := range overlaps { groups = append(groups, fmt.Sprintf( "", m.ULID.String(), m.MinTime, m.MaxTime, (time.Duration((m.MaxTime-m.MinTime)/1000)*time.Second).String(), )) } res = append(res, fmt.Sprintf( "[mint: %d, maxt: %d, range: %s, blocks: %d]: %s", r.Min, r.Max, (time.Duration((r.Max-r.Min)/1000)*time.Second).String(), len(overlaps), strings.Join(groups, ", ")), ) } return strings.Join(res, "\n") } // OverlappingBlocks returns all overlapping blocks from given meta files. func OverlappingBlocks(bm []BlockMeta) Overlaps { if len(bm) <= 1 { return nil } var ( overlaps [][]BlockMeta // pending contains not ended blocks in regards to "current" timestamp. pending = []BlockMeta{bm[0]} // continuousPending helps to aggregate same overlaps to single group. continuousPending = true ) // We have here blocks sorted by minTime. We iterate over each block and treat its minTime as our "current" timestamp. // We check if any of the pending block finished (blocks that we have seen before, but their maxTime was still ahead current // timestamp). If not, it means they overlap with our current block. In the same time current block is assumed pending. for _, b := range bm[1:] { var newPending []BlockMeta for _, p := range pending { // "b.MinTime" is our current time. if b.MinTime >= p.MaxTime { continuousPending = false continue } // "p" overlaps with "b" and "p" is still pending. newPending = append(newPending, p) } // Our block "b" is now pending. pending = append(newPending, b) if len(newPending) == 0 { // No overlaps. continue } if continuousPending && len(overlaps) > 0 { overlaps[len(overlaps)-1] = append(overlaps[len(overlaps)-1], b) continue } overlaps = append(overlaps, append(newPending, b)) // Start new pendings. continuousPending = true } // Fetch the critical overlapped time range foreach overlap groups. overlapGroups := Overlaps{} for _, overlap := range overlaps { minRange := TimeRange{Min: 0, Max: math.MaxInt64} for _, b := range overlap { if minRange.Max > b.MaxTime { minRange.Max = b.MaxTime } if minRange.Min < b.MinTime { minRange.Min = b.MinTime } } overlapGroups[minRange] = overlap } return overlapGroups } func (db *DB) String() string { return "HEAD" } // Blocks returns the databases persisted blocks. func (db *DB) Blocks() []*Block { db.mtx.RLock() defer db.mtx.RUnlock() return db.blocks } // inOrderBlocksMaxTime returns the max time among the blocks that were not totally created // out of out-of-order data. If the returned boolean is true, it means there is at least // one such block. func (db *DB) inOrderBlocksMaxTime() (maxt int64, ok bool) { maxt, ok = int64(math.MinInt64), false // If blocks are overlapping, last block might not have the max time. So check all blocks. for _, b := range db.Blocks() { if !b.meta.Compaction.FromOutOfOrder() && b.meta.MaxTime > maxt { ok = true maxt = b.meta.MaxTime } } return maxt, ok } // Head returns the databases's head. func (db *DB) Head() *Head { return db.head } // Close the partition. func (db *DB) Close() error { close(db.stopc) if db.compactCancel != nil { db.compactCancel() } <-db.donec db.mtx.Lock() defer db.mtx.Unlock() var g errgroup.Group // blocks also contains all head blocks. for _, pb := range db.blocks { g.Go(pb.Close) } errs := tsdb_errors.NewMulti(g.Wait(), db.locker.Release()) if db.head != nil { errs.Add(db.head.Close()) } return errs.Err() } // DisableCompactions disables auto compactions. func (db *DB) DisableCompactions() { db.autoCompactMtx.Lock() defer db.autoCompactMtx.Unlock() db.autoCompact = false level.Info(db.logger).Log("msg", "Compactions disabled") } // EnableCompactions enables auto compactions. func (db *DB) EnableCompactions() { db.autoCompactMtx.Lock() defer db.autoCompactMtx.Unlock() db.autoCompact = true level.Info(db.logger).Log("msg", "Compactions enabled") } // ForceHeadMMap is intended for use only in tests and benchmarks. func (db *DB) ForceHeadMMap() { db.head.mmapHeadChunks() } // Snapshot writes the current data to the directory. If withHead is set to true it // will create a new block containing all data that's currently in the memory buffer/WAL. func (db *DB) Snapshot(dir string, withHead bool) error { if dir == db.dir { return fmt.Errorf("cannot snapshot into base directory") } if _, err := ulid.ParseStrict(dir); err == nil { return fmt.Errorf("dir must not be a valid ULID") } db.cmtx.Lock() defer db.cmtx.Unlock() db.mtx.RLock() defer db.mtx.RUnlock() for _, b := range db.blocks { level.Info(db.logger).Log("msg", "Snapshotting block", "block", b) if err := b.Snapshot(dir); err != nil { return fmt.Errorf("error snapshotting block: %s: %w", b.Dir(), err) } } if !withHead { return nil } mint := db.head.MinTime() maxt := db.head.MaxTime() head := NewRangeHead(db.head, mint, maxt) // Add +1 millisecond to block maxt because block intervals are half-open: [b.MinTime, b.MaxTime). // Because of this block intervals are always +1 than the total samples it includes. if _, err := db.compactor.Write(dir, head, mint, maxt+1, nil); err != nil { return fmt.Errorf("snapshot head block: %w", err) } return nil } // Querier returns a new querier over the data partition for the given time range. func (db *DB) Querier(mint, maxt int64) (_ storage.Querier, err error) { var blocks []BlockReader db.mtx.RLock() defer db.mtx.RUnlock() for _, b := range db.blocks { if b.OverlapsClosedInterval(mint, maxt) { blocks = append(blocks, b) } } blockQueriers := make([]storage.Querier, 0, len(blocks)+2) // +2 to allow for possible in-order and OOO head queriers defer func() { if err != nil { // If we fail, all previously opened queriers must be closed. for _, q := range blockQueriers { // TODO(bwplotka): Handle error. _ = q.Close() } } }() if maxt >= db.head.MinTime() { rh := NewRangeHead(db.head, mint, maxt) var err error inOrderHeadQuerier, err := NewBlockQuerier(rh, mint, maxt) if err != nil { return nil, fmt.Errorf("open block querier for head %s: %w", rh, err) } // Getting the querier above registers itself in the queue that the truncation waits on. // So if the querier is currently not colliding with any truncation, we can continue to use it and still // won't run into a race later since any truncation that comes after will wait on this querier if it overlaps. shouldClose, getNew, newMint := db.head.IsQuerierCollidingWithTruncation(mint, maxt) if shouldClose { if err := inOrderHeadQuerier.Close(); err != nil { return nil, fmt.Errorf("closing head block querier %s: %w", rh, err) } inOrderHeadQuerier = nil } if getNew { rh := NewRangeHead(db.head, newMint, maxt) inOrderHeadQuerier, err = NewBlockQuerier(rh, newMint, maxt) if err != nil { return nil, fmt.Errorf("open block querier for head while getting new querier %s: %w", rh, err) } } if inOrderHeadQuerier != nil { blockQueriers = append(blockQueriers, inOrderHeadQuerier) } } if overlapsClosedInterval(mint, maxt, db.head.MinOOOTime(), db.head.MaxOOOTime()) { rh := NewOOORangeHead(db.head, mint, maxt, db.lastGarbageCollectedMmapRef) var err error outOfOrderHeadQuerier, err := NewBlockQuerier(rh, mint, maxt) if err != nil { // If NewBlockQuerier() failed, make sure to clean up the pending read created by NewOOORangeHead. rh.isoState.Close() return nil, fmt.Errorf("open block querier for ooo head %s: %w", rh, err) } blockQueriers = append(blockQueriers, outOfOrderHeadQuerier) } for _, b := range blocks { q, err := NewBlockQuerier(b, mint, maxt) if err != nil { return nil, fmt.Errorf("open querier for block %s: %w", b, err) } blockQueriers = append(blockQueriers, q) } return storage.NewMergeQuerier(blockQueriers, nil, storage.ChainedSeriesMerge), nil } // blockChunkQuerierForRange returns individual block chunk queriers from the persistent blocks, in-order head block, and the // out-of-order head block, overlapping with the given time range. func (db *DB) blockChunkQuerierForRange(mint, maxt int64) (_ []storage.ChunkQuerier, err error) { var blocks []BlockReader db.mtx.RLock() defer db.mtx.RUnlock() for _, b := range db.blocks { if b.OverlapsClosedInterval(mint, maxt) { blocks = append(blocks, b) } } blockQueriers := make([]storage.ChunkQuerier, 0, len(blocks)+2) // +2 to allow for possible in-order and OOO head queriers defer func() { if err != nil { // If we fail, all previously opened queriers must be closed. for _, q := range blockQueriers { // TODO(bwplotka): Handle error. _ = q.Close() } } }() if maxt >= db.head.MinTime() { rh := NewRangeHead(db.head, mint, maxt) inOrderHeadQuerier, err := NewBlockChunkQuerier(rh, mint, maxt) if err != nil { return nil, fmt.Errorf("open querier for head %s: %w", rh, err) } // Getting the querier above registers itself in the queue that the truncation waits on. // So if the querier is currently not colliding with any truncation, we can continue to use it and still // won't run into a race later since any truncation that comes after will wait on this querier if it overlaps. shouldClose, getNew, newMint := db.head.IsQuerierCollidingWithTruncation(mint, maxt) if shouldClose { if err := inOrderHeadQuerier.Close(); err != nil { return nil, fmt.Errorf("closing head querier %s: %w", rh, err) } inOrderHeadQuerier = nil } if getNew { rh := NewRangeHead(db.head, newMint, maxt) inOrderHeadQuerier, err = NewBlockChunkQuerier(rh, newMint, maxt) if err != nil { return nil, fmt.Errorf("open querier for head while getting new querier %s: %w", rh, err) } } if inOrderHeadQuerier != nil { blockQueriers = append(blockQueriers, inOrderHeadQuerier) } } if overlapsClosedInterval(mint, maxt, db.head.MinOOOTime(), db.head.MaxOOOTime()) { rh := NewOOORangeHead(db.head, mint, maxt, db.lastGarbageCollectedMmapRef) outOfOrderHeadQuerier, err := NewBlockChunkQuerier(rh, mint, maxt) if err != nil { return nil, fmt.Errorf("open block chunk querier for ooo head %s: %w", rh, err) } blockQueriers = append(blockQueriers, outOfOrderHeadQuerier) } for _, b := range blocks { q, err := NewBlockChunkQuerier(b, mint, maxt) if err != nil { return nil, fmt.Errorf("open querier for block %s: %w", b, err) } blockQueriers = append(blockQueriers, q) } return blockQueriers, nil } // ChunkQuerier returns a new chunk querier over the data partition for the given time range. func (db *DB) ChunkQuerier(mint, maxt int64) (storage.ChunkQuerier, error) { blockQueriers, err := db.blockChunkQuerierForRange(mint, maxt) if err != nil { return nil, err } return storage.NewMergeChunkQuerier(blockQueriers, nil, storage.NewCompactingChunkSeriesMerger(storage.ChainedSeriesMerge)), nil } func (db *DB) ExemplarQuerier(ctx context.Context) (storage.ExemplarQuerier, error) { return db.head.exemplars.ExemplarQuerier(ctx) } func rangeForTimestamp(t, width int64) (maxt int64) { return (t/width)*width + width } // Delete implements deletion of metrics. It only has atomicity guarantees on a per-block basis. func (db *DB) Delete(ctx context.Context, mint, maxt int64, ms ...*labels.Matcher) error { db.cmtx.Lock() defer db.cmtx.Unlock() var g errgroup.Group db.mtx.RLock() defer db.mtx.RUnlock() for _, b := range db.blocks { if b.OverlapsClosedInterval(mint, maxt) { g.Go(func(b *Block) func() error { return func() error { return b.Delete(ctx, mint, maxt, ms...) } }(b)) } } if db.head.OverlapsClosedInterval(mint, maxt) { g.Go(func() error { return db.head.Delete(ctx, mint, maxt, ms...) }) } return g.Wait() } // CleanTombstones re-writes any blocks with tombstones. func (db *DB) CleanTombstones() (err error) { db.cmtx.Lock() defer db.cmtx.Unlock() start := time.Now() defer func() { db.metrics.tombCleanTimer.Observe(time.Since(start).Seconds()) }() cleanUpCompleted := false // Repeat cleanup until there is no tombstones left. for !cleanUpCompleted { cleanUpCompleted = true for _, pb := range db.Blocks() { uid, safeToDelete, cleanErr := pb.CleanTombstones(db.Dir(), db.compactor) if cleanErr != nil { return fmt.Errorf("clean tombstones: %s: %w", pb.Dir(), cleanErr) } if !safeToDelete { // There was nothing to clean. continue } // In case tombstones of the old block covers the whole block, // then there would be no resultant block to tell the parent. // The lock protects against race conditions when deleting blocks // during an already running reload. db.mtx.Lock() pb.meta.Compaction.Deletable = safeToDelete db.mtx.Unlock() cleanUpCompleted = false if err = db.reloadBlocks(); err == nil { // Will try to delete old block. // Successful reload will change the existing blocks. // We need to loop over the new set of blocks. break } // Delete new block if it was created. if uid != nil && *uid != (ulid.ULID{}) { dir := filepath.Join(db.Dir(), uid.String()) if err := os.RemoveAll(dir); err != nil { level.Error(db.logger).Log("msg", "failed to delete block after failed `CleanTombstones`", "dir", dir, "err", err) } } if err != nil { return fmt.Errorf("reload blocks: %w", err) } return nil } } return nil } func (db *DB) SetWriteNotified(wn wlog.WriteNotified) { db.writeNotified = wn // It's possible we already created the head struct, so we should also set the WN for that. db.head.writeNotified = wn } func isBlockDir(fi fs.DirEntry) bool { if !fi.IsDir() { return false } _, err := ulid.ParseStrict(fi.Name()) return err == nil } // isTmpDir returns true if the given file-info contains a block ULID, a checkpoint prefix, // or a chunk snapshot prefix and a tmp extension. func isTmpDir(fi fs.DirEntry) bool { if !fi.IsDir() { return false } fn := fi.Name() ext := filepath.Ext(fn) if ext == tmpForDeletionBlockDirSuffix || ext == tmpForCreationBlockDirSuffix || ext == tmpLegacy { if strings.HasPrefix(fn, "checkpoint.") { return true } if strings.HasPrefix(fn, chunkSnapshotPrefix) { return true } if _, err := ulid.ParseStrict(fn[:len(fn)-len(ext)]); err == nil { return true } } return false } func blockDirs(dir string) ([]string, error) { files, err := os.ReadDir(dir) if err != nil { return nil, err } var dirs []string for _, f := range files { if isBlockDir(f) { dirs = append(dirs, filepath.Join(dir, f.Name())) } } return dirs, nil } func exponential(d, min, max time.Duration) time.Duration { d *= 2 if d < min { d = min } if d > max { d = max } return d }